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ABSTRACT

Time averaged fields produced by a two-level, quasi-geostrophic, nonlinear time-dependent model of large-
scale flow over topography are compared to results from stationary linear theory in order to assess the
influence of transient eddies. It is shown that stationary linear theory predicts excessive amplitudes and has
a low phase correlation with these time-averaged fields. Addition of the stationary nonlinear terms gives only
a slight improvement. The transient eddy fluxes are responsible for reducing the amplitude of the linear
solutions. Resonant effects evident in the linear models are highly damped, but still noticeable, in the
turbulent solutions. The energetics of the stationary flow show that the transfer of stationary to transient
energy is significant. Instability analyses of the time-averaged flow suggest that unstable perturbations are
likely to arise which have structures qualitatively similar to time-averaged variance fields. We conclude that
the time averages in such turbulent models depend both upon the stationary forcings and the instabilities
that arise and that neglect of transient fluxes will lead to unrealistic results.

1. Introduction

The simplest models used to describe stationary
eddies are the stationary. linear models linearized
around a zonal state (e.g., Saltzman, 1968). The
primary justification for these models comes from
the observation that the stationary eddies are very
much weaker than the zonal flow—the eddy stationary
energy is an order of magnitude smaller than the
zonal stationary energy (Holopainen, 1970).

The effect of the transient eddies has often been
regarded as implicit through their effect on the zonal
flow and intermediate to small scales. Indeed, many
linear models do produce stationary anomalies in
qualitative agreement with some observations (e.g.,
Alpert et al., 1983). However, some observational
studies suggest that the transient eddies (which have
more energy than the stationary eddies) have an
important influence on the actual stationary eddies
(e.g., Holopainen et al., 1982) and especially on those
produced by linear models (e.g., Youngblut and
Sasamori, 1980; Opsteegh and Vernekar, 1982). Other
evidence lies in the instability properties associated
with the stationary eddies. If these eddies are unstable
then they are likely to give rise to perturbations that
may draw energy from the stationary flow in an
organized manner, eventually leading to a different
time averaged field. A number of simple models of
this interaction have been proposed (e.g., Frederiksen,
1978; Lin, 1980; Sasamori and Youngblut, 1981).

The direct effect of the transients on the stationary
eddies has received little attention, partly because it
is very difficult, in the real atmosphere, to isolate
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their effects. They will affect the stationary flow by
direct energy transfer and by stochastic perturbations.
How important these processes are, which are ne-
glected in linear models, and, concomitantly, how
realistic the results from such models are, is not well
understood.

One step toward understanding such problems is
to rigorously compare linear theory with the time
averages in a nonlinear time-dependent model (e.g.,
Roads, 1981; Phillips, 1982). The linear model can
be identical with the full model in all respects other
than the omission of nonlinearities. In particular it
can use the same stationary forcings and finite differ-
encing of the turbulent model. Further, the linear
model can use the time-averaged state of the turbulent
model. By comparing the time-averaged (stationary)
response of the turbulent model with the linear
model, linearized around the mean zonal flow of the
full model, the effects of the transient eddies can be
isolated.

In this paper we report the results of such a study
with a turbulent (i.e., time dependent, highly nonlin-
ear) two-level quasi-geostrophic model on a beta
plane with specified topography. The turbulent model
(often denoted the “full” model below) is compared
to the response in various abridged models—a purely
linear model, a linear model with nonlinear stationary
fluxes included as nonhomogeneous forcing terms,
and linear models with nonlinear and transient ther-
modynamic or vorticity fluxes similarly included.
Aside from the omission of one or more of the above
processes, the models are identical. Energetics of the
models are decomposed into stationary and transient
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components to examine the energy flow. Finally the
stability of the solutions is examined. Here the aim
is to see whether the variance of the full model is
related to the unstable eigensolutions of the time-
averaged flow.

The two-level model should not be regarded as
quantitatively “realistic”, its primary weakness for
these studies being the imposition of a rigid lid at the
top of the model atmosphere which may prevent
energy in the stationary waves from propagating
upward. This might enhance any resonance charac-
teristics in the models (e.g., Smagorinsky, 1953).
However, as shown, for example, by Tung and Lind-
zen (1980) tropospheric resonance is possible in at-
mospheric models which incorporate realistic zonal
wind shears. ’

Overall, we are interested in how stationary topog-.

raphy is related to the time-averaged fields in the
turbulent model, in the hope of ultimately under-
standing the time-averaged response through the use
of simple models, in which turbulent processes are
parameterized. For example, White and Green (1982)
found that the asymmetric eddies as well as the zonal
flow must include parameterizations for the transient
eddies.

The basic model is described in Section 2. A
description of the simulations and their energy budgets
can be found in Section 3. Section 4 contains a
comparison with linear theory. Section 5 is a descrip-
tion of the instability analysis. Section 6 contains the
summary and conclusions.

2. Model

The two-level, beta-plane, quasi-geostrophic channel
model comprises upper and lower level vorticity
equations, a thermodynamic equation and boundary
conditions. These equations may be written, in stan-
dard notation, as

J _.
5 TV I T+ =f3;~Du )

9 2 IS
a—tV2¢3+J(¢3,V¢3+By)— pr+pr D,
)

or Jw 3)

N — + NJ(Y, 1) = NF, + —.
a XD 2Ap

The vertical pressure velocity is zero at the upper
boundary and at the surface, w;, is given by

for _

— &f N _ k2 _pi 2
Ap Ap J(ws, H) — Kf Ap Vs
= — J(Y3, h) — KV?3, 4)

where ¢, and y; are the upper and lower level
streamfunctions; ¥ and 7 are the barotropic and
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thermal streamfunctions defined by ¢ = (¥, + ¥3)/2,
T = (Y, — ¥3)/2; # is the dimensional orographic
height and F, is the thermodynamic forcing. The
flow is governed by these parameters as well as the
value of 8, the meridional derivative of the coriolis
parameter; the inverse deformation radius A, which
is a measure of the static stability; the surface friction
coefficient K; and the dimensions of the domain
(zonal extent, L,, 16 000 km and meridional extent,
L,, 8000 km). In (1) and (2) D, and D; are high-
order diffusion operators designed to remove enstro-
phy and keep the energy spectra smooth at high
wavenumbers. They have a negligible effect on low
wavenumbers and are parameterized by D; = »V%,.
The numerical values of some of the parameters are

B=15%X10""s!m™}
Ap = 400 mb
A2 =3.16 X 107'2 m~? (corresponding to a nondi-
mensional wavenumber 4.5)
v=14X 10" m*s™!
K =(1/2.9) days™". ,
By eliminating the vertical velocity the equations
may be combined into equations representing the

conservation of potential vorticity at the upper and
lower levels,

s o
=g +JW, q) = —2N\F, - D,,

% &)

9 ,

5% + J(Ws, q3) = +2X°F, — Ds, (6)
where

g1 =V + N3 — ¢) + By

=V + N —¥s) Byt h

D3 = V%5 + KV,

D, = ”Vékbl
The y_ertical velocity is obtained from an omega
equation.

The channel is periodic in the x-direction and has
zero flow through the boundaries along the northern
and southern edges. A no-slip condition is also im-
posed on the zonally averaged zonal wind. An appro-
priate spectral expansion of the streamfunction is
then

Ux, 3, 1)
N—1 N-1 k=N=}
= > bult)cosly + > > bu(?) sinlye™. (7)
-1 I=1 k=;;]\(/)—-l)

Here x and y are nondimensional coordinates defined
by x = x*2n/L.; y = y*=x/L,, where the asterisk
denotes a dimensional variable. Note that no eddy
activity is allowed on the boundary and a temperature
gradient can exist across the domain.
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Evaluation of the nonlinear Jacobian terms is not
trivial if energy and enstrophy conservation are de-
manded. Essentially, terms not involving the zonal
flow are evaluated exactly by Orszag’s (1971) staggered
grid algorithm—a spectral transform technique.
Wave-mean flow terms make use of transform tech-
niques and interaction coefficients (Vallis, 1985).

The form of the thermodynamic forcing is

A
F.,"—‘ ('2—k + CTk).
Here C gives a radiative damping, with a time scale
of about 23 days (2 X 10° seconds). The zonal forcing
component (4o;) is set to a value corresponding to
0.9 K day. In the absence of eddies this radiative
forcing yields a symmetric radiative-equilibrium zonal
wind of about 35 m s™! at the upper level and an
almost zero, but negative, lower level wind (Fig. 1).
The lower level wind would be exactly zero but for
the high-order diffusion operators (the enstrophy re-
movers).

We note here that it is not our intention to perform
a.complete parameter study of the Egs. (5) and (6).
We propose only a study of the effects of a localized
range of mountains and a localized heat source. To
this end experiments (denoted M1, M2) were per-
formed with a strip of mountains through the whole
meridional extent of the domain, and of 2000 km
zonal extent. The total height in the strip is 2 km
(M2) or 4 km (M1). In experiments H2 and Hl a
heat source replaces the mountains, with effective
total heating rates of 4.5 K day™' (H2) and 9 K day™
(H1). The spectral amplitudes of the heating and
orography are illustrated in Fig. 6. Note the spectral
expansions show a zero at wavenumber 8. The pa-
rameter range of the forcings is similar to that of
Kalnay-Rivas and Merkine (1981) and other idealized
studies.

3. Numerical experiments

The full (i.e., time dependent, nonlinear) model
was integrated for 120 days (after a warm-up period
of 30 days) with mountains (M1 and M2), localized
heating (H1 and H2) or neither (Cl, the control); M1
and C1 were further integrated for 120 more days to
give some measure of variance.

a. Physical space response

The time and zonally-averaged wind for the various
experiments is illustrated in Fig. 1. Note that the
shear is reduced by about a factor of two from the
equilibrium value, and the surface wind has the
typical easterly, westerly, easterly variation. Note in
particular that the main features of the zonal wind
are not altered by the inclusion of orography or
asymmetric heating.
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FIG. 1. Time- and zonally-averaged zonal winds at the upper
and lower levels for (a) M1 and M2; (b) HI and H2 and (c) Cl.
In (a) and (c) the shaded regions indicate two different 120-day
integrations (Mla and Mib, and Cla and C2b), thereby giving
some measure of the variability of the runs. In (c) the curve R is
the radiative-equilibrium zonal wind.
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. FiG. 2. Upper and lower level streamfunctions, for the mountain cases M1 and M2: (a) is
the time averaged results from the full model for M1, (b) displays the difference field M1
— M2 and (c) shows the fields predicted by linear theory using the zonal wind of the full model
for M1. Units are arbitrary with 10 units corresponding to a geopotential height of approximately

40 meters.

The streamfunctions, minus the zonal mean, are
displayed in Figs. 2 and 3. The amplitudes are in
nondimensional units with a value of 10 correspond-
ing roughly to a geopotential height of 40 meters.
The response has a wave train propagating about
halfway round the domain downstream of the moun-
.tains, with a stationary high north and west of the
mountains, and a low directly east. The anomaly
flow pattern is shifted eastward somewhat at the lower
level, and lowered in amplitude. The difference map

(M1 — M2) shows some reduction in amplitude, and
some slight phase shifts.

The nonlinearity inherent in the solutions is most
noticeable by comparing the linear solution with the
full solution (i.e., rows 3 and 1 of Figs. 2 and 3). The
linear solution uses the time-averaged zonal wind
from M1 and the same stationary topographic forc-
ings. The amplitudes of the linear solution are about
three times as large as the full solutions and have
larger responses near the critical latitudes in the
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F1G. 3. As in Fig. 2 but for the heating cases H1 and H2.
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heating cases. The comparison with linear theory is
developed more fully in Section 4.

b. Energetics

The model energetics are decomposed spectrally
into kinetic and available potential energy for both
stationary and transient components. The unforced,
inviscid model conserves energy exactly. The equa-
tions for the kinetic energy budget are obtained by
taking the time average of (1) and (2) and multiplying
by —[¥1x] and —[y¥3] and adding the resulting expres-
sions. A square bracket denotes a time average, a
prime a deviation therefrom and a subscript k the
kth spectral mode. The potential energy budget is
similarly obtained from (3).

The budget equations for the stationary flow are,
for each wavenumber k,

1 sk~ (M]2 + [nd® = (K], [K])

+ TW([K], K) + C(IF], [K]) + SW[K]), (3)
d
N2 € [n? = TP, [PD) + Tu([P), P)
= G([P), [K]) + SIPD.  (9)

The left-hand sides of (4) and (5) are the total rates
of change of the time averaged kinetic and potential
energies. The terms on the right-hand side are, for
each wavenumber k.

T({K], [K])(transfer of stationary kinetic energy)

=2 W), (V3D + 5 W@l Vsl + h),

T([K}, K')(transfer of stationary to transient kinetic
energy)

= 3 W, VL + 2 SIS, V),
S([K])(frictional sink of stationary kinetic energy)
= 2 WsllD3] + 3 WilD],

C([P], [K])conversion of energy from potential
to kinetic

-_L
Ap Ll
T({P), {P])(transfer of stationary potential energy)

= 2N [7 (¥, [7]),

T([P)], P'Xtransfer of statxonary to transient potential
energy)

= =2N[7)lJW 7O
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S([P])(diabatic source of stationary potential energy)
= 2NM[71[F.].

The transient energy budget is similar. For an overall
view of the model energy cycle we decomposed the
above balance equations into budgets for the zonally
averaged flow and the remainder for both transient
and stationary flow. These block energy diagrams are
depicted in Figs. 4 and 5. The energy spectra are
graphed in Fig. 6 and the budgets are graphed by
zonal wavenumber in Figs. 7 and 8. (The energy in
the stationary field in the control experiment, except
for the zonal flow, is much smaller than that in the
topographic cases, as can be seen from Fig. 6. The
energy in the nonzonal flow is nonzero because the
integration time is finite.)

The total energy spectra (Fig. 6) depends only
slightly on the inclusion of topography, and in all
cases the slope and magnitudes are entirely reasonable.

~ One cannot ask for a k=3 spectra even for a model

with N = 16, since such a spectra depends on very
non-local interactions which are not simulated. Nor
for that matter, should we expect such a spectra in
the atmosphere since its quasi two-dimensionality
breaks down too soon. (The spectral slope in this
model is about 3.5.) The ratio of energy in the
transient to the stationary flow generally increases
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FI1G. 4. Energy diagram for M1 and M2. The upper part of the
figure shows the transient energy budget and the lower part of the
figure the stationary energy budget. P denotes the available potential
energy which is separated into zonal (subscript z) and eddy (subscript
E) for both stationary and transient energy. K denotes kinetic
energy and is separated similarly. The arrows denote the direction
of the energy flow. Energies are in units of 10° J m™2 and the
transfers are in W m™2. The upper numbers (with estimated errors
from two 120 day integrations) correspond to M1 and the lower
numbers to M2.
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FI1G. 5. As in Fig. 4 but for H! and H2.

with wavenumber. At high wavenumbers, energy is
almost all transient (as it is for the atmosphere, cf.
Boer and Shepherd, 1983).

The total energy budgets for all cases (Fig. 7) are
typical of quasi-geostrophic turbulence: potential en-
ergy is transferred by baroclinic instability of the
mean flow to the waves mainly between wavenumbers
3 and 7. This is balanced by a (local) conversion to
kinetic energy where it is transferred upscale to be
ultimately dissipated by friction. The only significant
difference between cases is the additional source of
potential energy at low wavenumbers in the heating
cases. There are only quantitative differences between
H1 and H2, and M1 and M2; so only those for M1
and H1 are shown. The energy in the zonal flow
(both stationary and total) is very similar for all
experiments M1, M2, H1, H2 and Cl. Its value is
about 50% higher than that required for baroclinic
instability (see Section 4c).

The maintenance of the stationary energies for M1
is illustrated overall in Fig. 4 and as a function of
wavenumber in Fig. 8. The level of stationary energy
in M1 is generally realistic, even though the zonal
shear is highly supercritical. The zonal baroclinicity
is actually slightly lower than that in the real atmo-
sphere. If the baroclinicity were raised (by raising the
zonal forcing), the instability and turbulence activity
would be stronger, and the eddies would probably be
more efficient at extracting energy from the stationary
flow. Note the general direction of the energy cycle:
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FiG. 6. Kinetic (KE) and potential (PE) energy spectra for (a)
M1, (b) H! and (c) Cl. Shaded regions denote integrations from
different initial conditions (for M1 and C1 only). Curves without a
subscript show the total, time-averaged, energies. A subscript s
indicates the energy is that in the stationary field. The curves M
and H show the amplitude of the stationary forcing—the mountains
(a) and the asymmetric heating in (b). Units are arbitrary.
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FIG. 7. Total energy' budgets for M1 (a and b), H1 (¢ and d) and C1 (e and f). Units are
arbitrary. The upper row is for potential energy, the lower for kinetic. The labels denote: S, diabatic
source or frictional sink; C, conversion between potential and kinetic; T, transfer.

Energy enters the (stationary) zonal flow through
direct forcing creating zonal available potential energy.
Most of it is transferred into transient eddy potential
energy, then into transient kinetic where it is dissi-
pated. However, a significant fraction is transferred
into stationary eddy potential energy. This is balanced
by further transfer to both transient potential energy
and to stationary kinetic (see also Holopainen, 1970
and Yao, 1980). Stationary kinetic energy is further
converted into transient energy or dissipated. In M1
(and M2) note that the stationary energy budget is
dominated by transfers at wavenumber 3. Over 70%
of the conversion between zonal and eddy potential
energy occurs here, suggesting that wavenumber 3 is
linearly resonant with the zonal flow. In H1 and H2
(Figs. 5 and 8) no such potentially resonant structure
is noticeable.

Note too that the stationary kinetic energy in M1
and M2 is not maintained by direct orographic
forcing (which would be represented by a conversion
from zonal kinetic to stationary eddy kinetic energy)
but by transfer from potential energy (see also Holo-
painen, 1970 and Yao, 1980). The balance is main-
tained partly by direct dissipation and partly by the
dissipative effects of the transient eddies. The upscale

transfer of energy is accounted for, too, almost entirely
in the transients—even at low wavenumbers. The
transfer of energy by the purely stationary flow shows
no preferred direction.

The major energetic differences between the moun-
tain and heating cases is in the stationary budgets.
The direct asymmetric heating now provides the
major source of stationary eddy potential energy
(Figs. 6 and 8). Nevertheless the eddies themselves
are a little stronger, and their kinetic energy is smaller.
The reason seems to be an enhanced effect of the
transient motion in dissipating the stationary energy.
Indeed, increasing the strength of the asymmetric
heating (from H2 to H1) succeeds mainly in enhancing
this transfer, and increasing the strength of the tran-
sient eddies. From Fig. 8 we see the asymmetric
heating is relatively more efficient at lower wavenum-
bers in supplying energy compared with the orographic
forcing. [The Jacobian J(¥, h) provides a wavenumber
multiplying the mountain height 4, unlike the ther-
modynamic forcing. Also, the mountain Jacobian is
not an energy source; it merely acts to redistribute
energy, since [ yJ(, h)dx = 0.] Interestingly, the
orographic energy cycle (Fig. 4) resembles qualitatively
the winter cycle computed by Holopainen (1970) for
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FIG. 8. Energy budgets for the stationary field for M1 [Figs. (a)
and (b)] and HI1 [Figs. (c) and (d)]. Figs. (a) and (c) show the
budget of potential energy, (b) and (d) the kinetic energy budgets.
The labels on the curves denote: S, diabatic source or frictional
sink; C, conversion between stationary potential and stationary
kinetic energy; T, contribution from/to other stationary modes; 7'
contribution to/from transient modes. Note the different scales for
the kinetic energy budget. Units are same as Fig. 7.

the real atmosphere whereas the cycle driven thermally
(Fig. 5) resembles more closely the summer cycle.
This is consistent with orographic (thermal) forcing

being more important than thermal (orographic) forc-

ing in winter (summer).

4, Stationary models

In this section we discuss the extent to which the
stationary fields of the full model are described by
linear or stationary nonlinear models and to what
extent the turbulent terms contribute.

a. Time-averaged equations

The time mean asymmetric equations may be -

written
2 141+ Guldl = [£) (10)
where at the upper level
[F] = N4'— JW¥1], [4) — U@ el (1D
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and at the lower level

[F] = —N4 = J(¥s), [&5)) — s, a1 = K([¥s), hs).
(12)

A bracket denotes a time average and a prime a
deviation therefrom. An overhead bar denotes a zonal
average and a carat a deviation therefrom. An inte-
gration time of 4 months is more than sufficient to
make 3[¢]/0¢ negligible. The terms on the rhs in (11)
and (12) are the diabatic heating, the fluxes due to
the stationary eddies, the turbulent fluxes due to the
transient eddies and the linear orographic forcing.
Including only the terms in [¢] (i.e., radiative damp-
ing, friction and interaction with the zonal flow) and
the nonhomogeneous terms in [F] defines the linear
model. Including the stationary nonlinear terms in
[F] using fields from the full model defines the
“stationary nonlinear” model although formally the
model is still linear. The transit thermodynamic or
vorticity fluxes may also be incorporated in [F). In
Eq. (10) G, is a matrix composed of the frictional
terms and terms derived by linearizing the asymmetric
equations about the zonal flow. For an inviscid linear
model

- Gu¥] = SV, (4D + J(1Y), (9D

Setting up the matrix required use of interaction
coefficients, The stationary linear solution is then
given by [¥] = G;'[F]. Use of the diabatic heating
and linear orographic forcing gives the linear asym-
metric response which, like a linear Hadley circulation,
is not present due to the presence of weak stationary
and strong transient fluxes.

b. Physical space comparisons

To examine the asymmetric circulation in more
detail we return to the physical space streamfunctions
in Figs. 2 and 3. The amplitudes from the linear
model are approximately three times too big, although
some qualitative features are common. The more
noticeable discrepancies, especially for the heating
cases, are at the northern and southern edges of the
domain. Linear theory appears sensitive to the exis-
tence of the critical line (where the zonal wind is
zero) and here the linear model is giving very large
responses. No such response is evident in the nonlinear
integrations. Nor is the linear model a good model
of the difference (or anomaly) experiment for the
differences H1 — H2 and M1 — M2. That is, the
increase of M1 from M2 and especially H1 from H2
is much less than given for linear theory. Comparisons
of the kinetic energy for the heating case (Fig. 5)
implies that saturation values in the stationary kinetic
energy have been reached in that the stationary
energy for H2 and HI is very similar. What does
change is the energy in the transient systems.



15 NOVEMBER 1984

M

Q.36 [(2.2,047)

AN e
6_5{ (60.17) | INEAR 833

035 (034,1.2) (@)

ole 0.30

GEOFFREY K. VALLIS AND JOHN O. ROADS

084 (27,10)

3263

45 (b) 34
1.2 t.2

F1G. 9. Energy diagram for linear solutions for mountain (a) and heating (b) cases. In (a),
upper numbers are for M1, using the zonally averaged state from a 240-day integration. Figures
in brackets use two different 120-day averaged states. Lower figures are for M2. In (b), upper
and lower figures are for H1 and H2 respectively. Otherwise, as Figs. 4 and 5.

Quantitative comparisons of the phases of the
different fields are given by the correlation coefficient,
o = [vil([ ¥i? [ 5%, where the integrals are
over the domain. For M1 the correlation between the
full and linear models is about 50%. For the difference
experiments, M1 — M2, the correlations are similar.
For the heating experiment, the correlations are also
about 50% but much smaller for the difference.
Effectively linear theory seems to work slightly better
in this model for the total forcing than it does for
anomalous forcings.

¢. Spectral amplitudes and energetics

The energy cycles for the linear models for the
orographic and heating cases are shown in Fig. 9.
They are similar to the cycles of the stationary
solutions of the full model in that the kinetic energy
of the flow is maintained by conversion from potential
energy, which in turn is maintained by transfer from
the zonal flow (orographic cases) and by direct forcing
(heating cases). They differ in that the amplitudes are
much higher and the orographic cases display a great
sensitivity to the basic state, witnessed by the differing
results given by using the zonal state from two
different 120 day integrations in M1 and their average
(Fig. 9). The first 120 day integration has a zonal
state very close to wavenumber-3 resonance. The
balance in the stationary kinetic energy is maintained
primarily by conversion to zonal kinetic energy,
rather than to transients. Again direct orographic
forcing is unimportant (i.e., terms directly involving
the orography have a small impact on the energetics).

The kinetic energy spectrum for the models is
shown in Figs. 10 and 11. In each figure we plot the
stationary kinetic energy achieved from an integration
of the full model. Additionally we' plot the energy
from the linear model, this model plus stationary
nonlinear forcings (b), and plus transient thermody-
namic forcings or plus the transient vorticity forcings
(¢) and (d). That is, we include the nonlinear terms
as nonhomogeneous terms on the right hand side of

(10). The models are successive improvements to a
basic linear model by the incorporation of additional
forcings. If both transient vorticity and thermody-
namic fluxes are included, we achieve again the
results of the full model.

The abridged models have much higher energies
in the stationary fields than the full model. Surpris-
ingly, perhaps, the largest relative discrepancies occur
at lower wavenumbers. The linear models are also
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F1G. 10. Comparison of stationary kinetic energy spectra for M1
between full model and various abridgements: (a) Spectra from-
linear model, (b) stationary nonlinear model spectra, (c) spectra
from nonlinear model plus thermodynamic transients, (d) spectra
from nonlinear model plus vorticity transients. The spectra from
the full model is always shown dashed. Units are arbitrary.
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extremely sensitive to the basic state—note the large
differences in M1 in Figs. 9 and 10 for two slightly
different zonal winds from the two 120 day integra-
tions. The large amplitude response at wavenumber
3 is due to a simple resonance with the zonal wind.
This also occurs in the full model, although its
amplitude is greatly reduced by transfer of energy to
the transient flow (Fig. 8a and b). In baroclinic flow,
the stationary Rossby wave for the first zonal mode
_at the upper level occurs here near k, = 3. The large
response at wavenumber 5 does not seem to be a
simple resonance. However, for small surface east-
erlies resonance can occur near to k,> = A* (Egger,
1976). (In this model A ~ wavenumber 4.5).

The addition of stationary nonlinear terms, J([y],
[g]), results in a small improvement over the linear
model, and the resonant peak at wavenumber 3 is
reduced. High sensitivity to the basic state is still
displayed. It is primarily the transient terms which
are damping the linear response. The thermodynamic
transients [the terms of the form N[J(Y', 7')] are
dominant at lower wavenumbers, and the vorticity
_forcing is dominant at higher wavenumbers. For k2
> A2, inspection of (5) and (6) shows the layers to be
effectively decoupled and the transient fluxes of tem-
perature scale out of the problem; for A> > k? the
temperature field is passively advected by the velocity
fields and the fluxes of relative vorticity are small
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compared with the thermodynamic fluxes in the
potential vorticity equation. Qualitatively similar be-
havior occurs in response to the localized heating,
except that the nonlinear stationary forcing has a
completely negligible effect. Again transient phenom-
ena are principally responsible for greatly damping
the linear response.

The large damping effects of the transient eddies
are similar to those found by Youngblut and Sasamori
(1980) in a study of the observed circulation, and to
the modeling studies of White and Green (1982) and
Roads (1981). In these studies the amplitudes of the
stationary eddies were greatly reduced by transient
thermodynamic fluxes acting on the asymmetric flow.
Note also that the stationary energy at all wavenum-
bers, and not only at resonance, is reduced by the
transients.

Of course the beta-plane geometry distorts the
nonlinear stationary response, especially in high lati-
tudes where beta is negligible. Saltzman and Sankar-
Rao (1963) conclude that stationary nonlinear terms
are important in high latitudes in winter. In a spherical
model, Ashe (1979) showed that minor modifications
occurred when the stationary nonlinear terms were
incorporated, although inclusion of a high eddy dif-
fusivity in his study (2.44 X 10° m? s™') makes direct
comparison difhicult.

d. Correlations

In addition to reducing the amplitude of the linear
response, the transients affect the phase. A measure
of the phase error is given by the correlations Cj
between two fields ¢, and y,, where

Cr = 2 Yudul (X v 2 oi®)'>
] f ]

The sums extend over all y wavenumbers /, giving a
correlation as a function of zonal wavenumber. The
correlations between fields of the full model and
fields of the abridged models are shown in Figs. 12
and 13. Note again how little better the stationary
nonlinear forcings are over the simple linear model.
In all cases, though, linear theory is giving a qualitative ,
picture of both the amplitude and phase of the
stationary flow. :

5. Instability properties

Having shown that the transient fluxes reduce the
amplitude of the stationary flow, and greatly affect
the phase, we examine in this section the instability
of the climatological flow to small perturbations. Our
aim here is to see to what extent the flow variance
may be understood in terms of simple instability
calculations.
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F1G. 12. Correlations for M1, as a function of zonal wavenumber,
between thermodynamic and barotropic stationary streamfunctions
for the full model and various abridgements: (a) linear model, (b}
stationary nonlinear model, (c) nonlinear model plus transient
thermodynamic forcings and (d) nonlinear model plus transient
vorticity forcings. The solid curves are for y, the dashed curves
for 7.

a. Eigenvalue equations

The time dependent model may be written as

w2y iop-r. (13)
ot
In (13) G is the linear matrix operator derived by
linearizing all Jacobians about an equilibrium state—
taken here to be the time averaged nonzonal state
from the nonlinear time dependent model, and F’ is
composed of the term —J(¥', ¢'). The linear stability
properties of the above equation are obtained by
setting F' = 0. If we assume ¢/ = ye”*™, then the
eigenvalues and eigenvectors of the matrix equation

[H'G + Ko + iw)ly = 0

where 1 is the identity matrix, give the fundamental
frequencies and spatial structure of the time dependent
system so long as J(y', ¢') is negligible. Various
simplifications to the above equations are considered.
For example, if only the matrix for the asymmetric
equations is considered, one zonal wavenumber at a
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time, the standard baroclinic instability problem of
flow linearized around a purely zonal flow results. If
in addition the zonal flow as well as the orographic
feedback is considered, the wave-mean flow problem
considered by Charney and Devore (1979) resuits.
Consideration of the entire system was done first by
Lorenz (1972) and most recently by Frederiksen
(1983) although without consideration of the oro-
graphic feedback.

b. Instability of the zonally averaged flow

The baroclinic instability of this standard problem
is graphed in Figs. 14 and 15. Note the presence of
long-wave and short-wave cutoffs. The long-wave
cutoff is due to the effects of beta and especially
friction, which damps perturbations with growth rates
smaller than a few days. The short-wave cutoff is
typically baroclinic—for the canonical problem of a
mean shear with no curvature, stability occurs for all
k > V2\. Phase speeds are also typically baroclinic,
and growth rates of about 5 days are found.

The resulting shear for all experiments is well
above the critical shear for baroclinic stability, even
with friction taken into account. The critical shear is
found by systematically reducing the zonal shears
obtained in each of the experiments and then calcu-
lating the new growth rates. The model shear is
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approximately double the inviscid critical shear and
about 50% larger than the critical shear with friction.
In Stone’s (1978) study, the atmosphere was shown
to lie close to the critical shear of a simplified two-
level quasi-geostrophical model on a beta-plane. The
fact that our results are not close to criticality implies
that either our forcing is much too strong or that
baroclinic adjustment is not the dominant mechanism
of equilibration. However, if baroclinic adjustment is
to work at ali, it should work in a two-level, quasi-
geostrophic model. A highly supercritical shear seems
to be a common feature of a number of quasi-
geostrophic simulations. It implies that the baroclinic
eddies are not equilibrating through a stabilization of
the mean flow (cf. Stone, 1978) but that either
transfer to lower and more stable wavenumbers or
stochastic equilibration (wherein the forcing due to
interaction with other modes destroys the phase
correlations necessary for linear instability) is occur-
ring (e.g., Salmon, 1980).

c. Wave mean flow instability

The next most simple problem is to examine the
stability of a basic state consisting of the mean zonal
flow plus that due to the interaction of the zonal flow
with the ‘asymmetric forcing of a single wave. It is
the simplest problem which explicitly considers the
effects of the asymmetric forcing. We performed two
sets of calculations. In the first, we take the mean
zonal state from the full model, calculate the linear
response to orography (for one zonal wavenumber at
a time) and then calculate the instability associated
with this mean state consisting of a zonal wind and
an orographic wave of wavenumber k.. (We per-
formed these calculations as a continuous function
of zonal wavenumber by varying the zonal dimension
and using the forcing for the first zonal wavenumber
of the discrete model.) The other instability calculation
we perform uses the mean state given by the full
model integration of both zonal flow and wave motion
and uses the corresponding spectral forcing.

The idealized wave-mean flow interaction problem
displays greater instability than the linear baroclinic
instability problem, especially for low and high wave-
numbers (Figs. 14a and 15a). The phase speeds are
also changed, generally being slower. We note here
that linear resonance is evident, in both orography
and heating cases (although more in the former). This
is evident in the peak in the linear response just
below wavenumber 3 which also is the slowest moving
wave. However, this calculation itself is somewhat
unrealistic, as can be seen by comparing it with the
results from the true mean state (Figs. 14b and 15b).
Now the growth rates are very similar to those given
by the purely zonal problems, suggesting baroclinic
instability is the main contributor at smaller mean
state amplitudes. However, the phase speeds are
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considerably reduced, especially at wavenumber 3.
Note too the presence of substantial instability in
wavenumber one for the heating case.

The main point we wish to make here is that the
idealized wave-mean flow problem is unrealistic as
an indicator of the flow stability properties of the
climatological flow because the linear amplitude of
the waves is generally too high, and the system is too
unstable. However, it does suggest why in this model,
and perhaps the atmosphere, linear behavior is not
observed. That is, the linear state is likely to be highly
unstable. Reduction of the orography and heating by
12 tends to also decrease the growth rates by Y2 and
therefore it is likely that linear theory will work well
only for topographic amplitudes an order of magni-
tude smaller than the ones we have chosen for this
study. At high wavenumbers the linear topographic
flow is stable. In spite of the flow being highly
turbulent here, the stability is presumably ensuring
that linear theory performs fairly well.

d. Three-dimensional instability

Finally, we give in Table 1 the eigenvalues calcu-
lated for the problem of the instability of the complete,
time averaged flow. To solve the complete problem
requires finding the eigenvalues of a 930? mairix,
which was beyond our computing resources. We
therefore had to truncate the system. In doing the
linear solutions it was noticed that it was important
to include all meridional modes. Fewer meridional
modes were needed only for the higher zonal wave-
numbers, where linear theory in any case did a fairly
reasonable job for the orographic forcing. The system
was therefore truncated at zonal wavenumber 8 but
all meridional modes were retained (matrix of or-
der 450).

For the orographic case (M1) three unstable eigen-
values are present, two with large growth rates and
fairly rapid oscillations, and a third, more slowly
amplifying and oscillating mode. If the orography
was removed and the calculation repeated (denoted
M1') somewhat different eigenvalues resulted. The
most unstable mode has about a 50% higher growth
rate and the number of amplifying eigenvalues has
increased. Decreasing the meridional truncation
wavenumber, M1”, gives more or less the same am-
plitude for the most unstable mode as the less trun-
cated system but more eigenvalues.

The barotropic streamfunction eigenvectors for the
orographic case M are given in Fig. 16. Plotted are
the time averaged root mean square over one fre-
quency cycle, ignoring the growth and the eigenvector
at ¢t = 0. The most unstable modes are similar to
those given by the standard, linear, baroclinic insta-
bility calculations and the variance tends to have
little zonal structure, indicating zonally propagating
waves. The third mode has zonal structure associated
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TABLE 1. Eigenvalues for the three-dimensional instability problem. The real part of the exponent, ¢ (the growing part), is given first
followed by the imaginary part,  (the oscillating part), in units of s (x, y denotes x X 10”). The e-folding times are given by 1/ and
periods are given by 2wx/w. The eigenvalues are ordered by the growth rate. All eigenvalues up to the first stationary mode are given. M1
is the orographic case; M1’ is the orographic case when orography is set to zero and M1” is the orographic case when the meridional modes

are truncated at k, = 8. H1 is the heating case, and Cl is the control case.

Ml Ml M1 Hl1 Cl
N ' w 4 @ 4 w c w 4 @
1 1.45, -6 1.12, =5 2.12, -6 1.08, -5 1.58, —6 1.17, =5 1.67, -6 2.05, —6 2.24, -6 1.51, =5
2 1.35, -6 1.74, -5 1.69, —6 1.73, -5 1.30, —6 2.18, -5 1.17, -6 1.90, —6 2.03, -6 2.13, -5
3 4.26, -7 1.41, ~7 1.65, —6 243, -7 1.30, —6 1.57, -5 9.30, -7 2.38, -6 7.92, -7 4.65, —6
4 1.05, -6 342, -6 8.61, -7 7.83, -6 8.57, =7 2.09, -7 4.15, =7 442, —6
5 5.28, -7 6.43, —6 8.57, -7 2.04, -5 7.87, =7 1.18, -5 3.59, -7 1.06, —5
6 5.22, -7 0. 5.23, -7 1.45, -5 6.96, ~7 0. 9.87, -8 1.72, -6
7 5.12, =7 1.09, -5 2.28, -8 0.
8 5.07, -7 1.16, —6
9 4.88, -7 2.25, -7
10 3.55, -7 7.61, -6
11 3.24, -7 2.90, -5
12 2.51, -7 0.

with it. The minimum variance is over the mountain
and the maximum is away from the mountain.
Despite a nonzero phase speed, this mode acts like a
standing mode in that its maximum amplitude stays
more or less stationary.

Plotted in Fig. 17 are the root mean squares [given
by s = (1/T [ ¢2dr)'?] for the time integration of the
full model. The low-passed fields have been obtained
by subjecting the time series of the streamfunction

%max

to a Hanning window which filters out periods shorter
than five days (a ten day low-pass filter showed little
difference). Comparing the eigenfunctions (Fig. 16)
with the high- and low-passed variance fields of the
numerical model (Fig. 17), one can see a certain
amount of resemblance. The fast oscillating modes
tend to correspond to the high-passed fields and the
more slowly varying mode qualitatively corresponds
to the low-passed field.

100

12

T r 1 11 77

FIG. 16. Eigenvectors for the unstable modes of M1. The most unstable mode is shown first followed
by the mode with the largest complex frequency and the mode with the smallest complex frequency. The
spatial root-mean-square (rms) (minus the mean value) is given first for each mode followed by the
eigenvector present at ¢ = 0. The shaded regions have rms values less than the average rms value for the

. domain. Units are arbitrary.

¢
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FiG. 17. High- and low-passed rms with the mean value subtracted, from the full model for (a) the
orographic case, M1 (b) the heating case, H1 and (c) the control run, C1. Units are arbitrary. Values
below zero are shaded.

The heating case was somewhat more difficult to slowest moving mode (Fig. 18). The fastest growing
analyze because of the large number of unstable mode in this case has zonal structure associated with
eigenvectors in the system. We show only the fastest it and tends to have the maximum variance near the
growing mode, the fastest moving mode and the center of the domain similar to the low-passed field

H

Omax

Wrmox

FiG. 18. As in Fig. 16 except for the H1 case.
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of the full model. The fastest oscillating mode in this
case corresponds most closely to the high-passed
variance field of the full model, shown in Fig. 17,
with essentially no zonal variation in variance. Note,
though, that several eigen-solutions exist which bear
little resemblance to the flow, in particular the slowest
oscillating mode. This may be due to the choice of a
time-averaged basic state which may not be relevant
to the instantaneéous growth of instabilities.

6. Summary and conclusions

This study has been concerned with the extent to
which stationary features of flow over topography are
the result of stationary linear dynamics and to what
degree nonlinear dynamics, stationary and turbulent,
contribute. We integrated a quasi-geostrophic model
with idealized topographic forcing for a period of
several months and compared the time-averaged re-
sults with the results of linear theory. The addition
of the stationary nonlinear, thermodynamic and tran-
sient vorticity fluxes successively brings the linear
model to the full turbulent model.

Before summarizing the results we shall reiterate
some of the model limitations. The beta-plane ge-
ometry certainly distorts the perceived atmospheric
picture seriously in the higher latitudes. Since transient
activity is also weak here, we should not expect
stationary effects to be so much smaller here. A more
serious limitation is the models inability to radiate
energy into a stratosphere. If such a radiation were
allowed the stationary linear solutions might be weaker
and the effects of the transient phenomena smaller,
as pointed out by the reviewers. )

In spite of these potential limitations the turbulent
simulations display atmospheric-like features. The
shape of the energy spectra, the direction and mag-
nitude of the energy transfers and the physical space
amplitudes are realistic. The energetics of the total
flow, transient plus stationary, is typical of quasi-
geostrophic turbulence. Most of the upscale transfer
of kinetic energy occurs in the transient flow. In all
cases transfer of energy between stationary eddy
modes has a small contribution. Transfer of energy
from the stationary to the transient flow is responsible
for reducing the amplitude of the stationary flow,
and in particular of the resonant structures which,
nevertheless, can still be detected in the turbulent
simulations. The energy cycles of the linear solutions
are larger but in the $ame direction as the full
solution, except that the main sink of stationary
kinetic energy is in the zonal flow, rather than the
transients.

The mean zonal state of the model is little altered
by the presence of topography. The variation in the
zonal state, with and without topography, is no
greater than the variation between long-term integra-
tions started from slightly different initial conditions.
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The zonal wind produced in all cases, in response to
a differential heating rate of about 1 K day™!, has
about twice the shear needed for instability. Nonlinear
turbulent effects rather than a reduction in the mean
available potential energy of the zonal state are evi-
dently responsible for producing equilibration.

The asymmetric states show marked differences
depending on whether heating or orography is present.
The heating case is dominated by the response at
wavenumber 1 whereas the orographic case has a
Rossby wave train propagating downstream of the
mountain with a maximum wavenumber response
for k, = 3 corresponding to a simple resonant wave-
number. In the orographic case the linear responses
were qualitatively similar except that the linear am-
plitudes were much too large, especially at the resonant
wavenumbers, and somewhat out of phase. The linear
heating responses were dominated by the responses
near the critical latitudes (#; = 0). They were very
different from the time-averaged turbulent responses.

The topographically forced flow was found highly
unstable, although less so at high wavenumbers. The
stability properties of the mean field give some indi-
cation of the flow variance. In particular, eigenfunc-
tions are present which can be identified with the
variance of the high-passed or low-passed time series,
perhaps more for the orographic cases. The presence
of orography itself is non-negligible and acts to sta-
bilize the flow. In the heating case some eigenfunctions
do qualitatively resemble the flow variance, although
there is no obvious method of choosing the relevant
eigenfunctions. E

In summary, we conclude that the transient eddies
interact strongly with the asymmetric as well as the
zonal flow. Even with the correct zonal state, linear
theory overestimates the response of flow over topo-
graphic features due to its neglect of the damping
effects of the transients which presumably arise from
the instability of the flow which would be produced
in their absence.

Acknowledgments. The order of authors was deter-
mined by the flip of a penny. The research was
supported by National Science Foundation Grant
ATMS82-10160 and by NASA Grant G-NASA-NAGS5-
236. G. Johnston and V. Roberts text-edited the
manuscript and F. Crowe and his group drafted the
figures. Useful comments were given by R. C. J.
Somerville of Scripps, T. Sasamori of University of
Illinois and an anonymous reviewer.

REFERENCES

Alpert, J. C., M. A. Geller and S. K. Avery, 1983: The response of
stationary planetary waves to tropospheric forcing. J. Atmos.
Sci., 40, 2467-2483.

Ashe, S., 1979: A nonlinear model for the time-averaged axially
asymmetric flow induced by topography and diabatic heating.
J. Atmos. Sci., 36, 109-126.

Boer, G. J., and G. G. Shepherd, 1983: Large scale two-dimensional
turbulence in the atmosphere. J. Atmos. Sci., 40, 164~-184.



15 NOVEMBER 1984

Charney, J. G., and J. G. Devore, 1979: Multiple flow equilibra in
the atmosphere and blocking. J. Atmos. Sci., 36, 1205-1216.

Egger, J., 1976: The linear response of a hemispheric two-level
primitive equation model to forcing by topography. Mon.
Wea. Rev., 104, 351-364.

Frederiksen, J. S., 1978: Instability of planetary waves and zonal
flows in two-layer models on a sphere. Quart. J. Roy. Meteor.
Soc., 104, 841-872.

——, 1983: A unified three-dimensional instability theory of the
onset of blocking and cyclogenesis. II: Teleconnection patterns.
J. Atmos. Sci., 40, 2593-2609.

Holopainen, E. O., 1970: An observational study of the energy
balance of the stationary disturbances in the atmosphere.
Quart. J. Roy. Meteor. Soc., 96, 626—644.

——, L. Rontu and N.-C. Lau, 1982: The effect of large-scale
transient eddies on the time-mean flow in the atmosphere. J.
Atmos. Sci., 39, 1872-1984.

Kalnay-Rivas, E., and L.-O. Merkine, 1981: A simple mechanism
for blocking. J. Atmos. Sci., 38, 2077-2091.

Lin, C. A., 1980: Eddy heat fluxes and stability of planetary waves.
Part I and Part II. J. Atmos. Sci., 37, 2353-2380.

Lorenz, E. N., 1972: Barotropic instability of Rossby wave motion.
J. Atmos. Sci., 29, 258-264.

Opsteegh, J. D., and A. D. Vernekar, 1982: A simulation of the
January standing wave pattern including the effects of transient
eddies. J. Atmos. Sci., 39, 734-744.

Orszag, S., 1971: Numerical simulation of incompressible flow
within simple boundaries. Stud. Appl. Math., L, 293-327.
Phillips, T. J., 1982: On the interaction of surface heating anomalies
with zonally symmetric and asymmetric atmospheric flows. J.

Atmos. Sci., 39, 1953-1971.

Roads, J. O., 1981: Linear and nonlinear aspects of snow albedo
feedbacks in atmospheric models. J. Geophys. Res., 86, 7411~
7424,

GEOFFREY K. VALLIS AND JOHN O. ROADS

3271

Salmon, R. L., 1980: Baroclinic instability and geostrophic turbu-
lence. Geophys. Astrophys. Fluid Dyn., 10, 25-52.

Saltzman, B., 1968: Surface boundary effects on the general circu-
lation and manoclimate: A review of the theory of the quasi-
stationary perturbations in the atmosphere. The causes of
climatic change. Meteor. Monogr., No. 30, Boston, Amer.
Meteor. Soc., 4-19.

——, and M. Sankar Rao, 1963: A diagnostic study of the mean
state of the atmosphere. J. Armos. Sci., 20, 438-447.

Sasamori, T., and C. E. Youngblut, 1981: The nonlinear effects of
transient and stationary eddies on the winter mean circulation.
Part II: The stability of stationary waves. J. Atmos. Sci., 38,
87-96.

Smagorinsky, J., 1953: The dynamical influence of large-scale heat
sources and sinks on the quasi-stationary mean motions of
the atmosphere. Quart. J. Roy. Meteor. Soc., 79, 342-366.

Stone, P. H., 1978: Baroclinic adjustment. J. Atmos. Sci., 35, 561~
571.

Tung, K. K., and R. S. Lindzen, 1980: A theory of stationary long
waves. Part II: Resonant Rossby waves in the presence of
realistic vertical shears. J. Atmos. Sci., 107, 735-750.

Vallis, G. K., 1985: On the spectral integration of the quasi-
geostrophic equations for doubly-periodic and channel flow.
J. Atmos. Sci., 42, 95-99.

White, A. A, and J. S. A. Green, 1982: A nonlinear atmospheric
long wave model incorporating parameterizations of the tran-
sient baroclinic waves. Quart. J. Roy. Meteor. Soc., 108, 55-
85.

Yao, M. S., 1980: Maintenance of quasi-stationary waves in a two-
level quasi-geostrophic spectral model with topography. J.
Atmos. Sci., 37, 29-43.

Youngblut, C., and T. Sasamori, 1980: The nonlinear effects of
transient and stationary eddies on the winter mean circulation.
I: Diagnostic analysis. J. Atmos. Sci., 37, 1944-1957.



