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ABSTRACT

What can we learn from performing a linear stability analysis of the large-scale ocean circula-
tion? Can we predict from the basic state the occurrence of interdecadal oscillations, such as
might be found in a forward integration of the full equations of motion? If so, do the structure
and period of the linearly unstable modes resemble those found in a forward integration? We
pursue here a preliminary study of these questions for a case in idealized geometry, in which
the full nonlinear behavior can also be explored through forward integrations. Specifically, we
perform a three-dimensional linear stability analysis of the thermally-driven circulation of the
planctary geostrophic equations. We examine the resulting eigenvalues and eigenfunctions,
comparing them with the structure of the interdecadal oscillations found in the fully nonlinear
model in various parameter regimes. We obtain a steady state by running the time-dependent,
nonlinear model to equilibrium using restoring boundary conditions on surface temperature.
If the surface heat fluxes are then diagnosed, and these values applied as constant flux boundary
conditions, the nonlinear model switches into a state of perpetual, finite amplitude, interdecadal
oscillations. We construct a linearized version of the model by empirically evaluating the tangent
linear matrix at the steady state, under both restoring and constant-flux boundary conditions.
An eigen-analysis shows there are no unstable eigenmodes of the linearized model with restoring
conditions. In contrast, under constant flux conditions, we find a single unstable eigenmode
that shows a striking resemblance to the fully-developed oscillations in terms of three-dimen-
sional structure, period and growth rate. The mode may be damped through either surface
restoring boundary conditions or sufficiently large horizontal tracer diffusion. The success of
this simple numerical method in idealized geometry suggests applications in the study of the
stability of the ocean circulation in more realistic configurations, and the possibility of predicting
potential oceanic modes, even weakly damped, that might be excited by stochastic atmospheric
forcing or mesoscale ocean eddies.

1. Introduction
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Climate variability occurs on all timescales,
from interannual to multimillennial. Although
some of the gravest modes, on multimillennial
timescales, may be externally forced (for example,
by variations in the earth’s orbit), many of
the interannual ones (like El Nifio-Southern
Oscillation or the North Atlantic Oscillation) are
almost certainly internal modes of variability. As
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regards decadal-interdecadal timescales, the situ-
ation is less clear. Certainly, there appears sus-
tained variability on 60-80 years periods in the
Atlantic basin (Kushnir, 1994; Mann et al., 1998;
Delworth and Mann, 2000), and variations in the
thermohaline circulation are a candidate mechan-
ism to explain such an “Atlantic Multidecadal
Oscillation” (Kerr, 2000), although mechanisms
external to the ocean-atmosphere system (e.g.,
variations in atmospheric composition) are also
possible. 50-70 years oscillations of the North
Atlantic thermohaline cell are found in the
Geophysical Fluid Dynamics Laboratory (GFDL)
coupled model (Delworth et al., 1993), with sea
surface temperatures and salinity patterns compar-
able to observations. Even assuming a source of
variability internal to the ocean—atmosphere
system, the mechanism has not been unambigu-
ously identified. On the one hand, it might be a
real coupled mode, involving an active role of the
atmosphere, as suggested by Timmermann et al.
(1998) for the 35-yr oscillation in the Max Planck
Institute coupled model; on the other hand it
might be a damped thermohaline oscillator excited
by stochastic atmospheric forcing (Mikolajewicz
and Maier-Reimer, 1990; Delworth and Great-
batch, 2000), with ocean dynamics setting the
period. The latter mechanism is robust, but not
universal. For example, large-scale ocean models
in idealized geometry tend to produce interdecadal
oscillations under certain boundary conditions,
like fixed surface fluxes of heat and freshwater
(Greatbatch and Zhang, 1995) or when coupled
to atmospheric energy balance models (Chen and
Ghil, 1996), but the oscillations are often damped
by topography or by strongly relaxing upper
boundary conditions (Huck et al., 2001).

It is important to make a distinction between
ocean models’ oscillations arising under mixed
boundary conditions [ that is, relaxation of surface
temperature but prescribed freshwater flux, see for
example Weaver and Sarachik (1991) and Weaver
et al. (1991)], and purely thermally-driven oscilla-
tions under fixed heat flux with no salinity. In the
former, the oscillation typically emerges when flux
boundary conditions on surface salinity (e.g., fixed
freshwater fluxes) are used. In the latter case,
oscillations arise solely with prescribed sensible
heat fluxes, and an additional freshwater flux
appears if anything to play a damping role on the
variability (Greatbatch and Zhang, 1995), but the
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mechanisms are sufficiently unclear that a more
precise statement is not possible. In the following,
we focus for simplicity on the oscillations involving
a single density variable, temperature, and the
conclusions we draw may not be appropriate for
the oscillations under mixed boundary conditions,
or for the real ocean.

Considerable effort has gone into exploring the
parameter space and forcing regimes associated
with the oscillations in such thermally-driven
ocean models, trying to determine, among other
things, the sensitivity of the oscillations to certain
parameters and parameterizations that may be
poorly known or ill-understood. For example, it
appears that the oscillation’s amplitude and period
is rather sensitive to the surface forcing — models
forced with constant (in time) surface buoyancy
flux are much more likely to produce oscillations
than models forced by “relaxation” surface condi-
tions, in which the heat flux is typically specified
as proportional to the difference between the SST
and a specified atmospheric temperature. (Of
course relaxing to a specified atmospheric temper-
ature is not particularly realistic on such long time
scales (Seager et al, 1995 and others), since the
ocean heat capacity largely dominates that of the
atmosphere.) The sensitivity to the presence of an
active mesoscale has also been explored by way
of eddy-permitting simulations (Fanning and
Weaver, 1998; Huck et al, 2001). Whereas the
variability does lose its regularity, interdecadal
periods are clearly sustained with large amplitude,
suggesting that energetic mesoscale eddies do not
damp the long-term variability, but might rather
trigger or excite it, acting as a quasi-stochastic
forcing. Overall, it appears that ocean-only models
with sufficiently weak dissipation of surface density
anomalies, either through atmospheric coupling
or some other mechanism, seem able to produce
oscillations.

Several theories have been proposed to explain
these oscillations, some of them building on the
simple Malkus (1972) loop (Greatbatch and
Zhang, 1995; Huang and Chou, 1994). Although
something of an oversimplification, the lag
between the overturning circulation amplitude and
changes in the meridional density contrast
emerged as a robust causal mechanism in a
number of subsequent studies with more complete
models (Greatbatch and Peterson, 1996; Huck
et al, 1999). Consistently, zonally-averaged
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models in which the overturning circulation is
diagnostic of the density field, and thus in phase
with the meridional density gradient, usually do
not reproduce the same kind of oscillatory
behavior when only one density variable is used
(Winton, 1996; Drbohlav and Jin, 1998; Colin de
Verdiere and Huck, 2000). The situation appears
more complex in case in which both temperature
and salinity are allowed to evolve independently,
although in such simulations there is a phase
differences between meridional overturning, tem-
perature and salinity which may have a similar
role. However, this is beyond the scope of this
paper.

While the basic oscillator mechanism, at least
in a variety of thermally-driven models, seems
robust and uncontroversial, the details by which
the oscillations are sustained against dissipation
is less so. Suggested important processes include
viscous boundary waves (analogous to Kelvin
waves when time-derivatives are not retained in
the momentum equations; Greatbatch and
Peterson, 1996) and baroclinic instability (Colin
de Verdiére and Huck, 1999). In the latter mechan-
ism a form of baroclinic planetary waves realizes
the adjustment of the circulation to density
changes. The waves feed on the mean potential
energy field and maintain their amplitude against
the large model dissipation such that oscillations
can repeat themselves perpetually. In the truly
thermohaline oscillations under mixed boundary
conditions both temperature and salinity particip-
ate actively as separate dynamical variables and
the mechanisms are correspondingly more com-
plex, although the ultimate energy source in both
cases is provided through the boundary condition
on surface temperature, which in turn maintains
the available potential energy of the mean
oceanic state.

It is often the case that the thermal oscillations
are quite regular (Huck et al., 2000). It is therefore
reasonable to ask whether the structure of the
oscillations might be represented by a simpler,
linear, model. A reasonable first step then is to
perform a linear stability analysis, to see if the
structure of any resulting instability resembles that
in the nonlinear, time-dependent, integrations.
This kind of analysis was performed in the early
days of baroclinic instability theory with regard
to the theory of weather systems, and in some
ways the problem here is analogous. We do not
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necessarily expect that, in reality, very long-term
oscillations of the ocean can be represented as an
unstable linear mode; at the very least, the mode
must equilibrate and this implies some nonlinear-
ity. (If the oscillatory mode is a stable oscillator
excited by atmospheric stochastic forcing, damp-
ing effects alone are sufficient for equilibration —
but this is not the case for the thermally-driven
mode forced by perfectly constant surface heat
flux.) Nevertheless, a linear instability may be a
useful indicator as to whether sustained oscilla-
tions are to be expected, and, if the ocean is in
fact near a bifurcation point (Tziperman et al.,
1994; Tziperman, 1997), it may give some quantit-
ative information about the oscillation. The prob-
lem is technically more difficult than that of
baroclinic instability in a zonal flow since the
basic state is inherently three-dimensional. There
is no easy analytic way to specify this state, and
thus no analytic way to construct the associated
linear model.

In studies of the large-scale ocean circulation,
linear stability analysis has thus far been used in
mainly two-dimensional flows, both in the meridi-
onal plane for studying the multiple steady state
of the thermohaline circulation under mixed
boundary conditions, and in the horizontal plane
with shallow water or quasigeostrophic equations
for understanding vacillations of the wind-driven
circulation. For example, Schmidt and Mysak
(1996) investigated century-scale variability of the
thermohaline circulation in zonally averaged
ocean models by performing a linear stability
analysis of several steady states in an extended
parameter regime. Vellinga (1996) obtained
bifurcation diagrams of the Navier-Stokes equa-
tions and the Wright and Stocker (1992) model
for the two-dimensional thermohaline circulation
as a function of the amplitude of the surface
salinity flux, through a numerical continuation
technique and linear stability analysis. In the
horizontal plane, numerous studies have looked
into the stability and variability of wind-driven
single and double gyres for various dynamics in
idealized geometry basins and forcing, and these
have been shown relevant for more realistic cases
(Dijkstra and Molemaker, 1999). For instance
Sheremet et al. (1997, and references therein) ana-
lyze the stability of a barotropic model of the
wind-driven circulation and discuss the structure
of the unstable eigenmodes and their dependency
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with model parameters and lateral boundary con-
ditions. More recently, Meacham (2000) addresses
the bifurcation structure associated with such
variability.

In this paper we apply some of these methods
to the three-dimensional thermohaline circulation.
First, we must obtain a time-independent state
from which to perform the analysis. Interesting
steady states — that is where a slight change in
model parameters or forcing might lead to oscilla-
tions — are available to us in two cases. First
when the model is run to equilibrium by way of
strong relaxation of the surface density: this solu-
tion evolves into oscillations when the surface
fluxes are diagnosed at the end of the restoring
run and the integration continued with the fluxes
fixed. Second, when the model solutions are ana-
lyzed around a bifurcation point by varying a
critical damping parameter (the horizontal tracer
diffusion for instance): a slightly supercritical
coefficient leads to sustained oscillations while a
subcritical coefficient leads to weakly damped
oscillations converging to a steady state, whose
stability can be analyzed. Given a steady state, we
obtain its stability properties by methods to be
described below.

In Section 2, we describe the planetary geo-
strophic model, the numerical method we use to
estimate the tangent linear model, the model con-
figuration and the parameters used. In Section 3,
we analyze the divergence of a steady state upon
a switch from restoring to fixed flux in the surface
boundary conditions, and compare the associated
eigenmodes with the nonlinear oscillation. In
Section 4, we empirically construct a crude bifurca-
tion diagram, by tracking the unstable mode
towards the bifurcation, as a function of the
horizontal tracer diffusion, which suggests that the
instability follows a supercritical Hopf bifurcation.
Discussion and conclusions follow in Sections 5
and 6.

2. The planetary geostrophic model and its
tangent linear model

Planetary geostrophic models are an efficient
and conceptually simple tool for studying the
large-scale circulation (Samelson and Vallis,
1997a). Valid for spatial scales much larger than
the deformation radius, and for advective time
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scales, they differ from the hydrostatic primitive
equations in their neglect of the time-derivative
and nonlinear advective terms in the momentum
equations, resulting in diagnostic equations for
the velocity fields. Then the linearization of the
model equations is somewhat simpler than for the
primitive equations since one does not have to
keep track of the velocity field. For the large-scale
circulation, such simplified models also give solu-
tions that are quite similar to those of primitive
equation models, both steady and oscillatory
(Greatbatch and Zhang, 1995; Huck et al, 1999).
We recall here the model equations and describe
the procedure used for computing the tangent
linear model.

2.1. The planetary geostrophic model

In order to provide a well-posed problem in a
closed domain, appropriate frictional or diffusive
terms must be included in the momentum or
thermodynamic equations (Samelson and Vallis,
1997b). Here we choose a conventional Laplacian
form in the horizontal momentum equations, and
the equations of motion become:

1
fhkxu=——Vp+ovVu, (1)
Po
p-=poogT, (2)
V-u+w,=0, (3)

L+V-@T)+wT),=V-(KyVT)+(KyT.).,
(4)

where p is the pressure, u#(w) the horizontal (ver-
tical) component of the velocity, z the vertical axis
coordinate increasing upward in the direction of
k, and the operator V is restricted to the horizontal
coordinates. The equations are solved on a
Cartesian f-plane such that the Coriolis parameter
is given by f=fo+p(y—yo). The Boussinesq
approximation is used with the density p being
linearly related to the temperature T by p=
poll — (T — Ty)], where p, is a reference value
(1023kgm™3) and o« the thermal expansion
coefficient (2 x 10”4 K ~1). Finally v and Ky are
the horizontal eddy viscosity and diffusivity
coefficients, both uniform.

As stated in the introduction, we do not include
salinity and in so doing sacrifice realism for simpli-
city. Similarly, in the experiments we describe in
most detail the wind forcing is set to zero, although
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we introduce it later in experiments that partially
explore the parameter space. Accordingly bottom
friction is set to zero. No-slip boundary conditions
are imposed on the lateral boundaries. The circula-
tion is simply driven through a differential heat
flux @ occurring through the ocean surface where
Ky T,=Q/(poCs), with Cp the specific heat capa-
city of seawater (4000 J kg 1 K1),

The linearization of convection schemes is a
recurrent concern for the estimation of tangent
linear and adjoint models, as used for both atmo-
spheric and oceanographic assimilation purposes
(for instance, Tziperman et al., 1992; Miller et al,,
1994; Zou, 1997). Rather than a full convective
adjustment (which is a nonlocal process in a
nonlinear model, and thus not representable by
partial differential equations and difficult to linear-
ize) convection is parameterized here through a
spatially and temporally varying vertical mixing
coefficient Ky depending on the vertical density
gradient: When the stratification is stable between
two superposed gridboxes, Ky takes the back-
ground vertical diffusion value K, at the interface,
whereas for unstable stratification, Ky takes a
very large convective diffusion value K¢ equal to
10 m?s~!, following the non-hydrostatic three-
dimensional numerical experiments of Klinger
et al. (1996). Comparisons with the full convection
scheme show differences lower than 1074°C in
transients and steady states. The scheme using an
enhanced diffusivity is, although more local than
the full scheme, unfortunately still locally non-
differentiable because of the step function of the
vertical density gradient. However, we are now
able to (numerically) obtain an associated tangent
linear model, as will be described. We do not use
here a fully differentiable convection scheme (as
discussed towards the end of the next section)
because of the sensitivity of the model oscillations
to even slightly unresolved static instabilities that
may then occur.

2.2. The tangent linear model

The finite difference discretization of the planet-
ary geostrophic equations can be written symbol-
ically as the nonlinear system:

Ti =F({T;})= Fij Tj,
where the nonlinear function & depends on the
various elements T; of the temperature field T on
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the three-dimensional grid. This can always be
written formally as a matrix F whose elements
(Fi;) are nonlinear (and nontrivial) functions of
(T;), the model parameters and the forcing, multi-
plying the temperature field.

Given a perturbation (6T;) around a state (T;),
the linearized evolution of the perturbation is
formally given by:

Ti+ 8T, = Fyjlir, + 57 )(T; + 6 T})

OF;
=Fjlay T+ Fij|(Tl-)+ﬁ T, (6T,
kI(Ty
+O(|8T7)). (5)

If (T;) is a steady-state (F;; T; = 0), the linearization
simplifies as

OT; = A;;8T,

=1 Fijlay+ oL

where A is the tangent linear matrix at (T;), also
known as the Jacobian of #. The adjoint operator,
commonly used for sensitivity studies and data
assimilation, is simply the transpose of A.

Due to the overall complexity of the model
(especially the locally non-differentiable nature of
the convection scheme and the non-local solution
of the elliptic equation solved each time step for
determining the horizontal velocities) the elements
of the tangent linear matrix coefficients (4;;) are
evaluated in a purely numerical manner. Once a
steady state is reached (say under restoring surface
boundary conditions or with large horizontal
tracer diffusivity), each grid-point value of the
solution T; is successively perturbed by a small
amount 6T; (typicaily about 0.05°C) and the full
model is run forward for several time steps but
for period At very short compared to the typical
time scale of the system, O(Ax/U). Typically we
run the model for a week, with time steps of 1 day.
Given a small positive perturbation at gridpoint j
the steady state T; evolves into a new slightly
perturbed state (call it T4*). We repeat the nonlin-
ear integration for a perturbation of opposite sign
—4&T;, which leads to the new perturbed state
(T{"). The tangent linear matrix coefficients
for column j are then estimated as the induced
deviation of each gridpoint temperature AT
= Ti* — Ti~ divided by the integration length At

71] ST, +O(I8T}),  (6)
(Ty)
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and the total perturbation 26T}:
0T, AT  Tit—-Ti”

A= — ~
Y8T, T 2A1 0T, 2At 0T,

(7)

Thus we construct a simple, centered-difference
approximation to the tangent linear matrix
coefficients. We might also say that we have
empirically computed the impulse-response matrix
of the system. Stammer and Wunsch (1996) have
used a comparable semi-automatic linearization
of a primitive-equation ocean general circulation
model for computing model Green functions for
use in altimetry assimilation.

The centered form of the derivative approxi-
mation (versus a single-sided derivative for
instance) is crucial because of the different
behavior of convection regarding positive and
negative temperature anomalies. The resulting tan-
gent linear matrix estimate (and its eigenvalues
and eigenmodes) appears to be rather insensitive
to the amplitude of the temperature perturbation
(within the tested range 0.01-0.5°C) and to the
model integration duration (within the range
1-15 days), as well as to the accuracy of the steady
state (whether the model is run 1000 or 3000 years
under restoring boundary conditions), at least for
the dozen most unstable eigenmodes that we will
compute and analyze in the following.

Our procedure of calculating the tangent linear
model suffices for our purposes, but it is not the
most general procedure available. For example,
various techniques are becoming available or are
being developed to automatically construct the
tangent linear model or the adjoint (Giering,
1999). Schmidt and Mysak (1996) derived analyt-
ically the linear tangent model by hand for the
simpler two-dimensional thermohaline circulation
model of Wright and Stocker (1991, 1992), in
which they implemented a fully differentiable con-
vection scheme. Vellinga (1996) also implemented
a differentiable convection scheme, and used a
pseudo-arclength numerical continuation tech-
nique to follow branches of solution and a
combination of complex mapping and the
Simultaneous Iteration Technique to find the dom-
inant eigenvalues for the linear stability problem
(Dijkstra et al., 1995).

Given the matrix A;; we finally compute its
eigenmodes using an Arnoldi iterative algorithm
to extract a selected number of eigenvalues, typic-
ally 20, ordered according to their largest real
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part. Associated eigenvectors are then computed.
The convergence of the algorithm has been
checked on smaller and larger matrices (from
various model resolutions), and against different
methods of eigenanalysis. The sensitivity of the
leading eigenvalues and eigenmodes to the discrete
derivation method used for estimating the tangent
linear matrix in the range of time integration and
temperature perturbation indicated in the text is
less than 1%.

2.3. The model configuration

Because of (initial) numerical limitations in
performing the eigenanalysis of the three-dimen-
sional matrix, we use a domain reduced somewhat
in vertical size and resolution from that achievable
for a forward integration. We use a domain of
depth 2850 m with 12 vertical levels of thickness
50 x 3, 100, 150, 200, 250, 300, 350, 400, 450,
500 m respectively. The horizontal domain is that
of a f-plane centered at 40°N, extending from
20°N to 60°N (4480 km) and 5120km wide
(roughly 60° at 40°N, that is almost 45° at the
equator), with 24 x 21 grid points, giving an iso-
tropic grid spacing close to 213 km.

Model parameters are adapted to this coarse-
resolution grid, with horizontal viscosity (diffusiv-
ity) of 1.5 x 10° (700) m? s . The vertical diffusiv-
ity (10"*m?s!) is larger than current realistic
estimates to ensure a reasonable meridional over-
turning of 10 Sv (1 Sverdrup = 10° m® s~*) within
such a limited ocean domain.

The mean circulation features an anticyclonic
gyre in the upper layers (thermocline) and a
cyclonic gyre at depth, linked through deep water
formation along the northern boundary and
north-east corner, and upwelling along the south-
ern and western boundary and across the tropical
thermocline. It is very similar to that described in
earlier papers (Huck et al., 1999).

3. Divergence of a steady state upon a switch
of surface boundary condition

We first run the model to a steady state under
restoring surface boundary conditions. We then
diagnose the implied surface flux field and con-
tinue the integration with this fixed. Oscillations
develop, and the initially steady solution evolves
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into one of steady periodic oscillations. Under
such constant flux, the model shows the coexist-
ence of an unstable equilibrium and a stable limit
cycle, which, as we will see, is verified through a
linear stability analysis of the steady state.

3.1. The forward integration

For the restoring boundary condition we use
Q =y(T* — SST) where T*(y) is given, and with a
coupling coefficient y=35W m~2K™! (Haney,
1971): this is equivalent to a restoring time scale
7= poCphy, /vy =66 days for a mixed layer depth
h., equal to the first model level thickness of 50 m.
T* is an equivalent atmospheric temperature
chosen as a linear function of latitude only, varying
from 25°C at 20°N to 2°C at 60°N. The initial
ocean temperature is set uniformly to 4°C. After
1000 years the model is in a steady state, and the
surface heat flux field is diagnosed (Fig. 1). The
model integration is then continued with the
flux held constant: The previous model solution
becomes unstable, and 350 years after the shift in
surface boundary conditions, the steady state
diverges into an oscillatory solution of period 22.5
years (Fig. 2). The time taken for the instability
to manifest itself is a function of how close the
model is to a precise steady state, and is not useful
as a representation of the instability. For example,
if the model is integrated longer under restoring
boundary conditions, say 1000, 2000 or 3000 years,
the solution diverges respectively 350, 650 and 900
years after the shift to fixed flux. The instability
develops immediately if small random perturba-
tions are added to the steady state. A typical time
scale for the exponential growth can be estimated
from the years 1200 to 1600 (Fig. 2b), where the
logarithm of the amplitude of the oscillations in
terms of total kinetic energy grows linearly with
time with a slope of (58.4 years) 1. The oscillations
are perfectly regular and almost sinusoidal, but
the mean circulation and stratification is slightly
shifted from the steady state, with some cooler
deep water being formed.

3.2. Linear stability analysis

A linear stability analysis of the steady state is
performed under both restoring and constant flux
boundary conditions. The eigenvalues of the tan-
gent linear model (a 6048 matrix) are obtained
numerically, using standard libraries. The eigen-
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Fig. 1. (a) Surface heat flux (W m~2) diagnosed at year
1000 of the model simulation under restoring boundary
conditions with a constant y = 35 Wm ™2 K ! to a linear
profile of temperature, zonally uniform and linearly vary-
ing with latitude from 25°C at 20°N to 2°C at 60°N.
(b) Upper 250m temperature (°C) and velocities
(0.5 cm/s per degree).

values with the largest real part (i.e., the unstable
ones) are given in Table 1, while the vertical struc-
ture of some eigenvectors is shown in Fig. 3. In
the restoring case, all eigenvalues have negative
real part (damped modes) in agreement with the
forward model integration leading to a steady
state. Several eigenvalues have a rather small
negative real part, hence represent weakly damped
modes on time scales of several decades, that could
certainly be excited through random noise in the
surface forcing (synoptic atmospheric disturbances
for instance).

In the constant flux case, a single conjugate pair
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oscillation period T = 22.5 yr
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Fig. 2. (a) Time evolution of kinetic energy under restoring boundary conditions (solid line before year 1000, dashed

line afterwards) and under fixed heat flux diagnosed at
oscillations (log) as a function of time, the amplitude
extrema.

year 1000 (solid line after year 1000). (b) Amplitude of the
being measured as the difference between two consecutive

Table 1. Eigenvalues of the tangent linear matrix under restoring and fixed flux boundary conditions for
the steady state achieved under restoring boundary conditions

Restoring: steady state

Diagnosed flux: T =22.5 years, t = 58.4 years

w, w; T T , w; T T
(yr™h) (yr™h) (yr) (yr) (yr'1) (yr™") (yr) (yr)

1 —0.0065 —1538 0.0211 F0.2485i 474 253
2 —0.0339 —295 —1.35¢-5 —74e4

3 —0.0450 F0.0456i —223 137.8 —0.0147 —679

4 —0.0549 —182 —0.0397 F0.4307 —252 14.6
5 —0.0597 F0.2762i —16.8 227 —0.0424 —236

6 ~0.0792 —12:6 —0.0449 F0.0392i —223 160.3
7 —0.0866 F0.0364i —115 1726 —0.0723 —138

We define the growth (or damping if negative) time scale as t = 1/w, and the oscillation period T = 2n/w;. Note the
similarity in imaginary part (as well as in the associated eigenmode spatial structure) of the unstable eigenvalue #1
in the constant flux case with the damped eigenvalue #5 in the restoring case.

of eigenvalues is found with a positive real part,
with a growth time scale t=1/w, =474 years,
while the imaginary period T = 2n/w = 25.3 years.
These are to be compared to the timescales of the
fully-developed oscillations in the constant flux
case, which have growth time-scale of 58.4 years
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and a period of 22.5 years (Fig. 2). In several other
experiments with various resolution and geometry
configuration, the model fully-developed oscilla-
tions periods (ranging from 16 to 42 years) com-
pared well, i.e., within a few years, to the unstable
mode imaginary period.
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restoring boundary conditions.

The spatial structure of the linearly unstable
mode reveals a large scale pattern intensified in
the north-west quarter of the domain: Both real
and imaginary part have their main structure (of
opposite signs) centered close to 50°N, 5-15°E,
especially in the upper layers. There is a significant
shift of the horizontal pattern with depth (Fig. 4).
Since the model solution is limited to the real
plane, the complex conjugate -eigenvalues
(w, T iw;) are associated with complex conjugate
eigenvectors (V, F V). Letting aside the growth
rate, which only modulates the amplitude of the
oscillation, the time evolution due to the imagin-
ary part of the eigenvalue follows: V(t)=
cos(w;t)V, + sin(w;t)V;. The evolution of sea sur-
face temperature anomaly shows a relatively sta-
tionary pattern in the north-west corner,
alternatively positive and negative, the phase shift
being initiated by advection of anomalies through

changes in the western boundary current trans-
port (Fig. 5, left column). At deeper levels
(700-1700 m), the temperature anomalies seem to
originate from the north-east corner and propag-
ate westward along the northern boundary, then
southward along the western boundary and
vanish.

The structure of the unstable mode under dia-
gnosed heat flux (eigenvalue #1) closely resembles
a decaying (i.e., negative real part of the eigen-
value) oscillatory eigenmode obtained under
restoring boundary conditions (eigenvalue #5, not
shown). Except for the relative amplitude of the
surface anomalies compared to deeper levels, the
horizontal patterns are very similar in the upper
levels and associated with the western boundary
current and its eastward extension. At greater
depths (700-1700 m), the westward propagating
wave-like structure along the northern boundary

Tellus 53A (2001), 4
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is also very similar, maybe somewhat broader in
meridional extension (50-60°N). This suggests
that the change of surface boundary condition
primarily affects the growth rate of basin modes
that are already present but damped in the restor-
ing case. This is clearly illustrated by the vertical
profiles of the eigenmodes (Fig.4): while the
modes under fixed surface heat flux are all intensi-
fied at the surface, the modes under restoring
boundary conditions see their amplitude strongly
reduced in the upper hundred meters. Such a
fundamental damping role of restoring boundary
conditions on large scale ocean modes stresses the
importance of a good parameterization of air-sea
interactions for oceanic variability studies on
interannual and longer time scales.

3.3. Comparison of the unstable eigenmode and the
model oscillation

A detailed description of the nonlinear oscilla-
tions is provided in Greatbatch and Zhang (1995),
Huck et al. (1999), Colin de Verdiére and Huck
(1999) and Huck et al. (2001), under both zonally-
averaged surface heat flux and flux diagnosed at
the end of a restoring run. The patterns and time
evolution of the temperature anomalies differ
slightly with the structure of the surface heat flux,
as discussed in Huck et al. (1999): Mainly, west-
ward-intensified diagnosed flux trap the surface
anomalies in the north-west quarter, whereas
zonally-uniform flux produce anomalies of larger
zonal extent (eastward). At depth, the westward-
propagating wave-like structure is very similar
under both forcing, except for the southward
extension along the western boundary under
zonally uniform flux. Although only surface tem-
perature anomalies are usually shown in the for-
ward model integrations under diagnosed heat
flux, indeed they compare very well with the time
evolution of the linear unstable mode, at least
visually. In addition, the deep temperature pat-
terns and their propagation are found here to be
also very similar (not shown).

In order to further compare the nonlinear oscil-
lation under constant flux to the unstable eigen-
mode, we need to tune its phase and amplitude,
which is not determined through our simple linear
stability analysis. We compute the normalized
projection coefficient of the model three-dimen-
sional temperature anomalies field T'(t) to the
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real and imaginary parts of the unstable eigen-
mode (V,, V;) as a function of time during the
steady-amplitude oscillations:

<T'(8), V>

=— &
A= @ Ty < Vo ®
. CT(0), Vo o)

(T@), T Ve V)™

The time evolution of these coefficients (Fig. 6)
shows a good correlation of the anomaly field
with the eigenmode in some phases of the oscilla-
tion (the correlation coefficient reach 90%). The
phase relationship agrees well with the expected
time evolution of the unstable eigenmode
(V,» V> —V,—» —V,—>V,..), although the time
series are not as sinusoidal as the eigenanalysis
theory assumes. This analysis also provides an
estimate of the amplitude of the eigenmode in the
fully-developed oscillations, since its scale is arbit-
rary in the linear stability analysis.

These time series allow us to “lock” the phases
of the oscillations with the real and imaginary
parts of the eigenmode, and to compare them. A
reconstitution of various phases of the unstable
eigenmode resembles the time evolution of temper-
ature anomalies in the model oscillation remark-
ably well, as seen at the sea surface (Fig. 5), in
the surface intensified vertical structure, and in
the zonally-averaged latitude-depth plane (not
shown). This implies that the structure of the fully
developed model oscillation is indeed that of a
linearly unstable eigenmode. It also suggests that
the evolution of the nonlinear system may be
determined by a form of Landau equation (Vallis,
1996) in which the oscillation frequency is deter-
mined essentially by linear dynamics and the
amplitude of the equilibration is determined after
a Hopf bifurcation by nonlinear terms. Never-
theless, the systematic derivation of any such lower
order system is well beyond the scope of this paper.

3.4. Other eigenmodes

In the constant heat flux case, the second pair
of conjugate eigenvalues (#4), damped on a 25.2
years time scale, has an oscillatory period of 14.6
years. The vertical structure of this mode is very
similar to that of the unstable eigenmode (Fig. 3).
The horizontal structure is also quite similar to
that of the unstable mode except for the structure
along the northern boundary, which is about
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wavenumber 2 in longitude and most noticeable
around 700 m deep (Fig. 7). We expect indeed the
damping to be enhanced through the higher hori-
zontal dissipation on such smaller scales. However,
in simulations at higher resolution and/or with
reduced horizontal mixing, it is likely that these
modes become unstable and generate other peaks
in the variability spectrum, as is observed for
instance in the next section experiments for the

lowest diffusivity (Fig. 6). Thus, when more and
more modes are allowed there is ready pathway
to multiple time-scale variability.

4. Analysis around a bifurcation point

Rather than change the form of the surface
boundary condition to produce an instability, we
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now investigate the role of horizontal temperature
diffusion when surface heat flux is prescribed as a
linear function of latitude only (varying from
45Wm™? at 20°N to —45Wm™2 at 60°N).
Increasing the horizontal diffusivity damps the
variability and allows a steady state to be con-
structed, but at the same time seems to have less
influence on the structure and amplitude of the
mean overturning circulation than the vertical
diffusivity for instance. Thus, it is an appropriate
parameter with which to examine some of the
bifurcation properties of the system. As the diffu-
sivity decreases, the real part of the most unstable
eigenvalue increases and becomes finally positive.
As the eigenvalue crosses the imaginary axis, the
system evidently undergoes a supercritical Hopf
bifurcation (Guckenheimer and Holmes, 1983)
and the steady solution bifurcates into an unstable
steady state and a stable limit cycle. A numerical
continuation method would be necessary to follow
further the stability of the limit cycle since the
forward model integration does not allow to track
unstable steady states, but this is beyond the scope
of this paper.

4.1. A crude bifurcation diagram

We first run the model forward in time for
coefficients of horizontal tracer diffusivity ranging
from 300 to 3000m2?s~! (Fig.8). For values
smaller than 2200 m2s~!, perpetual oscillations
are sustained while for larger values, the model
settles down to a steady state after damped oscilla-
tions of comparable period. Huck et al. (1999)
and Colin de Verdiére and Huck (1999) conjec-
tured that when the damping rate of temperature
anomalies through diffusion reaches the growth
rate of longwave baroclinic instability in the most
unstable regions (western boundary current and
eastward jet along the northern boundary) the
planetary waves would no longer be unstable and
the circulation tends to a steady state. Although
the mean energy of the circulation does vary
significantly with diffusion, the oscillation period
is rather insensitive to it (Fig. 9).

The primary effect of horizontal diffusion on
the mean state is to smooth out the temperature
gradients and hence make the ocean circulation
less energetic. Additionally, increasing diffusivity
leads, by way of the warming of surface waters in
the deep convection regions, to slightly warmer
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Fig. 8. Influence of the horizontal tracer diffusion Ky on
the oscillations. The model is forced by constant surface
heat flux, zonally uniform and varying linearly with latit-
ude from 45 W m™2 at 20°N to —45 Wm~2 at 60°N.
For values of K lower than 500 m? s ™!, the oscillations
are aperiodic with several spectral peaks, then they
become periodic and monochromatic up to Ky=
2200 m? s ™!, while for larger diffusivity, the model ends
up in a stable steady state. ‘

" deep water masses. At the same time the warm

pool cools, both through horizontal diffusion and
because the fixed heat flux applied at the surface
constrain the total basin heat-content to remain
constant. Consequently the mean basin stratifica-
tion is reduced, but the meridional overturning
slightly increases because of the increased
diapycnal component of the horizontal diffusion.

4.2. Linear stability analysis

For the model integrations with subcritical (i.e.,
larger) values of horizontal diffusivity that lead to
a stable steady state, we perform a linear stability
analysis that provides us with the least damped
mode eigenvalue as a function of diffusion: As Ky
decreases, the (negative) real part of the eigenvalue
increases towards zero while the imaginary part
barely changes (Table2) as well as the spatial
structure. This is typical of a supercritical Hopf
bifurcation where a single eigenvalue crosses the
real axis (in the complex plane) away from the
origin.

Positive real parts of the eigenvalue are not
obtained, since a numerical continuation method
is necessary to follow the steady state as it becomes
unstable for smaller (supercritical) values of the
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Table 2. Most unstable eigenvalues (yr~!) for different values of the horizontal tracer diffusivity Ky for
the tangent linear matrix of the model under constant flux boundary conditions linearly varying with latitude

Ky (m?s™Y) 2200 2300 2400 2500
1 1.61-1077 725-1077 6.63-1077 593-1077
2 —0.0050 T 0.2100i —0.0074 F 0.2095i —0.0097 F 0.2096i ~0.0131 F 0.2084i
3 —0.0205 —0.0207 —0.0212 ~0.0216
4 —0.0567 —0.0582 —0.0596 —0.0622
5 —0.0736 T 0.0298i —0.0755 T 0.0294i —0.0777 F 0.0290i —0.0795 F 0.0288i

Note that the first pair of complex conjugate eigenvalues (#2) sees its real part tend to zero as Ky decreases, while
its imaginary part is rather stable. The other eigenvalues do not vary significantly with Ky either. The first real
eigenvalue O(1077) is associated with the conservation of the total heat content under constant flux boundary
conditions.
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diffusivity. This would in turn require differen-
tiable equations of motion; the investigation of
the use and influence of fully differentiable convec-
tion schemes (Schmidt and Mysak, 1996; Vellinga,
1996) would be a useful task for future work.

5. Analysis of the instability and the
stabilizing processes

We now compare the period and growth rate
of the unstable eigenmode with that of longwave
baroclinic instability, and also assess the effects of
surface restoring boundary conditions and hori-
zontal tracer diffusion.

The oscillations have a rather complex spatial
structure, with both global scale features and more
localized extrema often located close to lateral
boundaries. The evolution in the upper layers is
clearly dominated by the response of the temper-
ature field to changes in the intensity of the gyre,
advecting warm waters from the south west corner
along the western boundary and then eastward
along the northern boundary. In contrast, the
planetary wave structure is most likely seen at
mid depth, away from energetic surface advection
(see the 725 m section of the unstable eigenmode
in Fig. 7). The westward propagation of such
waves is not universal, and depends on the model
forcing and parameters: the surface heat flux dia-
gnosed from restoring boundary conditions are
larger in the western regions and seem to trap the
variability there, whereas using zonally uniform
flux allow propagation of temperature anomalies
all along the northern boundary (Greatbatch and
Zhang, 1995; Huck et al., 2001). Baroclinic instab-
ility then amplifies the waves traveling westward
in the northern region of the domain, sustaining
the oscillations against dissipation. Given the
3-dimensional global structure of the linear
unstable mode and the nonlinear oscillations, an
interpretation in terms of baroclinic instability is
more difficult to justify. Still, the vertical phase
shift of the temperature anomalies and their phase
lag with velocity anomalies, the source of temper-
ature variance in the northwest quarter where the
vertical shear is maximum, energy budgets, and
the instability growth rate are all consistent with
a form of baroclinic instability. Recently L. te Raa,
H. Dijkstra and M. Schmeits (personal commun-
ication) have reexamined this instability of the
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thermally-driven circulation using techniques of
numerical bifurcation theory. Their results closely
agree with our interpretation, and a detailed ana-
lysis of the various terms in the equation for
potential energy leads them to term the process a
“generalized baroclinic instability,” in part because
of the importance of the basic state upwelling.

We have performed several other experiments
with various parameters and forcing to test the
agreement between the nonlinear model oscilla-
tions and unstable eigenmode of the tangent linear
model. Wind forcing is introduced through
zonal wind stress varying as an analytical func-
tion of latitude (Bryan, 1987). The results for
standard and reduced vertical mixing (Ky=
0.5 x 10™* m? s~ 1), with and without wind forcing,
show a relatively good agreement especially in
terms of period (Fig. 10). However it seems that
the weaker the growth rate, the larger the differ-
ence between the linear and nonlinear models
growth rates: although more than 4 experiments
would be required to confirm this trend, nonlinear
processes are expected to be more influential for
weaker instability. The oscillation periods we
found in most of our experiments are in the range
17-33 years but depend on horizontal and vertical
mixing coefficients and the presence or absence of
wind forcing. However these might not be the
most relevant for the real ocean because we consid-
ered only the influence of temperature on density.
Using both temperature and salinity and a nonlin-
ear equation of state of seawater, Greatbatch and
Zhang (1995) reported oscillation periods of 50 to
70 years in an Atlantic-size ocean basin forced by
realistic fluxes of heat, freshwater, and zonal
wind stress.

In the standard experiment (Section 3), the
unstable eigenmode has a growth time scale of
474 years, while the nonlinear model kinetic
energy grows exponentially on a 58.4-years time
scale for 200 years before the oscillations ampli-
tude stabilizes. Evidently, the unstable eigenmode
captures quite accurately the global instability
growth rate. These growth rates are however much
smaller than ‘local” baroclinic instability calcula-
tions. That is to say, suppose we take the (zonal)
shear and the stratification of one vertical column
within the model, and suppose that this represents
a steady solution in a zonally periodic domain.
Using this as a basic state, we perform a conven-
tional linear baroclinic instability analysis using
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the quasigeostrophic equations. We find that
the most unstable region is the latitude band
52°N-58°N, and this has a local growth rate
reaching a few cycles per year, consistent with
many previous studies of baroclinic instability.
That is, local linear stability analyses typically
show larger growth rates than the actual three-
dimensional instability. The global instability
cannot develop as fast as the most unstable local
instability, apparently because of the global struc-
ture of the eigenmode.

We noted earlier that restoring surface bound-
ary conditions damp both the oscillations in the
nonlinear model and (consistently) the instability
in the linear model. Now, the eigenvalues with
“flux” and “restoring” conditions do not have a
one-to-one correspondence, which makes direct
comparison difficult. Further, it would be compu-
tationally prohibitively expensive to smoothly
vary the surface conditions to go from one set of
boundary conditions to the other. Thus, we some-
what heuristically assess the influence of changes
in surface boundary conditions by looking at the
changes in the eigenvalues and structure of the
eigenmode whose physical structure in the restor-
ing case is most similar to that of the unstable
mode under fixed heat flux. In the unstable (fixed
flux) case the mode is intensified at the surface
and has an amplitude growing exponentially with
height, the “same” mode, but now stabilized
through surface relaxation, peaks around 300 m
deep with an amplitude 3 times larger than at the

and no wind forcing.

surface. Instead of growing at a rate of 0.02 yr™!

in the fixed flux case, it is damped at 0.06 yr~!,
such that the restoring damping rate can be estim-
ated as 0.08 yr ~*: This corresponds to a time scale
of 12 years, equivalent to the time scale of the
surface relaxation {35 W m~2 K ™'} applied to the
whole depth of the basin. Similarly, the damping
rate of the most unstable eigenmode under fixed
heat flux (varying linearly with latitude) increases
by 266 x 1073 yr !/(m?s™!) with horizontal
tracer diffusivity close to the bifurcation point,
such that a change of diffusivity by 1000 m?>s~!
corresponds to a damping time scale of 38 years,
rather close to (and larger than) the actual growth
rate of the unstable mode for Ky =700m?s™ 1,
Finally, we should mention that in reality there
are additional potentially damping terms for the
oscillations that are not considered here, like the
bottom topography (Greatbatch et al., 1997), for
which use of a primitive equation model will likely
be necessary to explore.

6. Conclusions

We have demonstrated that the interdecadal
oscillations of the thermally-driven ocean circula-
tion in a flat-bottom ocean model forced by
prescribed surface heat flux (as opposed to restor-
ing boundary conditions) arise from a linearly
unstable mode of the mean stratification and
circulation. The oscillation in our nonlinear model
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is typical of the oscillation found in a variety of
models by various investigators when salinity is
not considered.

The structure of the unstable eigenmode in the
linear system is very similar to that found in the
time-dependent, nonlinear, integration. Both are
intense in the north-west part of the domain and
in the upper hundreds of meters. The linear ana-
lysis predicts the three-dimensional structure of
the mode, its time evolution and period, as well
as its growth rate, but (of course) not its amplitude.
The fully-developed oscillation period and struc-
ture is strikingly similar to that of the unstable
mode, suggesting that nonlinearities are, at least
in the numerical integrations, not influential in
setting the structure or period, but only the ampli-
tude of the oscillations.

Because of the difficulty in constructing an
associated linear model, and the size of the associ-
ated eigenvalue problem, this type of analysis has
rarely been performed in three-dimensional ocean
models so far. Here, we have found it to be a
useful tool for predicting model variability and
large-scale instabilities, as well as an aid in under-
standing the underlying physical mechanisms. It
seems possible that unstable or weakly damped
eigenmodes of the large-scale ocean circulation
could easily be excited by noise from either atmo-
spheric synoptic systems or oceanic mesoscale
eddies, and the structure and time scales of climate
variability on decadal or interdecadal periods
might be related to such eigenmodes. Nevertheless,
these ideas are still very preliminary, and a full
physical understanding of the structure and time-
scales of the unstable modes remains somewhat
elusive. Certainly, a more complete as well as
nonlinear analysis will be necessary to determine
the processes that control the growth and the
amplitude of the oscillations in the real ocean.

Notwithstanding all the caveats that we have
mentioned throughout the paper (and the reader
can certainly supply more) we are encouraged by
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the success of this method in predicting the period,
structure and growth rate of large scale modes.
As the construction of tangent linear models
becomes more routine, and as computer power
increases to enable such large eigenvalue calcula-
tions to be performed more routinely, it may
become a useful member of the toolbox for oceanic
and climatic stability and variability studies —
just as linear calculations (and even normal mode
calculations) can reveal much, but not all, about
the structure of transient baroclinic eddies in the
atmosphere and ocean. The main difficulty we
foresee is that, if a higher resolution, perhaps even
eddying model, could ever be used for such a
study the instability analysis would reveal the
presence of many smaller scale (e.g., baroclinic,
barotropic) instabilities whose amplitude saturates
and whose timescale is fast, which have little to
do with the instability or structure of the thermo-
haline circulations. A challenge then will be to
eliminate such “spurious” modes in a systematic
fashion, leaving only the “interesting” thermoha-
line modes. Even if (or perhaps especially if) the
thermohaline circulation of the ocean is stable
under its present parameters, if it is a damped
oscillator excited by either atmospheric or oceanic
eddies then a linear analysis of a realistic simula-
tion may tell us much about the potential for
long-term oscillations and the variability of the
atmosphere-ocean system.
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