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Balanced mesoscale motion and stratified turbulence forced by convection
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SUMMARY

Numerical experiments are carried out with a large-eddy simulation model to investigate the production
of stratified turbulence and gravity wave energy in the atinospheric mesoscale by deep convection, Relatively
long integrations {typically about 2.5 days) are carried out, so that statistical equilibrinm might be achieved for an
atmosphere subject to fixed cooling and a ground surface maintained at constant temperature, The main simulations
may be considered as representing convective activity in a cold airstream passing over warm seas. The transfer
of updranght kinetic energy into quasi-horizontal rotational energy, and its subsequent cascade to larger scales, is
examined in the context of the production of balanced motion and stratified turbulence theory. Experiments are
carried out to examine the effects of the Coriolis force, a wave-damping stratosphere, boundary-laver vertical wind
shear, and precipitation.

An inverse mesoscale energy cascade is observed in experiments both with and without background rotation
(the Coriolis effect), although weaker in the latter case. Mean boundary-layer vorticity is found to be the principal
source of the horizontal rotational energy created by deep convection, although the dipole character of the vorticity
thereby produced frustrates the inverse energy cascade. At the level of convective detrainment, potential-vorticity
anomalies have a small monopolar element in the rotating case and this implies a direct forcing of energy at large
scales. It also promotes a more efficient inverse energy cascade through long-range influence. The inverse energy
cascade arises primarily because of the quasi-two-dimensional, divergence-free nature of the flow at scales larger
than the convective forcing, which is maintained by the stable stratification. Even in the absence of background
rotation balanced flow arises, especially in the upper troposphere and in the decay phase of the simulations when
the surface fluxes and atmospheric cooling driving the convection are removed. In these cases potential-vorticity
inversion can be quite successfid in determining the other field variables, with contributions from both geostrophic
and cyclostrophic balance. Suppression of precipitation (i.e. removing the liquid-water phase) increases the net
convective mass transfer through the elimination of convective downdraughts, which leads to a higher efficiency of
balanced-flow energy production and upscale encrgy transfer. Intense ‘meso-vortices’, with warm core structure,
form spontaneously after about 2.5 days integration in these runs.

Keyworns: Deep convection Inverse energy cascade Large-eddy simulation Meso-vortices

1. INTRODUCTION

This paper concerns the general questions of what happens to the kinetic energy
released by the buoyancy force in deep, penetrative convection in the atmosphere, and
what 1s the nature of the mechanisms producing the observed mesoscale energy spectrum?
The energy released in convection can in principle undergo three types of transition: it
may be converted to three-dimensional turbulent energy then cascading to small scales and
dissipating; it may be converted to gravity wave energy; or it may become ‘balanced’ quasi-
two-dimensional flow, and cascade to larger scales in stably stratified turbulence, possibly
assoclated with the production of stable vortices. The proportions of energy going into these
different forms must vary considerably, depending on the form of convection that evolves
and the environment in which the motion takes place. In the linear model of Schubert
et al. (1980) only a few per cent of energy released was found to be retained after the
geostrophic adjustment process was complete, depending on the ratio of the horizontal scale
of the convection to the Rossby radius of deformation. In contrast, Shutts and Gray (1994)
tound that in two-dimensional numerical simulations, a single deep convective plume in a

rapidly rotating environment could capture around 30% of the energy released in balanced
flow. More recent simulations by Gray (1996) using a terrestrial value for the Coriolis
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parameter have shown that up to 60% of the energy released may be retained in balanced
structures—depending on how much mass is convected. The simulations have much in
common with observed Mesoscale Convective Systems (MCSs) in which lower to middle
tropospheric vortices are created. Simulations by Herring and Métais (1989) and Métais
et al. (1994) indicate that in some circumstances (particularly when background rotation
is present) balanced flow can be efficiently produced in a three-dimensional stratified
medium by small-scale forcing, but their simulations are somewhat idealized, making the
direct connection to the atmospheric mesoscale difficult.

Satellite imagery shows that convection has strong mesoscale organization in cold
airflows over warm seas. This may take the form of shallow cellular organization in hexag-
onal patterns approximately 20 to 60 km across, or deep convective clusters with anvils up
to 60 km across and individual clouds with similar spacing. The former process may be
regarded as @ boundary-layer phenomenon whereas in the latter the process (s penetrative
in the sense that updraughts extend far into the stably stratified environment. It seems
likely that the time-scale of individual cloud systems is several hours (although that of an
individual cloud may be shorter) and comparable with the Coriolis time-scale f~*. As with
the MCS, a proportion of the released energy may be retained in vortical motion derived
either from the earth’s rotation or boundary-layer wind shear.

Raymond and Jiang (1990) postulated that the longevity of the MCS was associated
with the production of a positive potential-vorticity (PV) anomaly in the middle or lower
troposphere caused by latent-heat release. The PV anomaly implies abalanced meso-vortex
which, in the absence of strong background flow deformation, persists and is capable of
inducing low-level ascent ahead of it. Using an axisymmetric balanced model, Shutts et al.
(1988) showed that the production of PV anomalies follows directly from the convective
mass transfer, and that lens-like regions of zero PV and frontal discontinuities of very high
PV may be produced.

From a dynamical viewpoint, the net etfect of deep, penetrative convection is equiva-
lent to the effect of a particular distribution of mass sources and sinks 1n the flow (Ooyama
1971). If M, is a hypothetical mass source term introduced into the continuity equation
then it can be shown that Ertel’s theorem for the conservation of potential vorticity, g,
becomes:

implying that mass sources lower the PV and mass sinks increase it. The process 1s related
to the notion of dilution and concentration of PV substance introduced by Haynes and
Mclintyre (1990).

The production of balanced mesoscale motion may have an impact not only on the
mesoscale itself, but also on synoptic and larger-scale flows, if the energy can be transferred
to larger scales. It is observed that the slope of the atmospheric energy spectrum changes
from a k™ spectrum (where & is the horizontal wave number) at larger scales to a spectrum
more nearly that of £~/ for scales smaller than a few hundred kilometres (e.g. Gage and
Nastrom 1986). The large-scale spectrum may be understood in terms of quasi-geostrophic
turbulence {e.g. Charney 1971): the twin constraints of energy and enstrophy conservation
combine to produce a direct cascade of enstrophy to small scales, characterized by a —3
spectrum of the three-dimensional wave number. Although various simulations of two-
dimensional turbulence at high resolution do frequently vield spectra steeper than k2 (e.g.
Maltrad and Vallis 1991) it is generally thought that the large-scale spectrum is indeed
characterized by an enstrophy cascade to smaller scales (e.g. Boer and Shepherd 1983). The
mechanisms producing the k~%/* mesoscale spectrum are less clear, since the horizontal
scale 1s still too large to be associated with isotropic three-dimensional turbulence. Two
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mechanisms suggest themselves, one being associated with gravity waves. In this scenano,
in addition to an enstrophy cascade of rotational modes, there may exist a weaker direct
cascade of energy (i.e. from large to small scales) associated with divergent (or, more
generally, unbalanced) modes, as well as the possible direct excitation of internal waves
at these scales (Van Zandt 1982). Such internal waves will tend to produce a shallower
spectrum—operhaps close to k2, which is similar to £7>/; this may dominate at smaller
scales. Recent simulations of the shallow-water equations ( Yuan and Hamilton 1994) also
give some credence to this idea, or similar ideas.

Another possibility is that the spectrum is due to an upscale transfer of energy as-
sociated with stratified turbulence in the mesoscale (Lilly 1983). The idea 1s that, for the
low Froude number (Fr) flows, characterizing the mesoscale, “‘two-dimensional’ flow 18
the lowest order balanced approximation (see Riley er af. (1981) and Vallis (1996) for
a discussion of the scaling). The flow is not properly two-dimensional, since there can
be large variations in the vertical, but each horizontal layer obeys the two-dimensional
vorticity equation. We will refer to such motion as ‘quasi-horizontal’. A source of energy
(e.g. convection at the scale of tens of kilometres) will then produce an inverse energy cas-
cade with a concomitant energy spectrum close to k>, If this is true, then smaller-scale
convective motion could have a direct influence on the larger-scale motion. It 1s this latter
mechanism that we shall be primarily concerned with in this paper. Interestingly, Herring
and Métais (1989) were unable to obtain a robust inverse energy cascade in simulations of
forced stably stratified turbulence. When rotation was added to such simulations a more
effective inverse energy-cascade was obtained (Métais ef al. 1994), with a Froude number
~ (J.2 and Rossby number ~ .1. Furthermore, whether quasi-horizontal motion is in fact
a self-consistent limit of the highly stratified equations is unclear, since each horizontal
layer moves independently in thts limit and the motion may be unstable. The question of
whether balanced mesoscale motion and inverse cascades exist is thus of both practical
and theoretical interest.

If an upscale cascade of energy does take place, then at some intermediate scale it
must ‘collide’ with the forward (downscale) enstrophy cascade (Lally 1989). Simulations
by Malirud and Vallis (1991) indicate that the cascades are in fact largely transparent to
each other, and produce only a change in spectral slope at some intermediate scale, much
as is observed. The mechanisms of each cascade are evidently essentially independent of
each other, probably because different triad interactions are involved in each cascade. For
this reason we are able to study any upscale energy transfer independent of the downscale
enstrophy transfer, enabling a mesoscale model of limited horizontal extent (in our case
typically 300 km) to be usefully employed.

It 1s the purpose of this paper to investigate, by numerical simulation, whether deep
convective clouds that occur in cold airstreams over warm seas can indeed force an upscale
energy transfer through the creation of quasi-barotropic mesoscale eddy motions. A range
of experiments are performed which elucidate the role of the Coriolis force, boundary-layer
wind shear, and precipitation-induced downdraughts.

In the next section, the model we use and the experimental set-up are brietly described.
This is followed by a description of the main numerical results. In section 4 we examine
more closely the production of balanced motion. Section 5 concludes with a discussion of
the relevance of this study fo predictability 1ssues.

2. MODEL FORMULATION AND EXPERIMENT DESIGN

Our goal 1s to provide a crude model of the kind of convection that occurs, for
example, in a cold-air outbreak, when a cold polar airstream flows over a warm ocean. Two
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approaches to modelling this phenomenon are possible: firstly, one could imagine that the
model domain was following the airstream over warmer seas, and represent this effect by
specifying a time-dependent sea surface temperature. Alternatively, one could consider the
domain to be fixed over a patch of ocean for which the sea surface temperature is constant,
and represent the advection of cold air into the domain by an apparent cooling function.
The latter approach 1s the one adopted here, principally because it allows a statistically
steady state to be reached. The end of the cold-air outbreak is modelled simply by cutting
off the parametrized surface fluxes and atmospheric cooling in the model, which results
in a decay or spin-down phase of the simulations more similar to previous integrations on
stratified turbulence (e.g. Herring and Métais 1989).

The process envisaged here is clearly not a good model of cold, continental air masses
flowing from land to sea, since these are characterized by a deepening convective boundary
layer rather than convective systems extending throughout the troposphere. Rather, one
might regard the cold air mass as having been over the sea for many days and responding
to higher sea temperatures and a cyclonic flow environment. Such synoptic situations are
not uncommon over the eastern side of the Atlantic and Pacific Oceans in middle/high
latitudes during the winter.

The numerical model itself is a ‘large-eddy simulation’ model, described more fully in
Shutts and Gray (1994). It is based on the non-hydrostatic anelastic equations (e.g, Ogura
and Phillips 1962), contains water vapour and Richardson-number-dependent subgrid-
scale parametrizations for dissipation and boundary-layer transfer. The equations of motion
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In these equations, k is a unit vector in the z direction and the variables v, p, T,
5., 1,, 6, and p are three-dimensional vector wind, pressure, temperature, liguid water
temperature, virtual temperature, virtual potential temperature and density. A hat over a
variable (e.g. p) indicates a reference profile (a function of z only) and primes denote the
deviation from this. Also, r, rg, ry, rr are the vapour, rain, liquid water and total water
mixing ratios respectively; g is gravitational acceleration, R is the gas constant for dry
air, C), 1s the specific heat at constant pressure and x == R/C,; wg is the fall speed of rain
and L, is the latent heat of vaporization. The turbulent shear stress 7, and the turbulent
fluxes of 71, rr and rg (Fr, F, and Fy respectively) are all based on a Smagorinsky—
Lilly parametrization as described by Shutts and Gray (1994). A simple, “‘warm’ cloud
microphysical scheme (Kessler 1974) represents the processes of autoconversion of cloud
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Figure 1. Tephigram showing the initial thermodynamic profile for all model integrations; solid line is tempera-
ture, dashed line is dew-point. Notice the stable layer above 350 mb which serves to arrest convective updraughts
before reaching the model lid at 7 = 10 km.

droplets to rain, accretion of cloud droplets onto rain, and evaporation of rain into dry
air—collectively represented by the term Sp.

The advection terms in the momentum and thermodynamic equations are computed
on an Arakawa C grid, using the ‘ULTIMATE’ advection scheme on all model variables
(Leonard 1991). Each horizontal slice employs cyclic boundary conditions and comprises
300 x 300 points with 1 km spacing; vertical levels are spaced unevenly to afford greater
resolution in the boundary layer. The primary model levels (holding p, u, v and 71 )
are located at heights of 47, 234, 793, 1756, 30335, 4500, 6049, 7626 and 9208 metres.
Vertical-velocity levels lie roughly midway between the main levels (above 1 km) and
rigid-lid boundary conditions are defined by setting w=0at z =0 and z =10 km. A
no-slip lower boundary is enforced by requiring zero wind on a fictitious subterranean
main level.

Where appropriate, the Coriolis parameter assumes a typical mid-latitude value of
107* s~1, In all cases the sea surface temperature was fixed at 291 K (18 °C) and the
initial atmospheric temperature profile was determined by a temperature of 281 K at
level 2 (z =234 m) and a constant squared buoyancy frequency of 1.4 x 10™* s~ up to
z = 7626 m—above which the temperature profile was set to be strongly statically stable.
The effect of this shallow stable layer was to ensure that the neutral buoyancy level (based
on parcel theory) of near-surface air parcels lay within the model atmosphere. A tephigram
depicting the temperature and dew-point of the initial state is shown in Fig. 1. A prescribed
diabatic cooling rate of 107* K s™* (= 8.6 degC per day) is applied on all model levels
except those at the top and bottom—the latter of which is diagnostic.

In order to ensure strong turbulent heat and moisture transfer from the surface, a
basic uniform wind U is assumed in the x direction above the surface (e.g. Rotunno et al.
1988). This is achieved straightforwardly in the rotating case (i.e. with the usual value of
the Coriolis parameter), In these experiments the basic flow is geostrophically balanced
through the inclusion of a fixed, constant pressure gradient in the y direction. In this sense
the basic flow is continually driven towards the geostrophic value by the fixed applied pres-
sure gradient and, because of the imposition of a no-ship condition at the surface, a shear 1s
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maintained across the boundary layer. Some care is required in defining the corresponding
experiment with no background rotation. If the Coriolis parameter were simply set to zero
everywhere, there would then be no imposed constant pressure gradient since there would
be no requirement for geostrophic balance, and nothing to maintain a lower-level shear.
Under these circumstances, turbulent boundary layer and convective momentum transport
would drain away x-momentum so that statistical equilibrium would only be achieved
when the momentum in the initial basic-state flow was removed. This clearly is a very
different physical problem from that of deep convection in a geostrophically balanced
untform flow where Coriolis torque on the horizontally averaged flow counterbalances the
net momentumn sink (e.g. as in the Ekman boundary layer). The boundary-layer shear may
also be important in organizing the convection, without itself being an important source
(on average) for vertical velocity (C. Snyder, personal communication).

Thus, in order to keep the rotating and non-rotating simulations as similar as possible
in terms of the convective forcing and boundary-layer fluxes, our ‘zero Coriolis force
simulations’ allow a Coriolis effect on the horizontally averaged flow but not on the
perturbed flow. That is, the Coriolis term fk x Visreplaced by fk x V where the overbar
on V denotes the horizontal average across the entire domain. With this modification only
the mean flow is subject to the Coriolis force. This enables us to study the effect of the
Coriolis force on the perturbed flow. As in the full rotating case, a constant pressure gradient
in the y direction is required to maintain geostrophic balance, and this maintains a low-
level shear. Note that the mean flow can, and does, depart from geostrophy on each level.
The largest departure of the mean flow from its geostrophic value occurs in the boundary
layer. This scheme may be regarded as a device to maintain a shear across the boundary
layer, and hence to keep the transfer of moisture and momentum across the boundary layer
similar to that in the rotating case.

Horizontal vorticity diffused away from the lower boundary is a potential source of
vertically oriented vorticity in deep convection, To investigate the effect of this, a simulation
18 carried out in which the horizontally averaged wind is fixed at its initial imposed value.
This does not suppress surface heat and momentum fluxes since the no-slip condition is
still enforced at the model level notionally below ground.

The simulations with a rigid lid at 10 km do not, naturally enough, allow gravity waves
to propagate into a stratosphere and dissipate. Nor, because of the limited horizontal extent
and periodicity of the simulations, do they allow gravity waves to propagate away from
their source. Thus, we can expect the geostrophic adjustment process to be artificially
consirained. To overcome this, in some experiments a stratospheric gravity wave damping
layer was included, by imposing Newtonian relaxation on all variables in the stratospheric
part of a vertically extended model domain. To achieve this it was necessary to reduce the
horizontal domain size to stay within computer memory bounds. In these experiments the
build-up of gravity wave ‘box modes’ is alleviated and gravity wave energy may drain
away to low levels, as it would 1n an unbounded flow.

Finally, the effect of precipitation on the long-term evolution of convection was imves-
tigated by performing integrations with no liquid water; condensed water is removed at the
instant it 1s diagnosed by the model and so cloud and precipitation never form. Latent heat
of condensation is, however, realized. The main consequence of this physics modification
is that evaporation of rain and the generation of convective downdraughts cannot occur.

3. RssuLts

In this section we describe the phenomenology of the main sirnulations, and diagnose
the production of stratified turbulence and upscale energy transfer of the rotational flow. A
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more detailed investigation of the nature of the balanced motion, and explicit PV inversions,
are deferred to section 4.

(@) Control integration

Consider first the form of the convection produced after 75 000 s of integration
(~1 day). Within the boundary layer at a height of 458 m, the vertical-velocity field shows
an interesting mixture of cells and ‘cuspy’ lines oriented NE-SW (Fig. 2(a)) simmlar in
form to those appearing in the squall-line simulations of Skamarock ef al. (1994). The
south-eastern side of the lines (where there is system-relative inflow) has upward motion
of about 3 m s}: downdraughts of equal magnitude are found on the north-western side.
The vertical velocity at z = 5.27 km is dominated by updraught cores a few kilometres in
diameter that tend to aggregate along the cuspy lines seen in the boundary layer and with a
range from —3.9 to 16.9 m s~! (Fig. 2(c)). Higher up at z = 8.42 km the updraughts have
terminated and circular patterns of gravity waves can be seen spreading outwards from
the location of convective cells. The perturbation potential-temperature field (Fig. 2(b))
at z = 234 m suggests the formation of cool pools immediately behind the updraughts in
response to cooling by the evaporation of precipitation.

After one day of model integration the effect of the Coriolis force acting on the
remnants of earlier convection should be evident. Since detraining convective mass acts
to dilute ambient potential vorticity (1), attention is focussed on the production of quasi-
balanced motion at the model Ievel nearest to the neutral buoyancy level. For highly
stratified flow, the balanced flow is synonymous with the two-dimensional evolution of
the rotational component of the horizontal flow (Lilly 1983). Although the presence of
background rotation imparts some vertical stiffness to the flow, leading to flow evolution
described by equations similar to the quasi-geostrophic set (Vallis 1996), if the flow is
highly stratified the purely two-dimensional flow will still comprise the dominant part of
the balanced flow. (These aspects of balance are explored further in section 4.) Here, we
note that the flow is indeed highly stratified, and it is expedient to simply decompose the
horizontal wind at z = 7.6 km into rotational and divergent components and then form
the kinetic energy spectra of each. In addition, the kinetic energy spectrum of the vertical
motion, and the available potential energy spectrum, are computed. Here the available
potential energy (APE) is defined as:

g E}f 2
APE= £ (_.g) (10)
where B is the constant, reference-state stability ?“*d?jdz.

Figure 3(a) shows these energy spectra plotted on a logarithmic scale. At this time
(75 000 s) both the divergent kinetic energy and the APE exceed the rotational Kinetic
energy. The kinetic energy of the vertical motion is very much smaller than the sum of
rotational and divergent energy spectra for all scales greater than the near grid-scale. This
would be consistent with the use of the hydrostatic assumption everywhere except in the
convective updraughts. Whilst it may be expecting too much to find an inertial sub-range
power law in the energy spectrum, since the spatially localized nature of forcing by deep
convection implies a broad spectral forcing, the slope of the spectrum is in fact not far
removed from k% on average. It is the rotational modes that we expect to persist after
convection has ceased, and so here we shall tend to equate the rotational energy with quasi-
balanced dynamics (see section 4 for further details). Inspection of the vorticity field at
z = 7.6 km reveals dipolar (or more complex) patterns at convective updraught lines. The
energy spectra at ¢ == 175 000 s are shown in Fig. 3(b). The rotational energy has increased
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Figure 2. (a) Vertical velocity (range: ~3.1 —» +3.1 m s™') at 7 = 458 m. (b} Potential-temperature perturbation
(range: 3.8 — 6.9 deg() at z = 234 m. (c) Vertical velocity (range: —3.9 — +169ms ) at 7 = 5.27 km. In the
above plots ¢ = 73 000 s and high values are black. |
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Figure 2.  Continued.

further and 1s now comparable 1n magnitude with the divergent energy at a scale of around
50 km.

In order to quantify the level of stratified turbulence generated by deep convection over
this two-day period, and to show its adjustment when convection ceases, the integration
was continued with the diabatic cooling and surface energy/moisture fluxes set to zero
atter + = 190 000 s. Figure 4 shows the total rotational kinetic energy and enstrophy at
z = T.6 kmbetween ¢ = 100 000 and 300 000 seconds. Notice that up until the point where
the convective forcing is switched off, both energy and enstrophy are still increasing: this
may reflect the fact that the upscale energy transfer is blocked at the scale of the domain
and that dissipation is very small for the gravest modes. During the 30 000 s period after
the diabatic cooling and surface energy fluxes are switched off, the energy and enstrophy
substantially reduce in magnitude. However, whilst the total rotational energy only falls
by a hittle over 50% of its maximum value, the enstrophy falls by 95%. This behaviour is
characteristic of the ‘selective decay’ properties of two-dimensional turbulence.

The vorticity field at 1 = 350000 s, z = 7.6 km is shown in Fig. 5. Now that the
vorticity perturbations associated with the convection itself have decayed, there remains
a background flow reminiscent of two-dimensional turbulence simulations (e.g. Maltrud
and Vallis 1991), with the vorticity field beginning to organize itself into coherent vortices.
A plot of the energy spectra at the same time (Fig. 6) shows that the rotational energy dom-
inates the total energy and so the dynamics fit the two-dimensional turbulence paradigm
well. | .

At this stage the rotational energy falls off at a rate faster than X~ and most is trapped
in scales greater than 30 km. Whilst the vertical coherence of the vorticity field on model
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Figure 5. Vorticity field (range: —3.2 x 107% = +3.6 x 107} at z = 7.6 km, f = 350 000 s in the control inte-
gration,
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Figure 6. Energy spectra at z = 7.6 km, f = 350 (000 s in the control integration. This time 15 125 000 s into the
decay phase of the simulations. See fext for energy definttions.

levels at heights 6.05 and 7.6 km 1s fairly high, the vorticity at z = 4.5 km is barely similar
to that at 7.6 km. In two-dimensional stratified turbulence each horizontal layer will, in
principle, evolve independently of the others, thus producing a decoupling of the vorticity
field over shallow layers. This effect will be constrained by the necessity to maintain a
sufficiently large Richardson number (N?/(du/dz)*); if the Richardson number becomes
too small because the vertical shear of the horizontal flow becomes large, small-scale
instability will arise which may provide some degree of dissipation and would prevent
further decoupling. A small Richardson number would also normally imply a large Froude
number, which would in fact vitiate the scaling on which the quasi-horizontal motion 1s
based. The presence of background rotation will also help to maintain vertical coherence.
Here, the Rossby number {defined by Ro=U/fL where IV and L are characteristic
wind speed and horizontal length-scales) of the flow is of order unity, e.g. U =1 m s~
and L = 10 km at z = 7.6 km imply Ro = 1. However, the Rossby number is small for
the largest scales in the domain for which L ~ 50 km. The Froude number (defined by
Fr = U/N H where H is a characteristic depth-scale of the flow) is also very small, e.g.
since H ~ 3 km, Fr ~ 0.03. With these values, Fr/Ro << 1.

In cases where Ro is small, the buovancy b = g8’ /0 scales as fLU/H, consistent
with the thermal-wind relation. The ratio of APE (b/N)? to the kinetic energy U? can then
be straightforwardly shown to be (Fr/Re)*. If Ro is O(1) or larger, then b scales as U?/ H,
and the APE/kinetic energy ratio is simply ( Fr)*. In our simulations (both rotating and not)
this ratio 1s small, meaning the flow becomes dominated by kinetic energy (consistent with
the energy spectra at this time) and, as discussed in section 4, satisfies the two-dimensional
vorticity equation.
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(py Coriolis force removed

With the Coriolis force removed, much of the early organization of the convection is
similar to the control (1.e. rotating) integration; noticeable differences emerge after about
one day of integration. The energy spectra at f == 75 000 s and ¢ = 175 000 s are shown
in Figs. 7(a) and (b) respectively. These show that at the largest scales of the domain
(i.e. wavelengths between 100 and 300 km) there are one to two orders of magnitude
more divergent energy and APE than rotational energy (compare Figs. 3 and 7(2)). For
wavelengths greater than about 60 km there is considerably more rotational energy in the
control integration than in the integrations without background rotation, implying a more
efficient inverse cascade or differences in the ‘forcing function’ (i.e. the nature of the
convectively generated vorticity), or both. The evolution of the rotational kinetic energy
spectra at 50 000 s intervals can be seen in Fig. 8. There is evidence of a slowing down
in the build-up of energy in the largest scales of motion, since the curves at ¢ == 125 000 s
and ¢ == 175 000 s are quite similar.

The main difference between the vorticity fields in the non-rotating and rotating
cases is the appearance of larger-scale, single-signed features in the latter. In the non-
rotating simulations, the boundary-layer shear gives rise to horizontal vortex tubes. Since
(at least in the inviscid limit) vortex lines are ‘frozen’ to the flow, updraughts can pull
these tubes upward, and such ‘vortex twisting’ will lead to the creation of a vertically
oriented vorticity dipole. But if, additionally, there is some background rotation, vortex
strefching can concentrate the background vorticity around the updraughts, giving a small
monopolar component to the forcing vorticity field. To mvestigate the possible effect this
has on the upscale energy transfer, independently of the efficiency of the production of
balanced energy, we performed some integrations with a purely two-dimensional model.
The evolution equation for this is:

z—i-i-v-‘?;‘_—_FmD (11)
where { =k -curl v, V- v =0, and F and D represent forcing and dissipation terms. For
the dissipation we use a conventional harmonic viscosity. For the forcing we distribute
small vortices at random locations throughout the domain, roughly simulating the vortex
forcing of the main simulations. The vortices have a finite lifetime, over which the vorticity
forcing is held fixed at the particular locations. The vortices are allowed to die, and new
ones are allowed to form elsewhere. We use two forms for the vortices—either a pure
dipolar form, or a dipolar form plus a weak monopolar component; the latter is a factor of
100 weaker than the dipole. The integration uses an energy-enstrophy conserving gridded
code in a periodic domain, typically with 256 grid points on the side.

Figure 9 shows the evolution of the energy spectrum in these stmulations, [tis clear that
energy at large scales can grow much more efficiently in the simulations with monopolar
forcing. The distribution of monopoles itself provides forcing at large scales; further,
the stream function induced by the monopolar component has a much greater far-field
influence, whereas that of a dipole is confined to the neighbourhood of the disturbance
itself, inhibiting turbulent interactions. These results imiply that the diminished transfer
of energy to large-scale in the non-rotating runs may be caused, in part, by the nature of
the forcing itself, and not simply because the addition of the Coriolis force enhances the
two-dimensionality of the flow via the production of geostrophically balanced flow.

(¢} Without rotation: fixed horizontally averaged wind

In the simulation without rotation, not only was the Coriolis parameter set to zero but
also the horizontally averaged wind was held fixed at its initial value on all model levels.
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Figure 8, Time evolution of the rotational kinetic energy spectrum in the non-rotating case.

The principal effect of this is to remove mean boundary-layer wind shear thereby denying
convection a source of ambient vorticity. As before we consider the form of the convection
after about one day of integration. The boundary-layer convective organmization is now
cellular with cell diameters typically in the range 10-20 km and updraughts concentrated
at cell boundaries (Fig. 10(a)). The perturbation potential temperature forms a patchwork
of warm and cool regions within the cells, resulting from the cool downdraught’s air being
deposited at the surface and subsequently warmed (Fig. 10(b)). In mid-troposphere, celiular
structure is barely discernible and occurs at a larger scale (though smaller than the control
case). The absence of convection lines in this integration is, of course, due to the absence
of vertical shear in horizontally averaged wind.

The energy spectra at 7 = 175 000 s are shown in Fig. 11. In marked contrast to the
control integration, and to a greater extent than the f = 0 integration, very little rotational
energy escapes to scales greater than 30 km. The APE and divergent energy exceed the
rotational energy at all scales greater than about 10 km, and by about two orders of mag-
nitude at the largest scales. After a further 100 000 s of integration the rotational energy
spectrum still shows little energy in scales greater than 30 km.

Comparing the rotational energy spectrum at £ ~ 175 000 s in the current experiment
with those of the control and f = 0 integrations (Fig. 12), it can be seen that the absence
of boundary-layer vertical wind shear has the greatest effect on the creation and upscale
propagation of rotational energy. Nevertheless, the earth’s rotation also does make an
impact on the upscale transfer of energy into horizontal scales of motion greater than
60 km.

(d) ‘Instant’ precipitation

In ‘instant’ precipitation integrations, condensed water is removed at each time step
and so precipitation-induced downdraughts are unable to form. The main dynamical effect
of this is to supptess the counterbalancing of apparent mass sources and sinks caused
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(b)

Figure 10. {a) Vertical velocity (range: —2.7 — -+3.0 m 57!} and (b} potential-temperature perturbation (range:
5.2 > 7.4degC) at z =458 m and r = 75 000 s and where high values are black {f = 0 and the horizontally
averaged wind is uniform)
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Figure 12. Comparison of the rotational Kinetic energy spectra for the control integration with the cases f =0
(on perturbaiion winds), and f = ( throughout plus umiform horizontally averaged wind at ¢t ~ 175 000 s.
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Figure 13,  Energy spectra at z = 7.6 ki, 1t = 173 000 s for the integration with ‘instant precipitation’. See text
for energy definitions,

by the downdraught and updraught (respectively) in the lower troposphere. The loss of
boundary-layer mass due to convective updraughts then causes local concentration of PV
substance and cyclonic spm-up.

The energy spectra at £ = 175 000 s are shown in Fig. 13. In this integration there 1s
no local maximum in the rotational energy spectrum, and considerably more rotational and
divergent energy is to be found at large scales than in the corresponding case with precipi-
tation. One reason for this is that the absence of precipitation promotes stronger updraughts
(due in part to the absence of water loading, as well as the absence of downdraughts) and
greater sustained mass transport into the upper troposphere. Also, stronger updraughts in
the instant precipitation case are consistent with the higher levels of convective available
potential energy (CAPE) that occur: at £ ~ 175 000 s the CAPE is ~ 550 J Kg™' compared
with ~ 225 I Kg~! in the control integration.

A fascinating aspect of this integration 1s the clumping of vorticity into three dis-
tinct cyclonic cores with diameters of about 10 km. The flow is hurricane-like, yet at
a much smaller scale than observed hurricanes. Figure 14 shows an expanded view of
the near-surface flow in a 70 km square region enclosing one of these intense meso-
vortices (potential-temperature perturbation contours are superimposed on wind vectors).
The maximum tangential wind speed is 22 m s~ ! and the centre of the vortex is about
(.5 K warmer than its environment. The vortex extends throughout the depth of the model
atmosphere, though with decreasing intensity with height in accordance with hydrostatic
and cyclostrophic balance. Emanuel (1989 and personal communication) has suggested
that hurricanes may preferentially form where the atmosphere is saturated, so that hittle
evaporation occurs and downdraughts are suppressed; these simulations are consistent with

that idea.
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Figure 14. Zoomed region (~ 60 x 60 k) at time 175 000 s, and at a height 234 m above the surface, showing

wind vectors superimposed on the perturbation potential temperature (contour interval: 0.1 K). The centre of the

vortex is warmer than the environment by about 0.5 K. The iargﬂﬁt wind vector shown corresponds to a wind speed
of about 22 m 5.

(e) Effect of a damping layer

Finite computational resources dictated the choice of a rigid lid at a height of 10 km.
The gravity wave absotbing properties of the stratosphere are thereby lost, and a spurious
build-up of gravity wave energy was likely in these experiments. Some additional integra-
tions were therefore performed with a horizontal domain size of 100 km x 100 km, yet
with five extra vertical levels extending up to a height of 18 km in which a stratospheric
damping layer was located. Results indicate that this layer reduces divergent energy at large
scales, and greatly improves the balance between pressure and velocity, while having much
less effect on the inverse energy cascade in the energetic scales.

The stratospheric damping works by relaxing the perturbed prognostic variables back

towards their horizontally averaged mean. For an arbitrary prognostic variable, ¢, this
introduces an additional source term of

d¢ —
=2 (¢-9) (12)
where A 1s the damping coefficient and the overbar denotes the horizontal mean. This is
given by
I 7— ZB) }
Az)y= — — 1 13
@ fp {E:xp ( Hp (15}

for z > zp and equal to zero elsewhere. fp is the damping time-scale and Hp a damping
height-scale. For the integration presented here fp = 1333 s, Hp = 5 km and zp = 10 km.
A near-isothermal reference profile is continued for 8 into this stratosphere.

The integrations performed with the damping layer are then identical to those without,
except for the different geometry and damping layer itself. After 200 000 s the cooling
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Figure 15. Energy spectra at z = 7.6 km, ¢ = 300 000 s for the reduced horizontal domain with damping layer.
This is 100 000 s into the decay phase of the simulation. See text for energy definitions.

function and surface energy fluxes were switched off and the integration continued for
another 100 000 s, Figure 15 shows the energy spectra at ¢ = 300 000 s. Comparing these
spectra with those of the control integration at the same time (Fig. 6) it is clear that the
kinetic energy in vertical motion is reduced by over two orders of magnitude, indicating that
the damping layer has successfully absorbed gravity waves. There has also been a marked
reduction in divergent kinetic energy at the largest scales m the domain and similarly in
APE at most scales. On the other hand, the rotational energy has a similar magnitude to
the control integration at scales greater than 30 km, but is reduced at smaller scales.

4. DIAGNOSIS OF BALANCED MOTION

(a) Potential-vorticity inversion: formulation

Identification of balanced motion simply as the rotational part of the wind in a level
surface 1s not of course exact. For example, vortex lines generated by baroclinic forces hie
withinisentropic surfaces and these surfaces are not precisely horizontal, so the intersection
of vortex lines with level surfaces will appear as rotational energy. Thus we seek a slightly
more general definition of balance, and investigate the extent to which rotational energy
is, In fact, a useful proxy.

Balanced flow, almost by definition, satisfies some diagnostic balance between ve-
locity and pressure. A more general definition would be that all dynarmical fields can be
diagnosed from knowledge of a non-trivial subset. Although geostrophic balance is the
best known, balanced motion exists in various other circumstances, such as low Froude
number flow (Lilly 1983; McWilliams 1985). In geophysical flows, balance is typically
characterized by the interior evolution of a single ‘prognostic’ variable, with the other
variables following from ‘invertibility’ relationships. Using PV rather than some other
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freld (say pressure) as the fundamental inversion variable is advantageous from both the
dynamical and practical points of view (Davis and Emanuel 1991; Vallis 1996). Regarding
the former, we note that PV is a purely advected quantity in the absence of diabatic or fric-
tional forcing, and its evolution, in the linear approximation, is unaffected by gravity wave
propagation. An inversion based on, say, pressure might lead to the mistaken diagnosis
of gravity waves as balanced motion. And although potential temperature is also purely
an advected field, its contribution may be considered to be in providing vertical boundary
conditions for the PV inversion, through its lateral advection at these boundaries. From a
practical perspective, we see below that PV inversion can be achieved (to the accuracy of
the scaling producing the inversion) simply by the solution of linear elliptic equations, at
least in the low Froude number or low Rossby number limit.

For low Froude number flow an approximation to the PV valid for all Rossby numbers
is given by (Vallis 1996):

Q= f8,+ 6,99 + 16, (14)

where § is the mean and 8" the perturbation potential temperature, ¥ the horizontal-velocity
stream function, and V; is the two-dimensional (horizontal) Laplacian. The inversion is
closed using gradient-wind balance,

V&% — IV =208, W) (1s)

which gives a relationship between pressure and velocity, and hydrostatic balance,

g 3 i
s3=5 (%) (16)
g o9z \p
Combining these into a single formula for stream function gives
. -~ 8 o
0 = 10,485 + L BV + V0 W) (17

Here, V;? is a symbolic notation for the solution of the two-dimensional Poisson problem.
Astde from the Jacobian term, this is & linear inversion, very similar to the standard quasi-
geostrophic formula for PV in terms of stream function. The Jacobian term may in fact
be ignored if either the Froude or Rossby number is sufficiently small, which is of course
the criterion for the balanced motion to exist. If the Rossby number is small the Jacobian
is small, because it is a small correction in (15) and geostrophic balance is presumed to
hold. Then, to the accuracy of the scaling, the inversion is:

— 3
Or fO, +6, V29 + "fg{“a? (6F¢,) . (18)

The third term on the right-hand side will be sufficiently small as to be negligible
in many circumstances, plainly including the f = 0 case. The magnitude of the third
term relative to the second term on the right-hand side is (F7)?/(Ro)? under a scaling
from geostrophic balance, and is ( Fr)?/(Ro) under a small Froude number scaling (Vallis
1996). Thus, if the flow is sufficiently stratified the third term is small, whereas a small
Rossby number tends to increase the importance of the stratification term. Equivalently,
the stratification term will be small if the available potential energy of the flow is much
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smaller than its horizontal kinetic energy, a criterion which was seen to hold reasonably
well in our analyses, even in the rotating cases. In these cases, the inversion (18) reduces
to the simple formula

Q~8(f + Vi) (19)

where f =0 if there is no background rotation. The gradient wind balance (15) then
reduces to the purely cyclostrophic balance V: (p'/0) = 2J (¢, ¥).

The above formulae for PV inversion involve only the solution of linear elliptic
equations. This is the practical advantage of a PV inversion. The gradient wind may of
course be important in subsequently determining the pressure and temperature from the
velocity field using (15) and (16), but again these are linear formulae.

Equation (17) requires a boundary condition at the top and bottom. A Neumann
condition (specifying 1,) is natural, this implying a temperature specification in the low
Rossby number limit. In the general case the (nonlinear) boundary condition is

f' 2
v, = ff? SN A (20)

Even though the Jacobian term may be large in this equation, 1ts contribution to the interior
solution is always small; in the low Rossby number case the term itself 1s small, and in
the low Froude number case the high stratification prevents the vertical propagation of
boundary influences. Thus, as with the interior equation (18), scaling reveals that the
Jacobian term may again be ignored.

(b) Results

The simulations with a damping stratosphere generally show a much better balance
between pressure and velocity than the rigid-lid stmulations, although the dominance of
rotational over divergent energy, and the inverse cascade of rotational energy to large scales,
are similar with and without the model stratosphere. We shall show inverstons in both the
active convective phase of the integrations, and in the decay phase after the surface fluxes
have died away, for integrations both with and without background rotation. For each we
show two types of result: a velocity inversion from the model PV field, and a diagnosis
of the pressure field from the velocity field. The former is primarily an illustration of the
dominance (or otherwise) of the rotational component of the velocity field, whereas the
latter is a direct indication of balance between pressure and velocity. Given the diagnosis of
the pressure field via a balance relationship, the temperature field can then be deduced using
hydrostatic balance (except in strong updraughts and other regions of violent acceleration
where hydrostatic balance is not a good approximation). Note that mmverting for the velocity
field is a more severe test than inverting for the vorticity field since, given relatively flat
isentropes which do not depart too much from the basic state, obtaining the vorticity from
the PV is largely a matter of division and subtraction.

The same inversion formulae can be used in all cases, with or without rotation. Specif-
ically, (18) yields the stream function, and the velocity is obtained from it by a single
differentiation. The pressure may then be diagnosed from the velocity using:

V}f-g; — V2 + 27 (u, V). 1)

Note that the cyclostrophic (Jacobian) term cannot be neglected in this equation if the
Rossby number is O(1) or larger, because it 15 then at least the same order of magnitude
as the other terms. However, the Jacobian term is small in (17)—see Vallis (1996).



1644 G. K. VALLIS et al

10 &0 LH T 80 1o 30 30 ks B0

Figure 16. Potential-vorticity field at 7.6 km for various integrations. (a) Rotating, active convection; (b) non-
rotating, active convection; (¢} non-rotating, decay phase; and {d) rotating, decay phase. See text for further
explanation.

Figure 17 shows velocity and vorticity inversions, obtained from the PV field illus-
trated in Fig. 16 (upper left panel). Clearly, the features at a scale larger than about 10 km
are reproduced by the inversion, but the smaller-scale features, especially those in the
vicinity of active convection are not. The inversion for the rotating case is perhaps slightly
better than that for the non-rotating case, indicative of the greater dominance of rotational
energy, although the difference is not marked. In the decaying phase of the integrations,
after the cessation of active convection, the accuracy of the inversions further improves
(Fig. 18). During this period the energy associated with divergent velocity is decaying, and
the rotational energy is being transferred to larger scales as indicated by the much larger
scale of the structures in Fig. 16.

Two other points are worth making. Firstly, the inversions shown are technically fully
‘three-dimensional,’ in that they solve the three-dimensional elliptic equation (18). (The
method of solution is to project the vertical structure onto eigenmodes of the operator
d/0z(09/3z), using the same vertical grid as is used in the model integrations. This results
in a set of two-dimensional Poisson equations for each vertical mode, which can be solved
by standard methods, from which the vertical structure in physical space is reconstructed.)
Inversions obtained by neglecting the third term on the right-hand side of (18) (i.e. two-
dimensional mversions) were also obtained, and these proved to be very similar to those
obtained using the full three-dimensional equation. (Note that this term is only present
in the case with rotation.) This is consistent with the smallness of the available potential
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Figure 17. Velocity and vortcity inversions from the integration with rotation and a wave-damping stratosphere,

at a time ¢ == 200 000 s, during the active phase of convection. {a) Meridional velocity at 7.6 km, (b) inverted

velocity field ebtained using (18), {¢) a vorticity section in the zonal plane across the domain, and {d) inverted
vorticity field.

energy compared with the kinetic energy, and with the Froude number being very small
(~ 0.03). Secondly, note that in the decaying phase of the integrations the vertical scale of
the vorticity field diminishes. This is counter to the expectation of the inverse cascade in
geostrophic turbulence, in which the system seeks the gravest mode, both horizontally and
vertically, Rather, it is indicative of stratified turbulence; if each layer is largely uncoupled
from its neighbours, the layers will evolve more or less independently of each other, and the
vertical scale will therefore, in general, diminish. In the cases with rotation, the stiffening
effect of background rotation is evidently insufficient to prevent this.

Examination of the balance between velocity and pressure reveals a similar picture.
Figures 19 and 20 show the actual pressure field and the pressure field ‘inverted’ from the
velocity field, using various forms of geostrophic and gradient-wind balance. Even in the
active phase of the convection, there 1s a reasonable balance between pressure and velocity
for features of scale greater than 20 km (Fig. 19). This balance exists in both the rotating
and non-rotating cases, with slightly better agreement being obtained in the former. After
the cessation of active convection, the balance becomes almost perfect (Fig. 20). Note
that in the cases with rotation, both the effect of geostrophic balance (V?p’ ~ 0 f,¢) and
cyclostrophic balance (V2p’ ~ 25J(u, v)) contribute to the balance, in approximately
equal measure. In cases without rotation, cyclostrophic balance alone is achieved.
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Figure 18, As Fig. 17, but at a time 100 000 s into the decay phase of the integrations,

5. DisCcUSSION

Three-dimensional convectively resolving simulations are, naturally enough, compu-
tationally dernanding and this necessitates some compromises. Some of the integrations
chosen here may be considered rather extreme as far as a realistic mesoscale simulation
1s concerned, for example in having no boundary-layer shear or no cloud/precipitation. At
the same time, the model is rather complex compared with (and certainly more similar
to the real atmosphere than) simpler geophysical fluid dynamics models often used to
simulate stratified turbulence. These are typically ‘dry’ and Boussinesq, as opposed to the
moist quasi-Boussinesqg/anelastic model used here. Using such models one is able to con-
trol the nature of the forcing more closely. For example, Herring and Métais (1989) were
able to use a narrow spectral band forcing, whereas the naturally occurring convection in
our simulations will, even though it is at small scale, have a broader spectral signature.
The compromise we have chosen hopefully gives 1nsight into important physical mecha-
nisms, but at the same time is realistic enough to be of direct relevance to the atmospheric
mesoscale.

Stratified turbulence at scales larger than the convection arises from forcing by
potential-vorticity anomalies, which can persist after convection has ceased. There are
three sources of vorticity that need to be considered: ambient background rotation associ-
ated with the Coriolis parameter, horizontal vorticity associated with boundary-layer wind
shear, and baroclinic generation of vorticity in the interior due to horizontally varying
buoyancy forces. The first two are more important and active in our integrations; the third
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Figure 19. Pressure determination from the velocity field, for the same integration as in Fig, 17, at z = 7.6 km.

(a) Actual pressure field; (b) pressure field determined from velocity assuming geostrophic balance; (c) pressute

field determined from velocity using cyclostrophic balance only (i.e. Vi{p ,’:5) == 2 f (u, ©)); and (d) pressure field
determuned from sum of (b} and (c), that is using Eq. (135).

mechanism is associated with buoyant convective updraughts which can create toroidal
vortex lines. In some sitnations this horizontal vorticity may be tilted into the vertical, as in
the squall-line simulations of Davis and Weisman (1994). Their convective systems cover
a much large area than our simulations, with updraughts sloping 50 km in the horizontal
over the depth of the troposphere. In our simulations the updraughts are essentially vertical.
This difference in the structure of the convection must, in part, be due to their deep {lowest
2.5 km) shear layer compared with the shallow boundary-layer wind shear in the simu-
lations presented here. Of the mechanisms forcing vertical vorticity in their simulations,
the dominating one is the tilting of horizontal vorticity generated by buoyancy forces at
the sloping updraught—-downdraught boundary—particularly at the ends of the squall line.
We believe that the absence of squall-line structure in our simulations greatly reduces the
effectiveness of this vorticity-forcing mechanism.

The principal source of vertical vorticity in our simulations comes mainly from the
twisting of horizontal vorticity filaments from the frictional boundary layer by deep con-
vective updraughts. Such arguments are difficult to put on a rigorous footing, since vortex
lines are not carried with the flow in a stratified fluid. However, it 1s clear from the in-
tegration with fixed horizontally averaged wind that, in that case, an important source of
enstrophy had been removed. The concentration of ambient PV in the rotating simulations
provides in addition an important monopolar component {o the vorticity forcing.
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Figure 20. As Fig. 19, but at a time 100 000 s into the decay phase of the integration.

"Two-dimensionalization’ of a flow can arise, in general, in two circumstances-—
highly stratified (low Froude number) flow or rapidly rotating (low Rossby number) flow,
or a combination of both. In the rotating case, the lowest order inversion of PV is essentially
given by quasi-geostrophic relationships—-the rotation imparting some vertical stiffness
to the flow. However, high stratification opposes this and acts to decouple layers in the
vertical. In the stimulations presented here, the horizontal layers are effectively decoupled
in the vertical; a ‘quasi-geostrophic’ inversion using (18) to obtain the velocities is little
improvement over the simple two-dimensional inversion (19). It is then a reasonable ap-
proximation to simply equate *balanced energy’ with the kinetic energy of the rotational
wind.

Upscale energy transfer is found to occur in the mtegrations both with and without
background rotation. The quasi-horizontal nature of the flow is further enhanced in the
spin-down phase of the integrations after the active convection subsides. This phase is
marked by a dominance of rotational energy over divergent energy, and a selective decay
of enstrophy over energy, both characteristic features of quasi-horizontal flow. In cases
with a wave-damping stratosphere, a very good balance between pressure and velocity is
achieved, characteristic of quasi-horizontal balanced flow.

There are nevertheless differences in the rotating and non-rotating simulations. For
example, in the rotating simulation, the vorticity field assumed a different character after
one day of integration, with the appearance of large-scale features. Energy spectra showed
that for scales greater than about 60 km there was an order of magnitude more rotational
kinetic energy in the integration with Coriolis force. The precise mechanism for this en-
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hanced large-scale energy with rotation is not clear. One possibility is that the monopolar
PV forcing in the upper troposphere 1n the rotating case greatly enhances the long-range
influence of the forcing, thereby assisting the upscale transfer of energy. In contrast, the
dipolar and quadrapolar PV fields forced by vortex twisting produce compact horizontal
circulations with only short-range influence. Thus, although stratified two-dimensional
turbulence is produced in the integrations both with and without rotation, the rate of the
upscale energy transfer 18 greatly enhanced by the nature of the forcing in the former case.

The production of balanced flow and non-negligible upscale energy transfer in the
non-rotating case is in some contrast to earlier simulations by Herring and Métais (1989),
although a direct comparison is difficult because of the very different types of simulation.
The ‘two-dimensionalization’ of the flow, especially in the decay phase, plainly does take
place even in the absence of rotation in our simulations. One difference between our results
and the earlier ones is that the Froude number in our simulations is very small, typically
<€ ().1, whereas in their simulations it is ~ 0.2, and is perhaps unable to produce sufficient
two-dimensionahization without the additional help of background rotation. Note that the
limit of highly stratified flow is highly layered flow, which may lead to shearing instabilities
and/or large frictional effects, either of which may inhibit the inverse cascade. Strong
rotation, accompanied by low Rossby number, will inhibit vertical motion and strengthen
the vertical coherence of the flow, thereby resisting the tendency towards layering and
dissipation. By using a large-eddy model with limited vertical resolution, our flows are
less viscous and at the same time do not allow very small vertical scales to develop,
which allows the Froude number to remain small. (Bartello (1995) further discusses the
effect of rotation on highly stratified flow.) A possible interpretation of our study 1s that
the quasi-horizontal Iimit of highly stratified flow can be achieved and is evidently stable.
However, the evolution of stratified turbulence in the model is constrained by coarse vertical
resolution, which allows the Froude number to remain low and the Richardson number high.
The inability of the model to permit vertical fine-structure (and accompanying turbulent
dissipation) thus prevents us from drawing general conclusions about the realizability of
quasi-horizontal flow in stratified turbulence.

The apparent observation of the spectrum becoming shallower 1n the mesoscale to
one close to k~°/* is nevertheless not fully explained by these simulations. Although in
the regime of active forcing a spectrum close to —5/3 is produced by the modeli, in the
spin-down phase the spectrum steepens as enstrophy 1s dissipated. Also, the observations
themselves are likely to be somewhat biased away from regions of active convection. Seen
in this Hght it is perhaps surprising that the observed spectra fit the classical —5/3 inverse
cascade spectrum so well.

The impact of instant precipitation was quantitatively large in our integrations, with
the formation of several intense ‘meso-cyclones’ with warm core structure. The effective
mass source/sink dipole due to convection 1s enhanced in this situation since a convective
downdraught is not formed. The degree to which convective-scale downdraughts form may
well be germane to the problem of tropical storm mitiation. If environmental condifions
(or convective storm orgamzation} favour weak downdraughts over tropical oceans then
the spin-up of a low-level cyclone would provide the necessary ‘seed’ to assist moisture
convergence. The presence of a damping *stratosphere’ also had a quantitatively large effect
in that it evidently aids the adjustment process by allowing gravity waves to be efficiently
damped, resulting in a greater degree of balance (geostrophic plus cyclostrophic) between
pressure and velocity.

If an upscale energy transfer can be produced in the atmospheric mesoscale, what are
the implications for synoptic and larger-scale flow? Here the answers are less clear. The
importance is plainly dependent on the rate at which balanced kinetic energy, generated by
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deep convection, is transferred to synoptic and mesoscales. To estimate this, we computed
the rotational energy in scales greater than 60 km as a function of time, and thereby
estimated its tendency. Since dissipation in these scales is likely to be small, the upscale
energy transter rate must be of similar magnitude. In the last day of the reference integration
(with rotation and precipitation), this rotational energy tendency was found to be about
0.1 m?s™2 per day; when the Coriolis parameter was set to zero, however, this fell to
0.05 m*s™ per day. In contrast, the integration with rotation and ‘instant precipitation’
had an estimated rotational energy tendency of about 1 m?s™2 per day, largely through the
production of intense vortices. This last figure is comparable with the estimate of energy
injection rate given by Lilly (1983) based on fitting a £/ inertial sub-range energy
spectrum to observed data, using the inertial range formula

E(ky = He* k7 (22)

where J is the Kolomogorov constant and ¢ the energy transfer rate. Typical estimates of
H range from 6 t0 9, and using 7, Lilly estimates € = 107> m?s~3. Evidently, the balanced
energy tendency in our integrations is smaller than this estimate.

It 1s probably unlikely, even with Lilly’s higher estimate of cascade rates, that the
direct effects of the upscale energy transfer are significant in organizing large-scale flow.
The efficiency with which convectively generated kinetic energy is captured in quasi-
two-dimensional balanced motion, and then cascaded upscale, is relatively small unless
organized into MCSs. This, in itself, is not entirely unexpected given the earlier studies
of Schubert er al. (1980) and Shutts and Gray (1994) but does place their inferences on &
firmer footing through direct numerical simulation.

There may nevertheless be important consequences for numerical weather prediction.
The production of upscale kinetic energy transfer is likely to be an important limitation
on atmospheric flow predictability. The growth of error in such a regime is likely to be
much faster than in a downscale enstrophy cascading regime, for two rcasons. First, the
energy spectrum is much more shallow and therefore relatively more energetic at small,
ill-observed scales; the growth of error can be expected to be roughly proportional to the
eddy-turnover time (Leith and Kraichnan 1972; Vallis 1985), and therefore tends to be
faster in a shallower spectrum which has more energy at small scales. Second, if energy
itself 1s being cascaded to large scales then the error transfer is in the same (spectral)
direction, and hence 15 likely to be more rapid than an upscale error transfer in a forward
cascading region. The upshot of these considerations is that the predictability time in the
mesoscale is likely to be of the order of one-to-a-few eddy-turnover times, rather than being
several times the eddy-turnover time. Using a velocity of 2 m s™! gives an estimate of an
eddy-turnover time, and hence a theoretical predictability time, at a scale of 300 km to be of
order 1.5 x 10° seconds, or about 2 days. Errors at this scale will subsequently propagate
to the large scale, giving estimates of the large-scale predictability time of several days—
perhaps somewhat smaller than traditional theoretical estimates based on a continuing
forward enstrophy cascade into the mesoscale. Nonetheless, the statements made in this
paragraph should be regarded as speculation.
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