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ABSTRACT

The equilibrium statistics and predictability properties of one- and two-layer quasi-geostrophic flow are
examined with the aid of a numerical model. The effect of beta in one-layer flow is to slow the transfer of
energy into larger scales and to increase the predictability. In two-layer flow, when beta is zero, energy enters
the system via baroclinic instability of the mean flow at very large scales and most energy transfer is confined
to low wavenumbers. When beta is non-zero, energy enters at higher wavenumbers (in baroclinic modes
mainly) before cascading preferentially to lower wavenumber zonal barotropic modes. The predictability of
two-layer flow is not significantly altered by beta, because beta increases the range of wavenumber over
which significant nonlinear energy transfer occurs. The predictability times of the long waves are found to
be always larger than those of the short waves, even when the initial error is spread evenly across wave-
numbers. Reducing the mean baroclinicity increases the predictability time. Two-layer flow is less predictable
than one-layer flow of the same barotropic energy, because of the effects of baroclinic instability and the

transfer of energy from baroclinic modes.

1. Introduction

Predictability theory occupies a central role in
much meteorological research, and naturally so, con-
sidering its fundamental nature and the socio-eco-
nomic importance of weather and climate forecasts.
Our ability to forecast the weather depends on two
factors. One is the extent to which those models used
in weather forecasting are able to mimic the real at-
mosphere. For example, inadequate resolution and
imperfect physical parameterizations will give rise to
inaccurate forecasts. Given a perfect model, however,
perfect forecasts would not necessarily ensue: un-
avoidable errors in the initial conditions, concen-
trated mainly in the smaller scales of motion, amplify
and cascade into the larger scales, resulting in a pre-
diction with no skill. This is referred to as the inherent
unpredictability of the atmosphere, and was probably
first addressed by Thompson (1957). It is this aspect
which will be discussed in this paper.

Early work in the 1960’s with general circulation
models (GCM’s) (e.g., Charney et al., 1966) suggested
error doubling times of about 3 days, the error dou-
bling time being largest initially, decreasing for smaller
wavenumber and larger error fields. Another ap-
proach was taken by Lorenz (1969), Leith (1971) and
Leith and Kraichnan (1972), in the use of closure
theories of turbulence applied to two-dimensional
flow. Such studies achieved high resolution, and
hence high Reynolds numbers, and yielded predict-
ability times of ~ 1-3 weeks, in qualitative agreement
with GCM’s,
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In an attempt to bridge the somewhat alarming gap
between the methods (if not the results) of these two
types of studies, Lilly (1972) performed a direct, grid-
point, numerical integration of a simplified hydro-
dynamical set of equations—the barotropic f-plane
vorticity, or the two-dimensional turbulence equa-
tions. This work has been extended by Basdevant et
al. (1981) and Holloway (1982) to include the effects
of differential rotation, the beta effect, and finite
equivalent depths. The aim of this type of research
is not to ascertain quantitatively the limits to pre-
dictability in the earth’s atmosphere, but to examine
the influence of a variety of mechanisms, such as
nonlinear transfer and wave propagation, on the grad-
ual loss of information as a forecast proceeds.

The study presented herein extends this work to
include the effects of baroclinicity; in particular I am
concerned with the combined effects of planetary
wave propagation and baroclinic instability. For ex-
ample, does the Rhines effect, the slowing down of
nonlinear energy transfer because of wave propaga-
tion, affect a two-layer model in the same way as a
one-layer model? Does a baroclinic model have sim-
ilar predictability properties to a barotropic model?
Also, does the form and magnitude of the initial error
affect its subsequent growth? The tool used is possibly
the simplest model containing these mechanisms, a
two-layer quasi-geostrophic beta plane model. The
discussion in this paper will be couched in meteo-
rological terms and dimensional variables, but it is
hoped the paper will also be of interest to oceanog-
raphers and turbulence theoreticians. Section 2 de-
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scribes the model used in this study. In Section 3 the
equilibrium fields and spectra are discussed. Section
4 examines the predictability properties of the baro-
tropic simulations. The two-layer simulations are de-
scribed in Section 5. Section 6 summarizes and con-
cludes.

2. Model

The potential vorticity equation in a multi-level -

model at an interior level 7 is
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and D, is the dissipation term and 8 = 3f/dy, where
f is the Coriolis parameter. For a two-level model
with zero pressure vertical velocity at the boundaries,
we have in standard notation
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Assume that the total streamfunction may be ex-
pressed as that resulting from a constant mean shear
across the domain, plus an eddy component . Then
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The carets will subsequently be dropped. The use of
a constant mean shear is clearly artificial, but it is a
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convenient way of specifying the mean baroclinicity.
On a beta-plane, the twin requirements of a mean
temperature gradient across the domain and bound-
ary conditions such as periodicity or no-slip or free-
slip walls along the northern and southern edges, are
difficult to satisfy simultaneously because of the dual
use of the streamfunction in specifying the mean tem-
perature

f W~ ¥s),
and the velocity
LW
ay’ ax’

It is possible to do so by using a different basis set
(in a spectral formulation) for the zonally averaged
and eddy components (e.g., Lorenz, 1963), although
this leads to aliasing if a pure transform method is
used and seems unnecessarily complicated for our
needs. Salmon (1980) derives an ad hoc formula giv-
ing the rate of change of the mean shear, based on
energetic considerations although he found the vari-
ations about its mean value were less than 10% of its
average, normally highly supercritical, value. The
mean shear will be set to a constant value here, for
a given integration.

Dissipation is parameterized as follows:

D, = VV6¢1,
D3 = vV6¢3 + aVz\[/3.

The V% term represents the effects of surface drag.
It may alternatively be included by supposing the
upward velocity at the lower boundary is not zero,
but is given by Ekman theory; the term then appears
in the lower boundary condition on the streamfunc-
tion, but with a formally, and physically, identical
effect. The value of « used is (1/3) days™'. The term
¥V is necessary to prevent the build-up of enstrophy
in high wavenumbers. The value of » is empirically
determined to be such that the energy spectra ap-
peared smooth near the cutoff wavenumber. Its value
is 8.75 10" m* s™". It is found that the total energy
dissipation by the high-order friction is a few percent
of the total dissipation. It is only larger than the sur-
face drag above wavenumber 28 (20 in the single-
layer experiments).

Egs. (5) and (6) are integrated using a spectral code
with periodic boundary conditions in both directions.
The Jacobian terms are evaluated using Orszag’s
(1971) alias-free staggered-grid algorithm, ensuring
exact conservation of energy and enstrophy. Trun-
cation occurs at approximately wavenumber 32. The
domain is square and of physical size (2.25 X 107
m)?. Time integration is by leapfrog, with a Robert-
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Asselin filter (Asselin, 1972) with filter parameter
0.02. A timestep of 0.75 h is generally used.

Some barotropic integrations will also be described.
The governing equation now is

\0

Y Vztﬁ + Jp, V) + Box=F+D

)]
where D is the dissipation term aV2¢ + »V%; » has
the same value as in the two-level experiments, and
« is reduced to (1/12) days™. Since baroclinic insta-
bility no longer occurs, its effects are crudely simu-
lated using a Markovian random forcing formulation
(e.g., Williams, 1978). Thus, at time-step n

Fn = -RnFn—l + (1 - an)l/anA,

where R, = 0.98 for a timestep of 0.75 h.

G, is a number with unit amplitude and a random
phase, different for each wavenumber, and A is the
forcing amplitude. A is zero except in the wavenum-
ber band k£ = 6, 7, 8, wherein its value increases
linearly with &, (the x wavenumber) with an average
value of 10'? s72, The forcing differs from baroclinic
instability in that G is uncorrelated with the flow.

®)

3. Equilibrium fields and energy budgets
a. Energy transfer: Some simple considerations

~ Before presenting numerical solutions to (5) and
(6), it will be shown that the general characteristics
of energy transfer in two-layer flow can be inferred
from relatively simple analytic arguments based on
the quadratic constants of the motion and weakly
nonlinear theory. These will be of help in interpreting
the numerical solutions. It is convenient to first write
(5) and (6) in terms of the baroclinic (+) and baro-
tropic () streamfunctions defined by

V= + )2,
7= — ¥3)/2.
Adding and subtracting (5) and (6) gives

=V + I, V) + I, V)

+B%¢;=WF+¢D, 9
= (72 = X + JT, (92 — W]
+Jr, V) + 85 = F+.D, (10)

where
vD = (W + (aVy)/2},
D= {yWb — (aV21//3)/2},
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Without loss of generality, we may set U, = —U;
= [J giving
d
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This shows that , F vanishes for k = A. The spectral
barotropic and baroclinic energy budgets are obtained
by first writing (9) and (10) in spectral form, and
multiplying each component by ¥ or 7¢, respec-
tively, where the asterisk refers to the complex con-
jugate.
This ylelds

- k2|1//k|2 Re{,Fuf + Dt + St} (11)
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=102 + VP

= Rc{-rFI(T]’: + kaTf + le(Ti.(‘}’ (12)
where ,Jy and ,Jy are the spectral components of all
of the Jacobians appearing in (9) and (10), respec-
tively, and where

[W(x, y, 1), 7(x, y, 1)]

= 2 VA, 7] exp(ik-x) | (13)

o 7)) = (W, 78)

The terms involving beta vanish identically from (11)
and (12). The energy equations for each spectral com-
ponent are real because of the condition (13), which
also ensures the reality of the streamfunction. Sum-
ming over all spectral components, and adding the
baroclinic and barotropic modes, gives the integral
constraint for unforced, inviscid flow:

d 21y |2

a % (Kl +

K+ W)n)=0. (14

The enstrophy budget is obtained by multiplying the
spectral forms of (9) and (10) by (g, + ¢,)/2-and (g,
— )/2, respectively. For unforced, inviscid flow the
integral constraint on the enstrophy is found to be
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d

7 2 (KWl + (k2 + X)n b =0.  (15)
k

If, and only if, beta is zero then the enstrophy for

each layer {or equivalently the barotropic enstrophy

2 k*l¢xl* and the baroclinic enstrophy Z (k% + \2)?

X |7?] is separately conserved.

The advantages of writing the budgets in terms of
the baroclinic and barotropic modes lie in the sim-
plicity of the triad interactions and the form of the
integral constraints. For we see immediately from
(14) and (15) that a baroclinic mode is formally sim-
ilar to a barotropic mode, provided we make the re-
placement in wavenumber, i.e.,

k2 — K+ N

Salmon (1980) has shown how a knowledge of the
integral constraints can be used to deduce the general
isotropic movement of energy in a two-layer model,
in a similar fashion to their use in two-dimensional
turbulence (e.g., Fjortoft, 1953). Thus, in a purely
barotropic triad, energy is transferred predominantly
to lower wavenumbers. In a mixed triad (¢, 7, 7),
energy will go predominantly to lower total wave-
number k' defined by k2 = k? + A? in a baroclinic
mode, and k2 = k? in a barotropic mode. Transfer
of baroclinic energy may be toward higher wavenum-
ber, provided there is some energy conversion to a
barotropic mode (which on the interval 1 < k2
< M\ will always have lower total wavenumber). In
the oceanographic, and more general, case of two lay-
ers of different equivalent depths, two baroclinic
modes may interact with a third baroclinic mode.
This does not occur here, because the two layers are
of equal depth.

b. Weakly nonlinear theory

Use of the quadratic invariants gives no informa-
tion regarding the anisotropic energy spectra. Weakly
nonlinear theory (e.g., Holloway, 1979) is useful in
this respect, since it yields information about the fre-
quencies of unstable modes. The unforced, inviscid
versions of (9) and (10) are rewritten, after suitable
nondimensionalization, as

9 vy + ¥ 4y, Vi) + edir, V) = 0, (16)
ot ax
O n 4o 0T
o % AT + P
+ e, (V2= M)+ 7, V) =0, (17)

where ¢ = k,2U,87! is a measure of wave-steepness
ko = 1/(length scale)
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and
U, = velocity scale (e.g., rms velocity).

Asymptotic theory suggests that the streamfunc-
tion be expanded in powers of ¢ (assumed small).

Thus
‘P=o¢+€1¢+€22‘l/+"'}
T=0T+elf+6227+.'. )

(18)

Substituting (18) into (16) and (17), and equating
powers of e gives, in spectral form

Lok =0
L’07k=0}, (19)
L= 2 {Akpq o¥p O'Pq} '
+ z {Akpq oTp OTq} s (20)

L7 = z Ak’pq’ O'Pp 07q

where the summations are over all p and q satisfying
p+ q =Kk, and

d .
L= a + io,
,_d .
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= __L d= __kx__...__.
TR k2 + kg + N
Avpa = (P? — @)(Dxay — DyaI/(K?),

= [ — (§* + M))(pxdy — P,aI/(K* + N?).

Resonant interactions are the only interactions which
significantly transfer energy between modes in the
presence of beta. These occur when the combined
frequency of two zeroth-order waves (Rossby waves)
is the same as the natural frequency of a first-order
mode. Secular terms then arise in the solutions of
(20) (Kenyon, 1964). These would invalidate the so-
lution after a finite time, and are avoided by a mul-
tiple time scale expansion (see Bender and Orszag,
1978, Chap. xi) in which one writes

o = Wt)e™,

and similarly for ¢r, where ¢, = ¢ is a “slow” time-
scale. Secular terms are avoided by choosing the en-
velope (¢ and 7) solutions to satisfy, for a particular
resonant triad,

d - S
Eo'pk:Akpq 0‘l/p Olpq, (21)

and cyclically, this being the purely barotropic inter-
action, and for the mixed mode interactions
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The problem of solving (21) or (22) is only tractable
if attention is restricted to one triad. To consider in-
teractions among all modes requires a numerical ap-
proach.

The linear stability properties of a barotropic triad
(21) are the same as those in purely two-dimensional
turbulence. Thus the mode of intermediate scale, and
largest frequency is unstable to disturbances of larger
or smaller scale. The extension to two layers (i.e., the
mixed-mode problem) is relatively straightforward.

It can be shown (Jones, 1979) that the mode of in-

termediate fotal wavenumber (be it a barotropic or
baroclinic mode) is unstable. Now the resonance con-
dition for a triad with modes labelled 1, 2, 3 (i.e., with
wavenumber k; and natural frequency o)) is

23)

o) + <) + g3 = 0,
where ’ .
kix
%= ns (24)

and k7 is the total wavenumber squared (i.e., includ-
ing the effects of the Rossby radius in baroclinic
modes). The interaction. condition is

k|x+k2x+k3x=0}

25
k|y+k2y+k3y=0 ( )

We can always order the frequencies such that g,
= —(o + a3), where ¢, and o3 are of the same sign.
Thus, ¢, is'the highest frequency. Then, using (24)
and (25) :
ok — k) = Gs(k'12 - kP

therefore

k% > k> k%
or

k% < k? < k%.

Hence the wave of largest frequency is the wave of

intermediate *“scale,” if account is taken of the inverse
deformation radius A. Thus Hasselmann’s (1967) cri-

terion that the unstable member of a resonantly in-

teracting triad is that with the largest frequency, is
satisfied.

The transfer of energy in resonant triads is to first
order completely unaffected by beta since (22) and
(21) are identical with the triad equation when beta
is zero. However, the set of resonant triads is small
in comparison to the set of all interacting triads since
the extra condition (23) must also be satisfied. Thus
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beta will slow down any energy cascade in which en-
ergy is injected at comparable scales. Note that beta
will also slow down any transfer of baroclinic energy
to smaller scales, as well as the transfer of barotropic
energy to larger scales, an effect familiar from two-
dimensional flow (Rhines, 1975).

Since the wave of highest frequency is also unstable
in two-layer flow, wave propagation will cause the
preferential transfer of energy to smaller frequencies.
Since the simultaneous occurrence of small frequen-
cies, demanded by weakly nonlinear theory, and large
scales, demanded by the integral constraints, can only
be satisfied by zonal or near zonal flow [see Eq. (24)],
then in two-layer flow as well as barotropic flow, plan-
etary wave propagation favors the production. of

- zonal currents. Again, however, zonal currents can-

not be produced by purely resonant interactions,
since then the interaction coefficient vanishes. Fur-
thermore, large-scale barotropic waves are stable to
resonant perturbations of smaller scales, whether
barotropic or baroclinic. Hence zonal barotropic cur-
rents with meridional scale at approximately the
Rhines wavenumber k; ~ (8/2U)'7? are the likely end
state of two-layer flow (apart from the effects of baro-
clinic instability and friction). In the next section
numerical simulations are used in order to examine
the flow quantitatively, and to look at the compli-
cations caused by baroclinic instability.

¢. Numerical simulations

Numerical simulations allow one to relax the as-
sumption of vertical homogeneity, i.e., that = and ¢
are uncorrelated, often used in semi-analytic closure
theories, if only for tractability (Salmon, 1978). Ac-
tually, vertical homogeneity is not a prohibitive as-
surnption in comparisons with direct two-layer sim-
ulations, since only deep linear eddies are allowed in
any case and since the general nature of the nonlinear
interactions is unaltered. The advantage of numerical
simulations over closure lies more in the complete
absence of arbitrary phenomenological coefficients,
provided sufficient resolution can be achieved.

This subsection describes the equilibrium, time-
averaged fields resulting when (9) and (10) were
stepped to equilibrium. Table 1 lists the parameters
used. In a barotropic simulation, it is relatively easy
to isolate the effects of beta on the flow, since all
forcing and dissipation mechanisms may be held con-
stant, but it is somewhat more difficult in two-layer
flow since the stability properties are profoundly af-
fected by beta. In the two-layer experiments B1 and
NB, the inviscid supercriticality of the shear (i.e., its
value above the level required for linear instability)
was set equal. It then turned out that the equilibrium,
time-averaged, total energy in Bl and NB was ap-
proximately the same. In B2, the shear was reduced.
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TABLE 1. Experiment parameters and selection of results. Predictability time is the time taken
for error energy to reach 90% of its final value.

Experiment B1 B2 NB 1B INB

Number of levels 2 2 2 1 i
Value of beta 1.5 x 107 1.5 x 1071 0 1.5 x 107 0
Shear (u#, — u3) [m s7'] . 1.5 4.0 3.66 —_ —
Supercriticality (inviscid) {m s™'} 3.66 0.16 3.66 — —
X (inverse deformation radius, expressed

as a wavenumber) 10 10 10 _ —_
Total energy {J m™?] 7.0 X 10° 1.2 X 10° 7.0 X 10° 42 X 10° 4.2 X 10°
Barotropic energy 3.7 X 10° 5.4 x 10* 2.8 X 10° 4.2 X 10° 4.2 X 10°
Urms [m s7'] : 8.6 33 7.5 9.2 9.2
ks (8/2U)" (non-dimensionalized) 33 53 — 32 —
Eddy turnover time (days) 0.85 1.62 1.04 — —
Error doubling time (days) 1.0 2.1 1.1 23 1.85
Predictability time (days) 11 19 12.5 25 20

All other parameters (aside from beta) were un-
changed. In Bl and B2, beta is given the realistic
value of 1.5 X 107! s7!, whereas in NB it is set to
Z€Ero.

The following energy and enstrophy spectra and
transfers may be defined for the two-level model:

EC(K) = (k* + M)lndl?,

ET(k) = Kl

ENK) = [K*Wal> + (k2 + NP nl?],
DC(k) = Re(, Dyri),

DT(k) = Re(, Dui), (26a)
FC(k) = Re(, Fyr}),
FT(k) = Re(, Fuyi),
TC(k) = Re(, Jyi),
TT(k) = Re(,/u¥i),
and for the barotropic model
E(k) = k*yul,
D(k) = Re(Dwii), (26b)

F(k) = Re(F¥i),
T(k) = Re(Ji).

These are, respectively, the baroclinic energy, the
barotropic energy, the potential enstrophy, the dis-
sipation by friction of baroclinic energy, barotropic
energy dissipation, forcing through the mean shear
of baroclinic energy, barotropic forcing, baroclinic

energy transfer and barotropic energy transfer and -

similarly for the total energy for the one-layer model.
The transfer terms for the two-level model also in-
clude transfer between baroclinic and barotropic
modes. For each of these the one-dimensional isotro-

pic spectra may be defined by summing over all wave-
numbers in a band of given absolute wavenumber,
ie.,

ECk)= 2 EQQ)

k<|l|<|k]+1

and the zonal spectra by summing over all y wave-
numbers

EC(k,) = 2 EC(K).

ky

Because of symmetry, the eddy statistics for all
wavenumber quadrants are identical. Hence they are
summed and presented simply as functions of posi-
tive wavenumbers.

For a general discussion of the energy flow and the
equilibrium spectra in baroclinic quasigeostrophic
models see Rhines (1977), Salmon (1980) and Haid-
vogel and Held (1980). A few additional points of
interest will be discussed here. The isotropic energy
spectra are displayed in Fig. 1. The one-layer simu-
lations (Fig. 1c). have a spectral slope very close to
k=*. This has been previously found by Basdevant ez
al. (1981) using a much higher order viscosity, and
others. However, note that in the two-layer simula-
tions the spectral slope is much shallower, closer to
k3. These results are probably partially dependent
on the friction, since the simulations here are fairly
viscous; it would be interesting to see comparable
one- and two-layer simulations with a much higher
resolution and a less viscous model. Certainly in the
two-level simulations surface drag is relatively strong.
Since drag imposes a scale-independent time scale,
a balance between drag and nonlinear transfer would
yield a k=3 spectrum, since this has a scale-indepen-
dent eddy turnover time.! The eddy turnover time
is a useful measure of the intensity of the turbulence.

' I thank R. Sadourny for pointing this out.
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FIG. 1. Isotropic, barotropic and baroclinic energy spectra for (a) Bl, (b) NB and (c) 1B and INB
(total energy). In (a) and (b) the barotropic energy is a solid line, the baroclinic energy dashed. In
(c), 1B is solid and INB dashed. The units are the arbitrary ones of the nondimensional numerical

model.

It may be defined by (see McWilliams and Chow,

1981):

- where k is the wavenumber and E(k) an energy spec-
trum. The time ¢, is a constant for a k=3 spectra. In
these two-layer simulations eddy turnover times are
of order 1 day (see Table 1) if the barotropic spectra
alone are used. Note that the barotropic and baro-
clinic energies in Bl are very small at low wavenum-

bers, whereas the baroclinic energy and, to a lesser
extent, the barotropic energy, is high when beta is
zero. However, the zonal spectra (Fig. 2) are much
" more energetic at low k, when beta is nonzero, espe-

cially in the barotropic modes.
An examination of the energy budgets is instructive

_ (see Figs. 3 and 4). In Bl, the casé with a realistic

beta, baroclinic instability of the mean shear (the only
source of energy) provides a maximium input of en-
ergy at wavenumbers 5 and 6. These are not the wave-
numbers of maximum linear instability which are
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FIG. 2. Zonal energy spectra for (a) Bl and (b) NB. In both -

figures, the barotropic energy is a solid line, the baroclinic energy
dashed.

slightly higher. Maximum energy input occurs where
Im{k ¥} is maximized, since FC(k) = (\*> — k?)/
k?FT(k) = Re{ U\ — k?)ik gr i }. Transfer of energy
occurs, not primarily-to other baroclinic wavenum-
bers but to the barotropic modes, where it is further
transferred to the gravest modes and dissipated. That
energy is transferred from baroclinic to barotropic
modes can be seen by noting that the areal integral
of T in Fig. 3b is negative, and positive in Fig. 3a.
In Fig. 3c the area under the T curve is zero. The
small amount of baroclinic energy in the largest scales
appears in fact to be due to friction which acts to
create baroclinic energy. The formulation of surface
drag used here is such that total energy must be dis-
sipated. However, since it acts only on the lower
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3

-3

FI1G. 3. Isotropic energy budgets for Bl where (a) is the barotropic
budget, (b) the baroclinic budget and (c) the total. The labels S,
D and T denote contributions by forcing (i.e., linear baroclinic
instability), dissipation and transfer. (See text for a complete ex-
planation.)
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model layer, baroclinic energy, proportional to the
square of the difference of the streamfunction be-
tween the two layers, may be increased. Romea
(1977) also discusses the effect of surface drag in baro-
clinic instability. He shows that it can be a destabi-
lizing influence on marginally stable modes. The total
(baroclinic plus barotropic) energy budget shows an
input of energy mainly between wavenumbers 5 and
10, a transfer to larger scales where it is destroyed by
friction. In the case of zero beta (NB) baroclinic linear

. instability provides a baroclinic energy source in

much lower wavenumbers (Green, 1960). Transfer
occurs almost immediately and mainly to barotropic
modes (plus a little to higher baroclinic wavenum-
bers) where friction provides a sink. The total energy
budget displays a small transfer of energy toward
higher wavenumbers arising from the transfer on the
baroclinic modes. However, the total energy budget
in NB is characterized by a smaller amount of transfer
between scales than when beta is non-zero; it has a
muich more local nature.

The numerical simulations are consistent with the
analytic arguments of Sections 3a and 3b in showing
the movement of energy to the large scales, and the
predilection for zonal motion when beta is realistic.
However, they also show how the position of the en-
ergy injection scale is such as to increase the nonlinear
energy transfer when beta is nonzero.

4. Predictability experiments

The general form of the predictability experiments
is as follows. The model is integrated from random
initial conditions until equilibrium is achieved. The
integration is then continued for several weeks, to
create the control integration. The “forecast™ is ob-
tained by perturbing the potential vorticity at the

" beginning of the control experiment and then step-

ping the model until these fields have completely di-
verged from those in the control experiment. The
forcing and friction are maintained throughout all
integrations. The usual form of the initial perturba-
tion is a dephasing of the spectral coefficients of the
potential vorticity such that the phase difference be-
tween the control and the perturbation increases from
0 to 7 as |k| increases from 12 to 24, except for a
multiplication by a random number selected uni-
forraly on the interval (—1, +1). Thus, the initial
phase difference between control and forecast in-
creases stochastically above wavenumber 12 until to-
tal decorrelation is achieved at wavenumber 24. The
amplitude of the modes is unaltered. Most results are
each from an ensemble of four experiments.

a. Error diagnostics

For each diagnostic defined in (26) we may define
the corresponding error field by substituting the error
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streamfunction y, or 7% and the error, or difference,
forcing term. In particular, the error baroclinic and
barotropic energies are

EC'(k) = (k* + M7,
ET'(k) = K|yl
where ¥’ = ¢; — y», where ¢, and v, are the stream-

functions of the two simulations, similarly for 7. The
error energy ratio, or relative error, is defined by

2  ECO
K< <lkf+

2 ECQm’

|kl<fl|<|k|-+1

ECyk) =

and similarly for the barotropic fields.

b. One-level integrations

Fig. 5 illustrates the isotropic error energy ratio
growth for the barotropic simulations. This figure
.(and Figs. 9, 10 and 11) illustrate the relative error,

RELATIVE ERROR
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FI1G. 5. Ratio of isotropic error energy to isctropic equilibrium
energy at various times (marked in days) in one-layer integrations
for (a) 1B and (b) INB. The abscissa is wavenumber. Beyond wave-
number 24, the error at time zero becomes parallel to the abscissa.
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as a function of wavenumber, at various times
marked in days after the initial perturbation (¢ = 0).
The random number sequence in the forcing G, [Eq.
(8)] is the same for all runs. The conclusions reached
from these simulations are consistent with the results
of Holloway (1982) and Basdevant et al. (1981), and
are presented only briefly here:

1) The effect of beta is to increase the overall pre-
dictability of the flow.

2) Predictability times are increased in the higher
wavenumbers, perhaps more than in the lower wave-
numbers in spite of beta scaling out of the equations
at high wavenumbers.

3) The predictability tlme of the gravest mode k

= 1, is reduced by beta, to the point where it is /ess
predictable than the k = 2, 3, 4 modes. In Holloway’s
finite equivalent depth simulations, this phenomenon
seems less apparent.

4) The predictability, not shown here, of the zonal
flow (k. = 0) is increased by beta, and is greater than
the predictability of the k, = 1, 2, 3 modes.

5) At the injection scale (I in Fig. 5) the decorre-
lation times are large. No error energy is injected here,
and so error in these scales is swept away by the energy
and enstrophy cascades. Eventually, though, these
scales do become unpredictable.

5. Two-layer predictability

In considering the predictability of baroclinic flow,
I shall be particularly concerned with the following
questions:

(i) Does the restoring effect of beta carry through
to the two-level case and still enhance predictability?

(i) What are the effects of baroclinic instability on
the flow decorrelation?

(ii1) Does the odd behavior of the kK = 1 mode arise

- in the two-layer experiments?

(iv) What effect does the form of the initial error
have on the subsequent error growth?

Attention will be focused mainly on experiments
Bl and NB.

a. Physical space error

A useful guide to the growth of error is gained by
looking at the divergence of two fields in physical
space. Fig. 6 illustrates the barotropic streamfunc-
tions for two integrations and their difference, at a
sequence of times separated by three days for a par-
ticular predictability experiment in the Bl ensemble.
The contour interval for the difference field is the
same as that of the synoptic field. The error field
initially shows a structure richer in the smaller scales;
as time progresses, the error field gains a larger scale
component as the long waves become contaminated.
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FIG. 6. A sequence of barotropic streamfunctions, in one predictability experiment in B1 at 3-day intervals. The two leftmost pictures
are the two integrations, differing slightly at time zero. The rightmost picture is the difference streamfunction. Zero contour is dotted.
Lighter contours have higher values. Contour interval is the same for the difference streamfunctions.

After nine days of integration, even when there isstill  b. Total error

some apparent skill left in the long-wave forecast (see

Fig. 9), the two fields bear little resemblance to each It is somewhat difficult to isolate the effects of wave

other. propagation in a two-layer model because the linear
The error streamfunction fills the domain fairly stability properties are greatly affected by beta. Ex-

uniformly, i.e., it does not display any patchiness. periments Bl and NB have the same supercritical

The largest errors arise where one or the other original shear and approximately the same time-averaged to-

streamfunctions is an extrema. ' tal energy and therefore seem comparable. If the same
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FIG, 6. (Continued)

absolute shear had been used for the two cases, the
experiment with zero beta would have been much
more supercritical and would have had much more
intense turbulence. Another reasonable choice would
have been to compare runs with the same eddy turn-
over time. Since B1 has less energy in the low wave-
numbers it has more energy in high wavenumbers
and a smaller eddy turnover time than NB. An in-

creased eddy turnover time would have increased the
predictability of B1 slightly, although it would still be
very similar to that of NB. Examination of Fig. 7
reveals that the total predictability of the flow is not
enhanced by the beta effect, nor is there any signifi-
cant difference between barotropic and baroclinic
modes.

Consider the error energy budget. This may be
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written (where a prime denotes the difference, or error
field):

d
7 {2 WAl + (k2 + M)}
+ D

27

= Re(. Fiur + Fig} + Re{, Dirft

+ Re{, Jirlt + Jibit).
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The terms on the right-hand side (rhs) represent the
effects of forcing by the mean shear, dissipation and
transfer on the error energy, respectively. When
summed over all wavenumbers, the last term on the
ths of (27) does not vanish: the Jacobian terms are
able to create error energy, as well as distribute it
across wavenumbers. Fig. 8 shows the error creation
by linear baroclinic instability and by nonlinear in-
teractions. The total error creation by nonlinear ef-

fects is much the same when beta is zero, but the

Ol

ole]}

20

i5 25

15
TIME (DAYS) -

5 10

FiG. 8. Error energy creation in B1 and NB due to (a) baroclinic
instability of the mean flow and (b) nonlinear transfer. Units are
comparable.
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linear creation is significantly smaller for the first ten
days. Recall that the effect of beta is to increase the
wavenumber at which baroclinic instability is great-
est, and that the energy input is proportional to the
magnitude of the streamfunction. For zero beta, in-
stability occurs at very low wavenumbers. For a long
time the error in these modes is very small and linear
baroclinic instability is an inefficient mechanism for
creating error.

Even though weakly nonlinear theory suggests en-
ergy transfer should be slowed by beta in the baro-
clinic case, just as in the one-layer case, error creation
by wave-wave interaction is no smaller when beta is
non-zero. Note that, for zero beta, energy transfer is
confined largely to low, well predicted wavenumbers.
There is now less communication between the low
wavenumbers and the contaminated smaller scales,
and any energy flow is toward higheér wavenumbers.
For the zero beta case (NB) error propagation, then,
is generally against energy transfer, whereas in the
realistic beta case error propagation is with energy
transfer. Thus for the two-layer case there is no longer
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any a priori reason why error propagation and cre-
ation will be larger when beta is zero.

The predictability times of the two-layer model are
significantly shorter than those of the one-layer in-
tegrations, in spite of the barotropic energy of the
two-layer models being about the same as the energy
in the one-layer integrations. In the barotropic vor-
ticity Eq. (7) the terms J(r, V?r) and Ud(V?7)/dx ap-
pearing in (9) are parameterized by a forcing uncor-
related with the flow. In the two-layer simulations
these provide an additional source of error, reducing
the decorrelation time. In the two-layer case, balance
in the error energy budget is ultimately achieved
through the balance of the linear source term with
the dissipation: the Jacobian terms (on average, but
not necessarily instantaneously) can therefore provide
no net contribution. In the one-layer case, however,
where the energy source term provides no error, the
dissipation is balanced by the nonlinear terms which
grow more or less monotonically before levelling off
at a positive value. .

The predictability time is seen to be lengthened by

RELATIVE ERROR
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FiG. 9. Relative error growth for B1: (a) isotropic barotropic error, (b) isotropic baroclinic error,
(¢) zonal barotropic error and (d) zonal baroclinic error.
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reducing the initial error. The lower dotted curves in
Fig. 7a are obtained with initial errors only above
wavenumber 24 and above wavenumber 28, respec-
tively. The initial error doubling rate is slightly larger
when the error is confined to smallér scales—the av-
erage error doubling time in the case of the smallest
initial error is 0.85 days (during the first five days of
the experiment) whereas it is 1.0 days in the standard
experiment. To ascertain whether still smaller scale
initial errors could produce still larger initial error
doubling times, and always yield finite predictability

times as Lorenz (1969) suggested, requires a much

higher resolution model than this one. A reduced
mean baroclinicity also enhances the predictability
times: when the mean shear was reduced. from 7.5
m s~! (in B1) to 4. m s™! (in B2) the predictability
times rose by approximately a factor of 2.

¢. Error spectrum

The error ratio spectra are given in Figs. 9 and 10.
The figures show both the isotropic and zonal spectra
of relative errors for various times (marked in days)
for Bl and NB, with the “standard” initial pertur-
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bation. The dominant feature is that of error spread-
ing into and growing in the smaller wavenumbers.
No artificial predictability at the energy injection scale
is present. Predictability in the small scales (above
wavenumber 10) is lost completely after approxi-
mately 6 days in Bl, and shortly thereafter in NB.
Predictability in the long waves persist much longer.
Indeed the forecast of the long waves (k = 2, 3, 4)
generally shows skill up to ~ 15 days. The skill time
generally increases monotonically as wavenumber
decreases, for two reasons. First, error is spreading in
from longer wavenumbers and unless energy transfer
is completely non-local in spectral space the larger
scales will be contaminated last. Second, the turbu-
lent interaction rate may be expected to increase as
the scale is reduced (cf. Lorenz, 1969); thus infor-
mation will be lost in the high wavenumbers first. If
beta is non-zero, interactions among low wavenum-
bers are further inhibited, and the effect will be more
noticeable. Fig. 11 shows the barotropic error spectra
for an experiment in which all wavenumbers were
dephased equally (with a random modifier). Even
though the initial error ratio is the same for all wave-
numbers, the forecast skill, or predictability, is lost
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FIG. 10. As in Fig. 9, but for NB.
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FIG. 11. Relative isotropic barotropic error growth for (a) Bl
and (b) NB, in which initial relative error is white.

first in the higher wavenumbers. Thus the long waves
are intrinsically more predictable than short waves.

A noticeable feature of the error when beta is re-
alistic is that the £k = 1 barotropic mode is markedly
less predictable than the k = 2, 3, 4 modes. The effect
does not arise in the baroclinic modes, or when the
spectra are decomposed into a zonal spectra, or when
beta is zero. It arises because the barotropic k = 1
mode is extremely unenergetic when beta is non-zero.
Interactions with more energetic spectral neighbors
can therefore cause it to gain or lose a relatively large
portion of its energy in a relatively short amount of
time, as Fig. 12 illustrates. This shows a typical time
sequence of various k = 1 and k, = 0 modes for Bl
and NB. It is clear that the amplitude of the barotro-
pic kK = 1 mode in Bl may fluctuate by as much as
a factor of 4 in the course of less than a day, a much
more rapid fluctuation than is ever the case when
g =0.

d. The results of McWilliams and Chow

Recently, McWilliams and Chow (1981; MC
henceforth) found no evidence for enhanced pre-
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FIG. 12. Amplitude of various kK = 1 and k, = 0 modes with
time for one realization in (a) Bl and (b) NB. Dashed line is £
= 1, barotropic; solid line is k = 1, baroclinic; dot-dashed line is

k= 0, barotropic; and dotted line is k. = 0, baroclinic.

dictability due to wave propagation in a baroclinic

- channel model. The mechanisms identified above

certainly appear to be consistent with their results,
and to be at least a partial explanation. However,
MC’s model does differ somewhat from that used here
(forced, wind-driven channel model versus a periodic,
homogeneous model with essentially a fixed mean
baroclinic structure). Also, their relative error appears
to be fairly uniform with wavenumber, whereas here
it tends to increase with wavenumber, both with and
without beta. Clearly, the fair test would be to use
MC’s model with a variety of beta values, although
there seems to be no reason why the effects described
in this paper should not be applicable in more com-
plex situations, such as MC’s.

6. Summary and conclusions

This study has been concerned with the equilib-
rium fields and predictability properties of two-layer
flow on a beta-plane. The work may be considered
an extension of the work of Lilly (1972), Basdevant
et al. (1981) and Holloway (1982) to include the ef-
fects of vertical stratification and baroclinicity.

Beta has somewhat richer effects in two-layer flow
than in barotropic flow. The baroclinic instability of
the long waves is inhibited by a mean gradient of
potential vorticity, and energy enters the system at
a higher wavenumber. When beta is zero, energy en-
ters primarily in baroclinic modes at low wavenum-
bers and attempts to pass to still lower wavenumbers.
This can only be achieved by a conversion to baro-
tropic energy, with a smaller amount of energy being
transferred to higher baroclinic wavenumbers, an in-
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efficient process. This contrasts with the case when
beta is non-zero, where energy cascades to smaller
wavenumbers. Weakly nonlinear theory for the case
of non-zero beta suggests that energy will tend to
move away from higher frequencies, and toward low
wavenumbers. Thus zonal barotropic modes are the
preferred end-state in two-layer flow, as in one-layer
flow. The low wavenumbers are energetically very
weak when beta is non-zero.

The predictability properties of two-layer flow are
likewise rather subtly affected by beta. In contrast to
the case with one-layer flow, the presence of beta does
not automatically and significantly increase the de-
correlation time in two-layer flow, even though we
may still expect energy cascades in low wavenumbers
to be slowed by beta. In one-layer simulations, energy
is generally artificially injected around wavenumber
8 whether beta is zero or not. The energy cascade to
low wavenumbers is accompanied by an enstrophy
cascade to high wavenumbers. Beta slows the energy
cascade, and hence the enstrophy cascade (Rhines,
1975), and so increases predictability in all wavenum-
bers. In two-layer flow energy enters at very small
well-predlcted wavenumbers when beta is zero; hence
error is injected much less efficiently than when beta
is non-zero. Second, and more importantly, when
beta is zero, energy is entering the system at low wave-
numbers and cannot be transferred to still lower
wavenumbers. Thus the nonlinear energy transfer is
concentrated in the relatlvely well predlcted low
wavenumbers, again meaning error is created (by
nonlinear transfer) at least as efficiently when beta is
non-zero. For now not only is there more energy
transfer but it is in the same direction as error prop-
agation. '

The predictability of the gravest barotropic mode
(k = 1) is lessened by beta, although the effect is not
important in this model since this mode has little
energy. This mode varies erratically in amplitude and
phase because of its extreme weakness, and so tends
to be unpredictable.

The predictability of the zonal flow is increased by
beta, because of the production of strong, steady zonal
currents.

Reducing the mean baroclinicity reduces the en-
ergy levels in the model and increases the predict-
ability time.

The error energy ratio is generally less in lower
wavenumbers, even when the initial error is distrib-
uted evenly across wavenumbers. This is the case even
when beta is zero, and is due to the longer turnover,
or eddy interaction time for the long waves. It is pa-
tently the case that the initial (observational) relative
error in weather forecasts is larger in the smaller
scales. However, the above result implies that even
with no direct forcing the long waves are intrinsically
more predictable than the short waves, a result in-
dependent of the initial error conditions.
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The work raises a number of possible avenues of
future research. Two-layer models with homogeneous
forcing plainly fail to reproduce the intensity of the
low-wavenumber energy spectra observed in the real
atmosphere. Two likely causes for this are inadequate
vertical resolution (J. Roads, personal communica-
tion, 1982) and the lack of topography, and it would
be interesting to perform experiments to see to what
extent either is responsible. We may also expect the
effects of topography on predictability to be consid-
erable. For example a low-wavenumber stationary
forcing (e.g., by orography, or land-sea temperature
contrasts) may enhance the predictability of the long
waves, yet the synoptic-scale predictability may be
unaltered. In general it would be interesting to study
the importance of the spectral location of the energy
source and hence the direction of the ensuing energy
transfer relative to the direction of the error transfer,
perhaps using a barotropic model where the energy
source can be controlled. These and other investi-
gations using simplified models will be important in
evaluating the effects of the variety of influences on
predictability.
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