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P

October 13, 2014

ese notes are an approximation of the lectures I gave at the GFD Summer School at Walsh
Cottage in the summer of 2014. e content and level of coverage is very uneven – in some
places I go into a lot of detail, elsewhere I skim over important concepts. In a few places these
notes read like a book, but mostly they read like what they are, informal lecture notes. ey
will be updated again between now and the end of the year.

e lectures cover a fair bit of ground in the large-scale structure and circulation of the
atmosphere and ocean and how they fit into the climate system, but there is no aim to be com-
prehensive. Most of thematerial is my take onmatters that are floating around in the literature,
such as the model of the runaway greenhouse effect in chapter 1, Rossby waves and momen-
tum transport in chapter 3, and the model of the deep circulation of the ocean in chapter 6. A
few aspects of the material give some new interpretation – the model of the tropopause height
in chapter 2 and aspects of discussion of the Hadley Cell in chapter 4 for example. In any case,
take it as you find it, and comments are always welcome.





C 1
E B   T

e philosophy throughout these lectures is that in order to understand a complex system we
must have a description of the system at multiple levels, from a back-of-the-envelope calcula-
tion through idealized numerical models to a comprehensive simulation with all the bells and
whistles. Because this isWalsh we will always try to include a back-of-the-envelope calculation
and go from there, but other approaches are possible.

. W     
A schematic of the overall structure of the atmosphere and ocean is given in Fig. 1.1, with some
pictures of the real atmosphere from observations given in Fig. 1.2 and Fig. 1.3. In Fig. 1.1 we
sketch the troposphere, where temperature decreases with height, and the stratosphere, where
temperature increases with height, and the dividing tropopause which is fairly high over then
tropics (15km) and lower over polar regions (8km). We might immediately ask, what deter-
mines this structure? What determines the height of tropopause? Why is it about 10 km, and
not 100 km or 1 km? And what determines the width of the tropics where the tropopause is
high? And so on

Turning to the ocean, we have, again very schematically, warm water in the upper ocean
and cold water below. e layer between them, where temperature varies very fast vertically,
is called the thermocline. Sometimes we make an analogy between the thermocline and the
tropopause, but actually the thermocline is more like the whole troposphere because they are
both characterized by large vertical temperature gradient and relatively fast dynamics. Ques-
tions for oceanographers include what determines this structure of the ocean? What is the
nature of the circulation that maintains it? More specifically, what determines the depth of the
thermocline?

ese are the kinds of questions we will consider in these lectures. We’ll try to answer
some of them, but not all. e philosophy throughout is that in order to understand a complex
systemwemust have a description of the system atmultiple levels, from a back-of-the-envelope
calculation through idealized numerical models to a comprehensive simulation with all the
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Figure 1.1 A schematic of thermal structures of ocean and atmosphere. e solid lines
mark the tropopause and the base of the thermocline, and the near-vertical dashed lines are
representative profiles of temperature.

bells and whistles. Because this is Walsh we will always try to include a back-of-the-envelope
calculation and go from there, but other approaches are possible.

Our goals in this chapter are fairly fundamental:
1. Understand at an elementary level what determines the surface temperature of Earth.
2. Understand the need for a troposphere, and what determines its thickness.
To answer that we begin with a tutorial on radiation.

. R B
1.2.1 e very basics
All macroscopic bodies except those at absolute zero (are there any?) emit thermal radiation.
e black body emission per unit wavelength or per unit frequency are given by Planck’s func-
tion which is, for the two cases respectively,

𝐵𝜆(𝑇) =
2πℎ𝑐2
𝜆5

1
exp(ℎ𝑐/𝜆𝑘𝐵𝑇) − 1

, 𝐵𝜈(𝑇) =
2ℎ𝜈3
𝑐2

1
exp(ℎ𝜈/𝑘𝐵𝑇) − 1

(1.1)

where 𝑐 is the speed of light, ℎ is the Planck constant and 𝑘𝐵 is the Boltzmann constant. Conven-
tions for frequency and wavelength are such that 𝑐 = 𝜔/𝑘 = 𝜔𝜆/2π = 𝜈𝜆. Integrating either of
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Figure 1.2 Overturning circulation of the atmosphere during a Northern Hemisphere win-
ter. e contours and shading indicate an overturning streamfunction, rising just south of
the equator. e top plot shows a conventional Eulerian average and the bottom plot is a
residual circulation. ree measures of the tropopause are indicated with the more nearly
horizontal solid lines.
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Figure 1.3 Temperature profiles in the atmosphere. On the left is the ‘US standard atmo-
sphere’ and on the right are some observed profiles.

the above expressions over wavelength or frequency, respectively, gives the Stefan–Boltzmann
law

𝐵(𝑇) = 𝜎𝑇4, (1.2)

where 𝜎 is Stefan’s constant,

𝜎 = 2π
5𝑘4𝐵
15ℎ3𝑐2
= 5.6704 × 10−8Wm−2K−4. (1.3)

e maximum of Planck’s function occurs at a wavelength 𝜆𝑚 = 𝑏/𝑇 where 𝑏 = 2.898 ×
10−3mK. is is Wien’s displacement law, and it means that the higher the temperature the
shorter the wavelength at which emission predominantly occurs. For the Sun, at 𝑇 ≈ 6000K,
𝜆𝑚 = 5×10−7m,which is in the visible range; solar radiation is also sometimes called shortwave.
For Earth, at 𝑇 = 280K, 𝜆𝑚 = 1×10−5m, which is in the so-called infra-red, sometimes called
longwave. e radiation itself is in units of Wm−2, and so is a flux of energy. e radiation
reaching Earth from the Sun has an intensity of 𝑆∗ = 1366Wm−2, varying by about 1Wm−2
over the 11-year sunspot cycle.

1.2.2 Earth’s global energy budget
e simplest model that gives the temperature of the Earth is to suppose that the incoming
solar radiation is balanced by an outgoing flux of infra-red radiation at a single temperature so
that

𝑆0(1 − 𝛼) = 𝜎𝑇4, (1.4)
where 𝑆0 = 𝑆∗/4 = 342Wm−2 and 𝛼 is the Earth’s albedo, the fraction of solar radiation
reflected andmeasurements show that𝛼 ≈ 0.3. e resulting temperature,𝑇𝑒 is variously called
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Figure 1.4 A simple EBM

the effective emitting temperature, the radiation temperature or the bolometric temperature.
Plugging in numbers we find

𝑇𝑒 = 󶀤
342 × 0.7
5.67 × 10−8

󶀴
1/4
= 255K. (1.5)

e actual surface temperature on Earth averages 288K. If you think 255K is a good estimate
of 288K, you are at heart a planetary scientist. If you think it is a bad estimate, you are a climate
scientist or a meteorologist.

[Needed: table of emitting temperature and actual surface temperature for all planetary
bodies in the solar system.]

A simple feedback we can put into such a model is the ice-albedo feedback, whereby we
suppose that 𝛼 is a function of temperature. For example, we might suppose that

𝛼 = 󶁇0.3 for 𝑇 > 𝑇0
0.8 for 𝑇 < 𝑇0

(1.6)

1.2.3 Effects of the atmosphere
eclear-sky atmosphere is largely transparent to solar radiation, but not to infra-red radiation.
Most (but not all) of the solar radiation impinging on the atmosphere that is not reflected by
clouds is thus absorbed at the Earth’s surface, whereas most of the infra-red radiation emitted
at the Earth’s surface is absorbed by the atmosphere.

Given this, the next simplest model is to suppose there is an absorbing atmosphere above
the surface, as illustrated in Fig. 1.4. If it is in equilibrium then the energy balance equations
are:

Top: 𝑆0(1 − 𝛼) = 𝜎𝑇4𝑎 , (1.7)
Surface: 𝑆0(1 − 𝛼) + 𝜎𝑇4𝑎 = 𝜎𝑇4𝑔 . (1.8)
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Figure 1.5 Temperature as a function of
emissivity in the EBM
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(From these we also see the atmospheric balance, 2𝜎𝑇4𝑎 = 𝜎𝑡4𝑔.) e solution is

𝑇𝑎 = 󶀥
(1 − 𝛼)𝑆0
𝜎
󶀵
1/4
, 𝑇𝑔 = 21/4𝑇𝑎. (1.9)

So that 𝑇𝑎 = 255K (as it has to be) and 𝑇𝑔 = 303K, is is now too warm. One solution is to
suppose the atmosphere has a finite emissivity, 𝜖𝑎 (which is less than one). is is getting ad
hoc, but it will allow us to illustrate a nice effect. us,

Top: 𝑆0(1 − 𝛼) = 𝜖𝑎𝜎𝑇4𝑎 + (1 − 𝜖𝑎)𝜎𝑇4𝑔 , (1.10)
Surface: 𝑆0(1 − 𝛼) + 𝜖𝑎𝜎𝑇4𝑎 = 𝜎𝑇4𝑔 + 𝐹. (1.11)

where we also introduce a flux 𝐹 from surface to atmosphere. e solution for the surface
temperature is

𝜎𝑇4𝑔 =
𝑆0(1 − 𝛼) − 𝐹/2
1 − 𝜖𝑎/2

(1.12)

which, for 𝐹 = 0 and 𝜖 = 0.77, gives 𝑇𝑔 = 288K. e surface temperature obviously increases
with 𝜖𝑎 as expected.

. W V F
1.3.1 Saturation vapour pressure
e two main greenhouse gases are water vapour and carbon dioxide. Carbon dioxide is well
mixed and is not volatile (it does not condense at Earthy temperatures). Its value is determined
by geological and anthropogenic processes, and we can suppose its value to be specifiable. Wa-
ter vapour levels are determined by the relative humidity of the atmosphere and, above all else,
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Figure 1.6 Saturation vapour pres-
sure as a function of temperature

by the temperature through the Clausius–Clapeyron relation. is states that the saturation
vapour pressure of water, 𝑒𝑠, or indeed of nearly any condensing material, varies as

d𝑒𝑠
d𝑇
= 𝐿
𝑇(𝜌−1𝑔 − 𝜌−1𝑐 )

≈ 𝐿
𝑅𝑤𝑇2
𝑒𝑠, (1.13a,b)

where the second expression follows if 𝜌𝑔 ≪ 𝜌𝑐 (the density of the gas phase is much less than
that of the condensed phase) and using the ideal gas law. e parameter 𝐿 is the ‘latent heat of
condensation’ and 𝑅𝑤 is the gas constant for the gas in question, which for us is water. If 𝐿 is
constant (not a quantitatively good assumption, but good enough for now) we get

𝑒𝑠(𝑇) = 𝑒𝑠0 exp 󶁥
𝐿𝑠
𝑅𝑠
󶀥 1
𝑇0
− 1
𝑇
󶀵󶁵 . (1.14)

Evidently, saturation vapour pressure is a strongly increasing function of temperature. A liquid
will boil when the temperature is sufficiently high that the saturation vapour pressure equals
the ambient pressure, and for water at sea-level this occurs at 100° C. A good, semi-empirical
approximation for saturation water vapour pressure is the Tetens–Bolton formula,

𝑒𝑠 = 6.112 exp 󶀥
17.67 ∗ 𝑇𝑐
𝑇𝑐 + 243.3

󶀵 (1.15)

where𝑇𝑐 is temperature in Celsius and pressure is in hecto-Pascals (the same asmillibars). is
is actually a better approximation than (1.14) because it includes the variation of 𝐿 with 𝑇. In
any case, the main point is that water vapour content in the atmosphere increases fairly rapidly
with temperature, at about 7% K−1
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1.3.2 Radiative feedback and runaway greenhouse
Returning now to the EBM of the previous section, if we differentiate (1.12) we obtain

4 d𝑇𝑔
𝑇𝑔
= d𝜖𝑎
2 − 𝜖𝑎
. (1.16)

Now, 𝜖𝑎 may vary both because we add CO2 (which we will denote as 𝑐) and because water
vapour content may changes, so we write

d𝜖𝑎 = d𝑐 + d𝑒𝑠 (1.17)

where and are quantities that reflect the radiative properties of CO2 and water vapour. If
the main reason water vapour changes is because of the change in saturation vapour pressure
with temperature then, using (1.13b) and (1.17), (1.16) becomes

(8 − 4𝜖𝑎)
d𝑇𝑔
𝑇𝑔
= d𝑐 + d𝑒𝑠 = , d𝑐 +

𝐿
𝑅𝑤𝑇2
𝑒𝑠 d𝑇𝑔. (1.18)

or
󶀦8 − 4𝜖𝑎
𝑇𝑔
− 𝐿𝑒𝑠
𝑅𝑤𝑇2𝑔
󶀶d𝑇𝑔 = d𝑐 (1.19)

Note that changes in atmospheric temperature is proportional to changes in surface tempera-
ture. us

d𝑇𝑔
d𝑐
=
𝑇𝑔
8 − 4𝜖𝑎
󶀥 1
1 − 𝑦
󶀵 where 𝑦 = 𝑒𝑠𝐿

𝑅𝑤𝑇𝑔(8 − 4𝜖𝑎)
. (1.20)

is is a rather interesting equation. It is not to be believed at a quantitative level, but it
is perhaps the simplest model that captures in a physically plausible way the greenhouse-gas
effects of both water vapour and CO2. e following is apparent:
• Adding carbon dioxide to the atmosphere causes temperature to go up (because 4𝜖𝑎 < 8),

providing 𝑦 < 1, so the model delineates between forcing and feedback.
• e feedback is captured by the terms involving 𝑦, and it can be larger than the direct

effect depending on the size of .
• As 𝑦 → 1 the feedback becomes very large, and this is called the runaway greenhouse
effect. As the temperature increases the water vapour content increases, temperature
further increases and so on.
• ere is no a priori reason why 𝑦 should be less than unity. For example, it will be large

if the temperature is high, and so if 𝑒𝑠 is high. It seems then that that 𝑇𝑔 will decrease as
𝑐 increases!

e last item seems totally unphysical, and to see what is going on we need to construct an
explicit model of the greenhouse effect with water vapour feedback. We will do that soon but
it will be easier if we must look in a bit more detail about radiation.
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. R T   G A
1.4.1 Assumptions
Radiative intensity, 𝐼 is the radiative flux per solid angle and when dealing with radiation in
three-dimensional problems we have to deal with directionality. We also have to deal with the
dependence of absorption on wavelength, and with scattering. In dealing with radiation in the
Earth’s atmosphere we will make a number of main simplifications.

1. We can have completely separate treatments of solar and infra-red radiation.
2. Much of the time we can assume there is no solar absorption in the atmosphere. is is

not quantitatively true but if it were the case, most of the atmosphere would be about the
same.

3. We integrate over solid angles in the upward pointing hemisphere and again in the down-
ward pointing atmosphere, so that we have two streams of radiation.

4. We’ll integrate over wavelength in the infra-red and assume that a single emissivity suf-
fices.

5. ere is no scattering of infra-red radiation.

1.4.2 Equations of radiative transfer
Consider a monochromatic beam of radiation passing through a gas, and suppose for a mo-
ment the gas does not emit any radiation but only absorbs it. For a thin layer of gas the change
in intensity of the beam is then

d𝐼 = −𝐼d𝜏 (1.21)

where 𝜏 is the optical depth. e equation may be regarded as a definition of optical depth
— it is the fraction of the incoming radiation absorbed — with the difficulty then arising in
relating it to the physical properties of the gas. Eq. (1.21) can be formally integrated to give
𝐼 = 𝐼0 exp(−𝜏), where the factor 𝑇 = exp(−𝜏) is the transmittance of the layer. e optical
depth of two layers is the sum of their optical depths and the total transmittance is the product
of the two transmittances. 

e optical depth of a gas is related both to the amount of gas and to its properties, and for
a thin layer of gas of thickness d𝑠 we can write

d𝜏 = 𝑘𝐴𝜌d𝑠 (1.22)

where 𝑘𝐴 is the mass absorption coefficient. In general the optical depth will depends on the
wavelength but we shall assume it does not; that is, the atmosphere is grey. In the atmosphere
if the pressure is hydrostatic then, in the vertical direction, d𝜏 = 𝑘𝐴𝜌d𝑧 = 𝑘𝐴d𝑝 so that

𝜏(𝑝1, 𝑝2) = 𝑘𝐴(𝑝1 − 𝑝2) (1.23)
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In fact the mass absorption coefficient increases with pressure so that in the atmosphere a
somewhat better approximation is to write

𝜏 ≈ 𝜏𝑟
(𝑝1 − 𝑝2)(𝑝1 + 𝑝2)/2

𝑝2𝑟
(1.24)

where 𝑝𝑟 is a reference pressure and 𝜏𝑟 is a reference optical depth, a function of the properties
of the gas in question.

e slab of gas will also emit radiation so taking this into account (1.21) becomes

d𝐼 = (𝐵 − 𝐼)d𝜏 (1.25)

is is known as the Schwarzschild equation and it applies at eachwavelength, but if we assume
𝜏 is not a function of wavelength and we integrate over all wavelengths then 𝐵 = 𝜎𝑇4. (You can
either take this to be obvious or do a bit of algebra involving integrations over solid angles to
convince yourself, or consult a radiation book like Goody or Petty or Pierrehumbert.) In terres-
trial applications we assume that (1.25) applies in the infra-red, and do a separate calculation
for solar radiation.

Now, in the atmosphere under two-stream approximation in the atmosphere we have up-
ward, 𝑈, and downward,𝐷, radiation and we write

− d𝑈
d𝜏
= 𝐵 − 𝑈, d𝐷

d𝜏
= 𝐵 − 𝐷. (1.26a,b)

e convention we have chosen here is that 𝜏 increases downwards. is is convenient for
atmospheric applications, for then we have 𝜏 = 0 at the top of the atmosphere, but it is not
mandated. We could choose it the other way and flip the signs of the right-hand sides and no
physical result depends on this choice, or on the origin of 𝜏. We will use these equations for
the infra-red radiation and in what follows assume that solar radiation is all absorbed at the
surface.

1.4.3 Solutions
Formal Solution
Consider the generic equation for radiation travelling in the direction of increasing 𝜏 or de-
creasing 𝜏, 𝐵 and 𝑈 respectively

d𝐷
d𝜏
= 𝐵 − 𝐷, d𝑈

d𝜏
= 𝑈 − 𝐵. (1.27)

Multiplying by the integrating factors exp(𝜏) and exp(−𝜏)gives

d
d𝜏
(𝐷e𝜏) = 𝐵e𝜏, d

d𝜏
(𝑈e−𝜏) = −𝐵e−𝜏 (1.28)
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Figure 1.7 Radiative equilibrium
temperature (solid curve) calculated
using (1.36), with an optical depth
of 𝜏0 = 8/3, 𝐻𝑎 = 2km and a
net incoming solar radiation of
239Wm−2.

Integrating between 𝜏 = 0 and 𝜏′ we obtain

𝐷(𝜏′)e𝜏′ − 𝐷(0) = 󵐐
𝜏′

0
𝐵(𝜏)e𝜏 d𝜏, 𝑈(𝜏′)e−𝜏′ − 𝑈(0) = −󵐐

𝜏′

0
𝐵(𝜏)e−𝜏 d𝜏 (1.29)

or

𝐷(𝜏′) = e−𝜏′ 󶁦𝐷(0) − 󵐐
𝜏′

0
𝐵(𝜏)e𝜏 d𝜏󶁶 , 𝑈(0) = 𝑈(𝜏′)e−𝜏′ + 󵐐

𝜏′

0
𝐵(𝜏)e−𝜏 d𝜏 (1.30)

e first term in each solution is the attenuation of incoming radiation and the second is the
cumulative emission. ere are other ways to write the solution, but in general the solution of
radiative problems can be written only in the form of integrals. Nevertheless, in some impor-
tant special cases we can get a local solution as below.

Radiative equilibrium in planetary atmospheres
Consider an atmosphere with net incoming solar radiation 𝑆net and suppose the planet is in
radiative equilibrium with the incoming solar balanced by outgoing infra-red. e radiative
transfer equations are thus to be solved with the boundary conditions that

𝐷 = 0, 𝑈 = 𝑈𝑡 at 𝜏 = 0, (1.31)

where 𝑈𝑡 = 𝑆net is the net outgoing long-wave radiation (OLR) at the top of the atmosphere.
ere are still too many variables as we don’t know 𝐵, but we can obtain a radiative equilibrium
solution if we assume there is no longwave heating in the column. e heating is proportional
to the divergence of the net flux, so that if this is presumed zero then 𝜕(𝑈 − 𝐷)/𝜕𝑧 = 0 so that

𝜕(𝑈 − 𝐷)
𝜕𝜏
= 0. (1.32)
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Let us rewrite (1.26) as

𝜕
𝜕𝜏
(𝑈 − 𝐷) = 𝑈 + 𝐷 − 2𝐵, (1.33a)

𝜕
𝜕𝜏
(𝑈 + 𝐷) = 𝑈 − 𝐷. (1.33b)

A solution of these equations that satisfies the boundary conditions is

𝐷 = 𝜏
2
𝑈𝑡, 𝑈 = 󶀤1 +

𝜏
2
󶀴𝑈𝑡, 𝐵 = 󶀤

1 + 𝜏
2
󶀴𝑈𝑡. (1.34)

where 𝑈𝑡 is the outgoing longwave radiation at the top of the atmosphere. e only thing
remaining is to related 𝜏 to 𝑧, and a simple recipe that is similar to (1.23) is to suppose that 𝜏
has an exponential profile.

𝜏(𝑧) = 𝜏0 exp(−𝑧/𝐻𝑎) (1.35)

where typical values are 𝜏0 ≈ 4 and𝐻𝑎 ≈ 2km. e temperature then goes like

𝑇4 = 𝑈𝑡 󶀦
1 + 𝜏0𝑒−𝑧/𝐻𝑎
2𝜎
󶀶 , (1.36)

as illustrated in Fig. 1.7. Note the following aspects of the solution.

1. Temperature increases rapidly with height near the ground.

2. e upper atmosphere is nearly isothermal.

3. e temperature at the top of the atmosphere, 𝑇𝑡 is given by

𝜎𝑇4𝑡 =
𝑈𝑡
2

(1.37)

us, if we define the emitting temperature, 𝑇𝑒, to be such that 𝜎𝑇4𝑒 = 𝑈𝑡, then 𝑇𝑡 =
𝑇𝑒/21/4. Note also 𝐵𝑡/𝑈𝑡 = 1/2.

In fact, the temperature gradient near the ground varies so rapidly it is likely to be convectively
unstable, which we come to in the next chapter. Also, note that we do not need to impose a
temperature boundary condition at the ground; in fact there is no ground in this problem! —
but what happens if we add one? at is, suppose that we declare that there is a black surface
at some height, say 𝑧 = 0, and we require that the atmosphere remain in radiative equilibrium.
What temperature does that surface have to be?

From (1.34) the upward irradiance and temperature at any height 𝑧 are related by

𝑈 = 󶀤2 + 𝜏
1 + 𝜏
󶀴 𝜎𝑇4. (1.38)
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At 𝑧 = 0 the surface will have to supply upwards radiation equal to that given by (1.38), and
therefore its temperature, 𝑇𝑔 is given by

𝜎𝑇4𝑔 = 󶀤
2 + 𝜏
1 + 𝜏
󶀴 𝜎𝑇4𝑠 , (1.39)

where𝑇𝑠 is the temperature of the fluid adjacent to the ground (the ‘surface temperature’). at
is, 𝑇𝑔 > 𝑇𝑠 and there is a temperature discontinuity at the ground. Sometimes in very still
conditions a very rapid change of temperature near the ground can in fact be observed, but
usually the presence of conduction and convection will ensure that 𝑇𝑔 and 𝑇𝑠 are equal.

In the limit in which 𝜏 = 0 in the upper atmosphere (let us prematurely call this the ‘strato-
sphere’) then we see that

𝐷 = 0, 𝑈 = 𝑈𝑡, 𝐵 =
𝑈𝑡
2
. (1.40)

at is, the atmosphere is isothermal, there is no downwelling irradiance and the upward flux
is constant. e stratospheric temperature, 𝑇𝑠𝑡 and the emitting temperature are related by

𝑇𝑠𝑡 =
𝑇𝑒
21/4
. (1.41)

Summary Points
To sum up, what have we found?

1. If we suppose the atmosphere is gray, and we know how optical depth varies with height,
then if the atmosphere is in longwave radiative equilibriumwe can construct and explicit
solution for the temperature as a function of height.

2. e temperature will typically decrease very rapidly in height away from the surface. So
much so it is likely to be convectively unstable, as we discuss in the next chapter.

3. e radiative equilibrium temperature does not care or know whether a surface (i.e.,
the ground) is present. If a surface is present, and we require that radiate equilibrium
still hold, the temperature of the ground must be higher than the temperature of the air
adjacent to it. is is because the ground must supply the same amount of radiation as
would be supplied by an infinite layer of air below that level. us, there is a temperature
discontinuity at the ground, which in reality would normally be wiped out by convection.

. A     R G E
We now come back to the greenhouse effect and construct an explicit model of runaway green-
house. (e term ‘runaway greenhouse’ was coined by Ingersoll 1969.) Suppose the atmo-
sphere is in radiative equilibrium. From the derivations above can relate the surface and
ground temperatures to the incoming solar radiation through the relation

𝑇4𝑠 =
𝑇4𝑒
2
(1 + 𝜏0), 𝑇4𝑔 = 𝑇4𝑒 (1 +

𝜏0
2
) (1.42)
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us, if 𝜏0 = 1.254 then, for 𝑇𝑒 = 255K we find 𝑇𝑔 = 288K and 𝑇𝑠 = 262K. e assumption of
radiative equilibrium and the ensuing temperature discontinuity are unrealistic but the model
will illustrate and important point. We’ll construct a more realistic model in the next chapter.

Suppose that we let 𝜏0 be a function of temperature, increasing with the saturation vapor
pressure at the surface. us, let

𝜏0 = 𝐴 + 𝐵𝑒𝑠(𝑇𝑔) (1.43)

where 𝐴 and 𝐵 are semi-empirical constants, and 𝑒𝑠 is the saturation vapor pressure as given
by the solution of the Clausius–Clapeyron equation, (1.15). We will tune their values such that
𝑇𝑔 = 288 when 𝑇𝑒 = 255, and with some experience of hindsight we set the ratio 𝐴/𝐵 = 8,
whence we obtain 𝐴 = 1.12 and 𝐵 = 0.14. e reason for such a seemingly high ratio is
that a gray model is too prone to give a runaway greenhouse because of its lack of windows
in the infra-red. us, in reality, even as temperature and water vapor content increase some
infra-red radiation can escape from the surface.

Putting the above together, the ground temperature is solution of

𝑇4𝑔 = 𝑇4𝑒 󶀤1 +
1
2
[𝐴 + 𝐵𝑒𝑠(𝑇𝑔)]󶀴 . (1.44)

is algebraic equation is quite nonlinear and must be solved numerically but a few points are
apparent.

1. For any given 𝑇𝑒 we can obtain a graphic solution by plotting 𝑇𝑔 and 𝑇4𝑒 (1 + 𝜏0/2)1/4
and seeing where the two curves intersect. For a range of values of 𝑇𝑒 we will obtain two
solutions, as illustrated in Fig. 1.8. However, if𝑇𝑒 is too high there will be no intersection
of the curves because the value of 𝑇4𝑒 (1 + 𝜏0/2) will always be larger than 𝑇𝑔.

2. If 𝑇𝑒 increases and 𝐵𝑒𝑠 is much smaller than 𝐴, then a solution is found by increasing 𝑇𝑔.
3. If 𝑇𝑒 increases and 𝐵𝑒𝑠 is suitably large then we can imagine that a solution will be found

with a lower value of 𝑇𝑔.
Numerical solutions are found iteratively are illustrated in Fig. 1.9, and as expected there

are two branches to the solution. [A much more detailed discussion with many extensions is
to be found in the report by P. Martin in this volume.] For the parameters plotted, there is no
solution if 𝑇𝑒 > 269K. at is to say, if a planet obeying the model above were in an orbit such
that 𝑇𝑒 > 269K then infra-red radiation would not be able to escape from the surface, and
the surface temperature would keep on rising. All the water on the planet surface would boil,
and eventually the water vapor would escape to space. Such a scenario may have occurred on
Venus in the past.

1.5.1 Stability of solutions
e upper branch of the solution plotted in Fig. 1.9 runs counter to our intuition, in that tem-
perature decreases as emitting temperature increases. e situation arises because the green-
house effect is so strong, so that an increase in emitting temperature can lead to a decrease in
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Figure 1.9 Solutions the energy bal-
ance model (1.44) obtained numeri-
cally. Plotted are values of 𝑇𝑔 as a
function ofe dashed curve is𝑇𝑔 and
the solid curve plots values of 𝑇4𝑒 (1 +
𝜏0(𝑇𝑔)/2)1/4, with 𝜏0 given by (1.43) .

surface temperature if the greenhouse effect also falls considerably. However, this solution is
unstable as we now show.

We add a time dependence to the energy balance model and write

𝐶
d𝑇𝑔
d𝑡
= 𝜎𝑇4𝑒 − 𝜎

𝑇4𝑔
1 + 𝜏0/2

(1.45)

We perturb the system about an equilibrium point and so obtain

𝐶
d𝑇′𝑔
d𝑡
=
−4𝜎𝑇3𝑔𝑇′𝑔
1 + 𝜏0

+
𝜎𝑇4𝑔 𝜏′0
(1 + 𝜏0)2

, (1.46a)
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= 󶀦
𝑇𝑔
1 + 𝜏0/2

d𝜏0
d𝑇𝑔
− 4󶀶𝑇′𝑔 (1.46b)

us, the solution will be stable or unstable according as whether the term in brackets is neg-
ative or positive, respectively.

A tiny bit of algebra will reveal that the ratio of the two terms in brackets in (??) precisely
the same as the ratio of the gradients of the solid curve and the dashed curve at the intersection
points in Fig. 1.8. us, the solution at the higher temperature (about 350K in the graph) is
unstable, because the gradient of the blue curve is greater than the gradient of the dashed curve.
Similarly, the solution at the lower temperature (288K) is stable. All of the solutions on the
upper branch on Fig. 1.9 are therefore unstable.



C 2
R-C E 
 H   T

Wenow considerwhat the effect of convectionmight be on all the concepts and solutions found
in chapter 1. Because our interest in mainly in the large scale structure of the atmosphere
we will take a somewhat simplistic view of convection and suppose that it acts to restore an
unstable lapse to something that is neutrally stable, that lapse rate being given by either the dry
adiabatic ormoist adiabatic lapse rate. Readers interested in finding outmore about convection
and radiative-convective equilibrium should consult Kerry Emanuel’s lecture notes.

. R- 
In chapter one we found that in radiative equilibrium the temperature falls off very rapidly
with height in the lower atmosphere, so much so that it is likely to be convectively unstable.
We imagine the atmosphere will convect and that the lapse rate will adjust until it is stable, as
in Fig. 2.1, up to some height 𝐻𝑇. Sometimes, either instead of or in addition to, heat may
be transported upwards by large-scale motion such as baroclinic waves. In either case, let us
suppose that the dynamics acts such as to produced constant lapse rate up to some height𝐻𝑇,
which we will later associate with the tropopause. We wish to obtain an expression for that
height. at is, we seek a solution for which

𝑧 ≤ 𝐻𝑇 ∶ 𝑇 = 𝑇𝑠 − 𝛤𝑧 (2.1a)
𝑧 > 𝐻𝑇 ∶ Radiative equilibrium, satisfying (1.26) and (1.32) (2.1b)

Further, since we are imposing a convective heat flux, we can suppose that at the surface the
temperature is continuous, so that the ground temperature is such that 𝜎𝑇4𝑔 = 𝑈(𝑧 = 0).

To obtain a solution we might just think of adjusting the lapse rate in Fig. 1.7 so that there
is no net heating, and this may indeed be what convection does on a short timescale. However,
an overall radiative balance is not necessarily then achieved, so that the systemwill then evolve

17
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Figure 2.1 Radiative equilibrium
temperature (solid curve) calculated
using (1.36), with an optical depth
of 𝜏0 = 8/3, 𝐻𝑎 = 2km and a
net incoming solar radiation of
239Wm−2. e dashed line shows
a schematic adjusted temperature
with a lapse rate of 6.5K km−1 up to a
tropopause (at about 11 km here) and
a radiative equilibrium temperature
in the stratosphere.
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further. e variable in this equation is𝐻𝑇, and this can be adjusted until (2.1) is satisfied, with
the outgoing radiation e solution of these equations requires an iterative approach and the
algorithm is as follows.

1. First solve the radiative transfer equations for radiative equilibrium.
2. Make a guess for the height of the tropopause, and hence obtain the temperature all the

way down to the ground.
3. Integrate the radiative transfer equations down from the top. e outgoing radiative

balance is achieved this way, but there is no balance at the surface if temperature is con-
tinuous. at is, 𝜎𝑇4𝑔 ≠ 𝑈(𝑧 = 0).

4. Change the height of the tropopause, find another solution, and iterate until the surface
radiative balance is achieved.

An alternative is to specify the surface temperature and integrate the radiative transfer equa-
tions up along a given lapse rate from the bottom to a certain height, beyondwhich we suppose
that radiative equilibrium holds. is procedure will not give the correct outgoing radiation,
so the procedure must again be iterated.

2.1.1 Global Warming
Without actually solving the RCE equations we can make an important deduction as to what
happens to the height of the tropopause under global warming, that is what happens when
additional carbon dioxide is added to the atmosphere. If the atmosphere stays in radiative
balance (which it will in the long term) then the outgoing radiation remains the same. If the
stratosphere has a small optical depth then its temperature stays the same from (1.40). ere-
fore the temperature of the tropopause must stay the same! However, the height of the emitting
temperature must increase, because the emissivity of the lower atmosphere increases, and the
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Figure 2.2 Schematic of tem-
peratures before (blue line)
and after an increase in optical
depth of the atmosphere, such
as happens in global warming.
e troposphere warms but the
emitting temperature stays the
same. Hence the tropopause
temperature stays the same and
the height of the tropopause
increases.

photons that reach space come, on average, from a higher level in the troposphere. And, as
a consequence, the troposphere warms as illustrated in Fig. 2.2. But if the temperature of the
tropopause is to stay the same then its height must increase, and a simple calculation tells us
by how much.

If the lapse rate stays the same then the tropopause height will increase by an amount 𝛥𝐻𝑇
given by

𝛥𝐻𝑡 =
𝛥𝑇𝑠
𝛤

(2.2)

where 𝛥𝑇𝑠 is the change in surface temperature. If we allow the lapse rate to change also, then

𝛥𝐻𝑡 =
𝛥𝑇𝑠
𝛤
− 𝐻𝑡
𝛥𝛤
𝛤

(2.3)

or
𝜕𝐻𝑡
𝜕𝑇𝑠
= 1
𝛤
− 𝐻𝑇
𝛤
𝜕𝛤
𝜕𝑇𝑠
. (2.4)

If we suppose that 𝛤 is the moist adiabatic lapse rate then we can calculate this expression ana-
lytically, and some results are shown in Fig. 2.3, where the lapse rate is assumed constant with
height and a function of surface temperature. It is interesting that the increase in tropopause
height is quite significant – about 400m per degree – and that both the direct temperature
effect and the lapse rate effect are important (at least in regions where the lapse rate is moist
adiabatic). An increase in tropospheric height is one of the most robust results we have con-
cerning changes of the structure of the atmosphere under global warming, as discussed more
in Vallis et al. (2014).
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Figure 2.3 (a) Contours of change in tropopause height (km) as a function of temperature
change and lapse rate change, calculated using (2.3). (b) Rate of change of tropopause height
with temperature (𝜕𝐻𝑡/𝜕𝑇) as a function of temperature, calculated using (2.4).

. T H   T
We now provide an approximate, analytic, expression for the height of the tropopause.1 We
assume the following.

1. Single column (so a one-dimensional calculation).
2. Grey atmosphere with an optical thickness that decays exponentially with height.
3. A specified lapse rate to some height𝐻𝑇, beyond which there is radiative equilibrium.
4. An optically thin atmosphere in the upper troposphere and stratosphere.
5. An overall radiative balance. So the outgoing IR radiation is specified (equal to net in-

coming solar).
6. No surface temperature discontinuity. So ground temperature equals surface air tem-

perature (𝑇𝑔 = 𝑇𝑠), and the upwards radiation at 𝑧 = 0 is given by 𝜎𝑇4𝑔 .

2.2.1 Algorithm
To find an exact solution the equations must be iterated, and an algorithm for that is as follows.

(1) First numerically integrate (1.33) to obtain a radiative equilibrium solution.
(2) Guess a height for the tropopause and thus obtain a temperature at all levels below that,

including the ground, using the given lapse rate.
(3) Calculate the radiative fluxes by integration of (1.33) down from the top. e upwards

radiation at the ground will in general not equal 𝜎𝑇4𝑔 .
1is section is joint work with Pablo Zurita-Gotor.
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(4) Adjust the height of the tropopause and repeat step ((2)) and ((3)).
(5) Iterate the calculation until a surface balance is achieved.

An alternative procedure is to guess a surface temperature and integrate the equations up, as-
suming a constant lapse rate up to a height𝐻𝑇, with radiative equilibrium beyond. When this
is done the temperature at𝐻𝑇 will not be the correct one, and outgoing radiation will not equal
to the incoming radiation, and again we have to iterate.

2.2.2 Analytic approximation
e analytic approach involves obtaining an analytic expression for the outgoing radiation for
a given temperature profile along the lines of (1.30). e OLR so obtained will be a function
of the height of the tropopause, and by making the expression equal to the incoming solar
radiation we obtain an expression for the tropopause height. Instead of actually using (1.30)
it is easier to solve the equations approximately ab initio. We make one other approximation,
that the value of 𝐵/𝑈 varies linearly from the tropopause (where its value is 0.5) to its value at
the surface (where 𝐵/𝑈 = 1). us,

𝐵
𝑈
= 1 − 𝑧
2𝐻𝑇
. (2.5)

Numerical calculations suggest this is a decent approximation (can it be improved upon?).
Rewrite (1.26a) as

d log𝑈
d𝜏
= 1 − 𝐵
𝑈
= 𝑧
2𝐻𝑇
. (2.6)

Using 𝜏(𝑧) = 𝜏𝑠 exp(−𝑧/𝐻𝑎) we obtain
d log𝑈
d𝑧
= − 𝑧
2𝐻𝑇𝐻𝑎
𝜏𝑠 exp(−𝑧/𝐻𝑎). (2.7)

We can integrate this expression by parts to obtain a value of the upwelling radiation at the
tropopause 𝑈(𝐻𝑇), namely

log 󶀥𝑈(𝐻𝑇)
𝑈(0)
󶀵 = − 𝜏𝑠
2𝐻𝑇
󵐐
𝐻𝑇

0
exp(−𝑧/𝐻𝑎)d𝑧 ≈ −

𝜏𝑠𝐻𝑎
2𝐻𝑇
. (2.8)

for𝐻𝑇 ≫ 𝐻𝑎. is is an expression for the outgoing longwave radiation, and we see that the
only variable in the equation is𝐻𝑇 – note that the upwelling radiation at the surface is given by
the surface temperature, which is a function of the tropopause temperature,𝐻𝑇 and the lapse
rate, 𝛤.

To obtain a closed form for the tropopause height assume that the stratosphere is optically
thin and note that 𝑈(𝐻𝑇) = 𝑈(𝐻𝑇) = 2𝜎𝑇4𝑇 and 𝑈(0) = 𝜎𝑇4𝑔 = 𝜎𝑇4𝑠 . Furthermore, 𝑇𝑇 and 𝑇𝑠
are related by 𝑇𝑇 = 𝑇𝑠 − 𝛤𝐻𝑇. e le-hand side of (2.8) then becomes

log 󶀥2𝜎𝑇
4
𝑇
𝜎𝑇4𝑠
󶀵 = log 2 + 4 log 𝑇𝑇

𝑇𝑠
= log 2 + 4 log 󶀥 𝑇𝑇

𝑇𝑇 + 𝛤𝐻𝑇
󶀵
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Figure 2.4 Analytic approximation and numerical calculation for tropopause height.

≈ log 2 − 4𝛤𝐻𝑇
𝑇𝑇
. (2.9)

Using (2.9), (2.8) becomes
log 2 − 4𝛤𝐻𝑇

𝑇𝑠
= −𝜏𝑠𝐻𝑎
2𝐻𝑇

(2.10)

or
8𝛤𝐻2𝑇 − C𝐻𝑇𝑇𝑇 − 𝜏𝑠𝐻𝑎𝑇𝑇 = 0. (2.11)

where C = 2 log 2 ≈ 1.38. e solution of this equation is

𝐻𝑇 =
1
16𝛤
󶀤C𝑇𝑇 + 󵀆C2𝑇2𝑇 + 32𝛤𝜏𝑠𝐻𝑎𝑇𝑇󶀴 (2.12)

For Earth’s atmosphere, 𝐻𝑎 ≈ 2km, 𝜏𝑠 ≈ 8/3 and 𝛤 ≈ 6.5Kkm−1. All three terms in the
quadratic are then approximately the same size and𝐻𝑇 = 10.3km, which is in fact reasonably
close to the exact numerical solution (obtained iteratively) of the radiative-convective equa-
tions (Fig. 2.4).

enumerical approximation of the logarithm in (2.9) can be improved by using𝑇𝑚 instead
of 𝑇𝑇, where 𝑇𝑚 is the temperature half way between the surface and the tropopause. However
we still want to have 𝑇𝑇 as a parameter in the quadratic for𝐻𝑇 (because 𝑇𝑇 is given if the OLR
is known). us, we have to do some more algebraic fiddling and the upshot is that we get a
quadratic similar to (2.11) but with different coefficients. [Student exercise. See also Vallis et
al (2014) for another way to proceed.]

Oncewe have the tropopause height we can obtain an expression for the temperature every-
where in the troposphere, and the surface. We could then perform a calculation similar to that
of section 1.3.2 and obtain an analytic expression for how the surface temperature increases
with carbon dioxide content, and the conditions for a runaway greenhouse effect. [With ex-
tensions this could be a student project.]
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Optically thick and thin limits
e above approach allows us to be precise about what it means for an atmosphere to be op-
tically thin or thick. Using (2.12) and approximating 𝐶2 = 2 we easily find that the optically
thick limit arises when

𝜏𝑠𝐻𝑎 ≫
𝑇𝑇
16𝛤

whence 𝐻𝑇 ≈ 󵀊
𝑇𝑇𝜏𝑠𝐻𝑎
8𝛤

(2.13)

e optically thin case has

𝜏𝑠𝐻𝑎 ≪
𝑇𝑇
16𝛤

whence 𝐻𝑇 ≈
1.38𝑇𝑇
8𝛤
. (2.14)

With parameters appropriate for Earth’s atmosphere both of the above limits give estimates in
the range 5–10 km, and note that they are additive effects. What is the interpretation of these
expressions? Do they work on other planets? What is the role of lateral heat transport?

A number of these issues have been taken up by Shineng Hu in his summer project, and
the interested reader is referred to his report for more details.

. A: D  W L R
2.3.1 A dry ideal gas
enegative of the rate of change of the temperature in the vertical is known as the temperature
lapse rate, or oen just the lapse rate, and the lapse rate corresponding to 𝜕𝜃/𝜕𝑧 = 0 is called
the dry adiabatic lapse rate and denoted 𝛤𝑑. Using 𝜃 = 𝑇(𝑝0/𝑝)𝑅/𝑐𝑝 and 𝜕𝑝/𝜕𝑧 = −𝜌𝑔 we find
that the lapse rate and the potential temperature lapse rate are related by

𝜕𝑇
𝜕𝑧
= 𝑇
𝜃
𝜕𝜃
𝜕𝑧
− 𝑔
𝑐𝑝
, (2.15)

so that the dry adiabatic lapse rate is given by

𝛤𝑑 =
𝑔
𝑐𝑝
. (2.16)

e conditions for static stability are thus:

stability ∶ 𝜕
󵰑𝜃
𝜕𝑧
> 0; or −𝜕

󵰑𝑇
𝜕𝑧
< 𝛤𝑑

instability ∶ 𝜕
󵰑𝜃
𝜕𝑧
< 0; or −𝜕

󵰑𝑇
𝜕𝑧
> 𝛤𝑑
, (2.17a,b)

where a tilde indicates that the values are those of the environment. e atmosphere is in
fact generally stable by this criterion: the observed lapse rate, corresponding to an observed
buoyancy frequency of about 10−2 s−1, is oen about 7Kkm−1, whereas a dry adiabatic lapse
rate is about 10Kkm−1. Why the discrepancy? One reason, particularly important in the
tropics, is that the atmosphere contains water vapour.
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2.3.2 Saturated lapse rate
e amount of water vapour that can be contained in a given volume is an increasing function
of temperature (with the presence or otherwise of dry air in that volume being largely irrele-
vant). us, if a parcel of water vapour is cooled, it will eventually become saturated and water
vapour will condense into liquid water. A measure of the amount of water vapour in a unit
volume is its partial pressure, and the partial pressure of water vapour at saturation, 𝑒𝑠, is given
by the Clausius–Clapeyron equation,

d𝑒𝑠
d𝑇
= 𝐿𝑐𝑒𝑠
𝑅𝑣𝑇2
, (2.18)

where 𝐿𝑐 is the latent heat of condensation or vapourization (per unit mass) and 𝑅𝑣 is the
gas constant for water vapour. If a parcel rises adiabatically it will cool, and at some height
(known as the ‘liing condensation level’, a function of its initial temperature and humidity
only) the parcel will become saturated and any further ascent will cause the water vapour to
condense. e ensuing condensational heating causes the temperature and buoyancy of the
parcel to increase; the parcel thus rises further, causing more water vapour to condense, and
so on, and the consequence of this is that an environmental profile that is stable if the air is dry
may be unstable if saturated. Let us now derive an expression for the lapse rate of a saturated
parcel that is ascending adiabatically apart from the affects of condensation.

Let𝑤 denote the mass of water vapour per unit mass of dry air, the mixing ratio, and let𝑤𝑠
be the saturation mixing ratio. (𝑤𝑠 = 𝛼𝑒𝑠/(𝑝 − 𝑒𝑠) ≈ 𝛼𝑤𝑒𝑠/𝑝 where 𝛼𝑤 = 0.622, the ratio of the
mass of a water molecule to one of dry air.) e diabatic heating associated with condensation
is then given by

𝑄cond = −𝐿𝑐
D𝑤𝑠
D𝑡
, (2.19)

so that the thermodynamic equation is

𝑐𝑝
D ln 𝜃
D𝑡
= −𝐿𝑐
𝑇
D𝑤𝑠
D𝑡
, (2.20)

or, in terms of 𝑝 and and 𝑇

𝑐𝑝
D ln𝑇
D𝑡
− 𝑅D ln𝑃
D𝑡
= −𝐿𝑐
𝑇
D𝑤𝑠
D𝑡
. (2.21)

If these material derivatives are due to the parcel ascent then

d ln 𝑇
d𝑧
− 𝑅
𝑐𝑝
d ln 𝑝
d𝑧
= − 𝐿𝑐
𝑇𝑐𝑝
d𝑤𝑠
d𝑧
, (2.22)

and using the hydrostatic relationship and the fact that 𝑤𝑠 is a function of 𝑇 and 𝑝 we obtain

d𝑇
d𝑧
+ 𝑔
𝑐𝑝
= −𝐿𝑐
𝑐𝑝
󶁧󶀥𝜕𝑤𝑠
𝜕𝑇
󶀵
𝑝

d𝑇
d𝑧
− 󶀥𝜕𝑤𝑠
𝜕𝑝
󶀵
𝑇
𝜌𝑔󶁷 . (2.23)
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Solving for d𝑇/d𝑧, the lapse rate, 𝛤𝑠, of an ascending saturated parcel is given by

𝛤𝑠 = −
d𝑇
d𝑧
= 𝑔
𝑐𝑝
1 − 𝜌𝐿𝑐(𝜕𝑤𝑠/𝜕𝑝)𝑇
1 + (𝐿𝑐/𝑐𝑝)(𝜕𝑤𝑠/𝜕𝑇)𝑝

≈ 𝑔
𝑐𝑝
1 + 𝐿𝑐𝑤𝑠/(𝑅𝑑𝑇)
1 + 𝐿2𝑐𝑤𝑠/(𝑐𝑝𝑅𝑣𝑇2)

. (2.24)

where the last near equality follows with use of the Clausius–Clapeyron relation. e quantity
𝑅𝑑 is the gas constant for dry air and 𝑅𝑣 is the gas constant for water vapor, and 𝑅𝑣 = 𝑅𝑑/𝛼𝑤.
e quantity 𝛤𝑠 is variously called the pseudoadiabatic ormoist adiabatic or saturated adiabatic
lapse rate, and it is plotted in Fig. 2.5.

Because 𝑔/𝑐𝑝 is the dry adiabatic lapse rate 𝛤𝑑, 𝛤𝑠 < 𝛤𝑑, and values of 𝛤𝑠 are typically
around 6Kkm−1 in the lower atmosphere; however, d𝑤𝑠/d𝑇 is an increasing function of 𝑇 so
that 𝛤𝑠 decreases with increasing temperature and can be as low as 3.5Kkm−1. For a saturated
parcel, the stability conditions analogous to (2.17) are

stability ∶ −𝜕
󵰑𝑇
𝜕𝑧
< 𝛤𝑠, (2.25a)

instability ∶ −𝜕
󵰑𝑇
𝜕𝑧
> 𝛤𝑠. (2.25b)

where 󵰑𝑇 is the environmental temperature. e observed environmental profile in convecting
situations is oen a combination of the dry adiabatic and moist adiabatic profiles: an unsatu-
rated parcel that is is unstable by the dry criterion will rise and cool following a dry adiabat, 𝛤𝑑,
until it becomes saturated at the liing condensation level, above which it will rise following
a saturation adiabat, 𝛤𝑠. Such convection will proceed until the atmospheric column is stable
and, especially in low latitudes, the lapse rate of the atmosphere is largely determined by such
convective processes.
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C 3
R W  S W

In this our third lecture we stay with the atmosphere and introduce some dynamics. Our first
goal is to understand why there are surface winds, and in particular why there are surface
westerlies. A full explanation of this would require a discussion of baroclinic instability and
take up a couple of lectures in itself. We’ll skip all that and carry out explicit derivations only for
the barotropic vorticity equation, with th reader filling in the gaps phenomenologically. We do
note that there are westerly winds alo in the atmosphere because of the thermal wind relation,
𝑓𝜕𝑢/𝜕𝑧 = 𝜕𝑏/𝜕𝑧, where 𝑏 is buoyancy which is like temperature. us, a temperature gradient
between the equator and the pole implies that the zonal wind increases with height. But this
doesn’t of itself mean that the surface winds are non-zero – we will need momentum fluxes for
that. By the same token, momentum fluxes are not needed to have westerly winds alo.

We begin with a few basic equations.

. M E
e zonally-averaged momentum, in Cartesian geometry has the form

𝜕𝑢
𝜕𝑡
− (𝑓 + 𝜁)𝑣 = 𝜕

𝜕𝑦
𝑢′𝑣′ + 𝜕𝜏
𝜕𝑧

(3.1)

where 𝑓 = 𝑓0 + 𝛽𝑦 In mid-latitudes we usually neglect the mean advection terms (𝜁𝑣 here)
which in midlatitudes are small. If we multiply by density and integrate vertically then, in a
steady state the terms on the le-hand side both vanish, whence

𝜏𝑠 = 󵐐
𝑧
𝜌𝑢′𝑣′ d𝑧 (3.2)

where 𝜏𝑠 is the surface stress, which is roughly proportional to the surface wind: 𝜏𝑠 ≈ 𝑟𝑢𝑠 where
𝑟 is a constant. us

𝑢𝑠 ≈
1
𝑟
󵐐
𝑧
𝜌𝑢′𝑣′ d𝑧. (3.3)

27
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Figure 3.1 (a) Annual mean, zonally averaged zonal wind (heavy contours and shading)
and the zonally averaged temperature (lighter contours). (b) Annual mean, zonally averaged
zonal winds at the surface. e wind contours are at intervals of 5m s−1 with shading for
eastward winds above 20m s−1 and for all westward winds, and the temperature contours
are labelled. e ordinate of (a) and (c) is 𝑍 = −𝐻 log(𝑝/𝑝𝑅), where 𝑝𝑅 is a constant, with
scale height𝐻 = 7.5 km.

In other words, the surface winds arise because of the eddy convergence of momentum in the
atmosphere. Where does this come from? It turns out that it arises from the sphericity of the
Earth which gives rise to differential rotation and Rossby waves, as we shall see.

. R W:  B T
e inviscid, adiabatic potential vorticity equation is

𝜕𝑞
𝜕𝑡
+ 𝒖 ⋅ ∇𝑞 = 0, (3.4)

where 𝑞(𝑥, 𝑦, 𝑧, 𝑡) is the potential vorticity and 𝒖(𝑥, 𝑦, 𝑧, 𝑡) is the horizontal velocity. e ve-
locity is related to a streamfunction by 𝑢 = −𝜕𝜓/𝜕𝑦, 𝑣 = 𝜕𝜓/𝜕𝑥 and the potential vorticity is
some function of the streamfunction, which might differ from system to system. Two exam-
ples, one applying to a continuously stratified system and the second to a single layer system,
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are
𝑞 = 𝑓 + 𝜁 + 𝜕

𝜕𝑧
󶀥𝑆(𝑧)𝜕𝜓
𝜕𝑧
󶀵 , 𝑞 = 𝜁 + 𝑓 − 𝑘2𝑑𝜓. (3.5a,b)

We deal mainly the second. If the basic state is a zonal flow and purely a function of 𝑦 then
𝑞 = 𝑞(𝑦, 𝑧) + 𝑞′(𝑥, 𝑦, 𝑡), 𝜓 = 𝜓(𝑦, 𝑧) + 𝜓′(𝑥, 𝑦, 𝑧, 𝑡) (3.6)

whence
𝜕𝑞′
𝜕𝑡
+ 𝒖 ⋅ ∇𝑞 + 𝒖 ⋅ ∇𝑞′ + 𝒖′ ⋅ ∇𝑞 + 𝒖′ ⋅ ∇𝑞′ = 0. (3.7)

Linearizing gives

𝜕𝑞′
𝜕𝑡
+ 𝑢𝜕𝑞

′

𝜕𝑥
+ 𝑣′ 𝜕𝑞
𝜕𝑦
= 0. (3.8)

3.2.1 Rossby waves in a single layer
In the single-layer case we have 𝑞 = 𝛽𝑦 + ∇2𝜓 − 𝑘2𝑑𝜓. If we linearize this around a zonal flow
then 𝜓 = 𝜓 + 𝜓′ and

𝜓 = −𝑢𝑦 𝑞 = 𝛽𝑦 + 𝑢𝑘2𝑑𝑦 (3.9)
and

𝑞′ = ∇2𝜓′ − 𝑘2𝑑𝜓′ (3.10)
and (3.8) becomes

󶀥 𝜕
𝜕𝑡
+ 𝑢 𝜕
𝜕𝑥
󶀵 (∇2𝜓′ − 𝜓′𝑘2𝑑) +

𝜕𝜓′
𝜕𝑥
(𝛽 + 𝑈𝑘2𝑑) = 0 (3.11)

Substituting 𝜓′ = Re 󵰑𝜓ei(𝑘𝑥+𝑙𝑦−𝜔𝑡) we obtain the dispersion relation,

𝜔 = 𝑘(𝑈𝐾
2 − 𝛽)
𝐾2 + 𝑘2𝑑

= 𝑈𝑘 − 𝑘𝛽 + 𝑈𝑘
2
𝑑

𝐾2 + 𝑘2𝑑
. (3.12)

We will simplify by taking 𝑈 = 0 whence

𝜔 = − 𝛽
𝐾2 + 𝑘2𝑑

. (3.13)

e corresponding components of phase speed and group velocity are

𝑐𝑥𝑝 ≡
𝜔
𝑘
= − 𝛽
𝐾2 + 𝑘2𝑑

, 𝑐𝑦𝑝 ≡
𝜔
𝑙
= 𝑘
𝑙
󶀦 𝛽
𝐾2 + 𝑘2𝑑

󶀶 (3.14a,b)

and
𝑐𝑥𝑔 ≡
𝜕𝜔
𝜕𝑘
= 𝛽(𝑘

2 − 𝑙2 − 𝑘2𝑑)
󶀡𝐾2 + 𝑘2𝑑󶀱

2 , 𝑐
𝑦
𝑔 ≡
𝜕𝜔
𝜕𝑙
= 2𝛽𝑘𝑙
󶀡𝐾2 + 𝑘2𝑑󶀱

2 , (3.15a,b)

which𝐾2 = 𝑘2 + 𝑙2.
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. M   R 
It turns out that Rossby waves will transport momentum from place to place, and this is why
we have surface winds! (Well, at least it is an explication of why we have surface winds. Other
explications that don’t involve Rossby waves can be given (Vallis 2006)) but they are all really
the same explanation.)

Let us suppose that some mechanism is present that excites Rossby waves in mid-latitudes.
is mechanism is in fact baroclinic instability, but we don’t really need to know that. We
expect that Rossby waves will be generated there, propagate away and break and dissipate. To
the extent that the waves are quasi-linear and do not interact, then just away from the source
region each wave has the form

𝜓 = Re𝐶ei(𝑘𝑥+𝑙𝑦−𝜔𝑡) = Re𝐶ei(𝑘𝑥+𝑙𝑦−𝑘𝑐𝑡), (3.16)

where 𝐶 is a constant, with dispersion relation

𝜔 = 𝑐𝑘 = 𝑢𝑘 − 𝛽𝑘
𝑘2 + 𝑙2
≡ 𝜔𝑅, (3.17)

taking 𝑘𝑑 = 0 and provided that there is no meridional shear in the zonal flow. e meridional
component of the group velocity is given by

𝑐𝑦𝑔 =
𝜕𝜔
𝜕𝑙
= 2𝛽𝑘𝑙
(𝑘2 + 𝑙2)2

. (3.18)

Now, the direction of the group velocitymust be away from the source region; this is a radiation
condition, demanded by the requirement that Rossby waves transport energy away from the
disturbance. us, northwards of the source 𝑘𝑙 is positive and southwards of the source 𝑘𝑙 is
negative. at the product 𝑘𝑙 can be positive or negative arises because for each 𝑘 there are two
possible values of 𝑙 that satisfy the dispersion relation (3.17), namely

𝑙 = ±󶀥 𝛽
𝑢 − 𝑐
− 𝑘2󶀵
1/2
, (3.19)

assuming that the quantity in parentheses is positive.
e velocity variations associated with the Rossby waves are

𝑢′ = −Re𝐶 i𝑙ei(𝑘𝑥+𝑙𝑦−𝜔𝑡), 𝑣′ = Re𝐶 i𝑘ei(𝑘𝑥+𝑙𝑦−𝜔𝑡), (3.20a,b)

and the associated momentum flux is

𝑢′𝑣′ = −1
2
𝐶2𝑘𝑙. (3.21)

us, given that the sign of 𝑘𝑙 is determined by the group velocity, northwards of the source
the momentum flux associated with the Rossby waves is southward (i.e., 𝑢′𝑣′ is negative), and
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Figure 3.2 Generation of zonal flow on a 𝛽-plane or on a rotating sphere. Stirring in mid-
latitudes (by baroclinic eddies) generates Rossby waves that propagate away from the distur-
bance. Momentum converges in the region of stirring, producing eastward flow there and
weaker westward flow on its flanks.

southwards of the source the momentum flux is northward (i.e., 𝑢′𝑣′ is positive). at is, the
momentum flux associated with the Rossby waves is toward the source region. Momentum
converges in the region of the stirring, producing net eastward flow there and westward flow
to either side (Fig. 3.2).

Another way of describing the same effect is to note that if 𝑘𝑙 is positive then lines of con-
stant phase (𝑘𝑥+𝑙𝑦 = constant) are tilted north-west/south-east, as in Fig. 3.3 and themomen-
tum flux associated with such a disturbance is negative (𝑢′𝑣′ < 0). Similarly, if 𝑘𝑙 is negative
then the constant-phase lines are tilted north-east/south-west and the associated momentum
flux is positive (𝑢′𝑣′ > 0). e net result is a convergence of momentum flux into the source
region. In physical space this is reflected by having eddies that are shaped like a boomerang,
as in Fig. 3.3.

Pseudomomentum and wave–mean-flow interaction
e kinematic relation between vorticity flux and momentum flux for non-divergent two-
dimensional flow is

𝑣𝜁 = 1
2
𝜕
𝜕𝑥
󶀣𝑣2 − 𝑢2󶀳 − 𝜕

𝜕𝑦
(𝑢𝑣). (3.22)

Aer zonal averaging this gives

𝑣′𝜁′ = −𝜕𝑢
′𝑣′
𝜕𝑦
, (3.23)

noting that 𝑣 = 0 for two-dimensional incompressible (or geostrophic) flow.
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Figure 3.3 e momentum transport in
physical space, caused by the propagation
of Rossby waves away from a source in mid-
latitudes. e ensuing boomerang-shaped
eddies are responsible for a convergence of
momentum, as indicated in the idealization
pictured.
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Now, the barotropic zonal momentum equation is (for horizontally non-divergent flow)

𝜕𝑢
𝜕𝑡
+ 𝜕𝑢
2

𝜕𝑥
+ 𝜕𝑢𝑣
𝜕𝑦
− 𝑓𝑣 = −𝜕𝜙

𝜕𝑥
+ 𝐹𝑢 − 𝐷𝑢, (3.24)

where 𝐹𝑢 and 𝐷𝑢 represent the effects of any forcing and dissipation. Zonal averaging, with
𝑣 = 0, gives

𝜕𝑢
𝜕𝑡
= −𝜕𝑢

′𝑣′
𝜕𝑦
+ 𝐹𝑢 − 𝐷𝑢, (3.25)

or, using (3.23),
𝜕𝑢
𝜕𝑡
= 𝑣′𝜁′ + 𝐹𝑢 − 𝐷𝑢. (3.26)

us, the zonally averaged wind is maintained by the zonally averaged vorticity flux. On aver-
age there is little if any direct forcing of horizontal momentum and we may set 𝐹𝑢 = 0, and if
the dissipation is parameterized by a linear drag (3.26) becomes

𝜕𝑢
𝜕𝑡
= 𝑣′𝜁′ − 𝑟𝑢 , (3.27)

where the constant 𝑟 is an inverse frictional time scale.
Now consider the maintenance of this vorticity flux. e barotropic vorticity equation is

𝜕𝜁
𝜕𝑡
+ 𝒖 ⋅ ∇𝜁 + 𝑣𝛽 = 𝐹𝜁 − 𝐷𝜁, (3.28)
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where 𝐹𝜁 and𝐷𝜁 are forcing and dissipation of vorticity. Linearize about a mean zonal flow to
give

𝜕𝜁′
𝜕𝑡
+ 𝑢𝜕𝜁

′

𝜕𝑥
+ 𝛾𝑣′ = 𝐹′𝜁 − 𝐷′𝜁, (3.29)

where

𝛾 = 𝛽 − 𝜕
2𝑢
𝜕𝑦2

(3.30)

is the meridional gradient of absolute vorticity. Multiply (3.29) by 𝜁′/𝛾 and zonally average,
assuming that 𝑢𝑦𝑦 is small compared to 𝛽 or varies only slowly, to form the pseudomomentum
equation,

𝜕
𝜕𝑡
+ 𝑣′𝜁′ = 1

𝛾
(𝜁′𝐹′𝜁 − 𝜁′𝐷′𝜁),

= 1
2𝛾
𝜁′2

(3.31a)

(3.31b)

is a wave activity density, equal to the (negative of) the pseudomomentum for this problem.
e parameter 𝛾 is positive if the average absolute vorticity increases monotonically north-
wards, and this is usually the case in both Northern and Southern Hemispheres.

3.3.1 An Aside on Wave Activity and Stability
Suppose the flow is unforced and inviscid (common conditions that we impose in stability
problems). en the wave activity equation above becomes

𝜕
𝜕𝑡
+ 𝑣′𝜁′ = 0. (3.32)

is condition holds even in the presence of shear. Integrating between quiescent latitudes
gives

d
d𝑡
󵐐 d𝑦 = 0. (3.33)

e quantity 󵰂𝐴 ≡ ∫ d𝑦 is wave activity, something that is quadratic in wave amplitude and
is conserved. itself is a wave activity density. Energy is not normally a wave activity, because
it grows if the flow us unstable, whereas a wave activity does not.

Now suppose that 𝛾 is positive everywhere. In this case the conservation of 󵰂𝐴 prevents 𝜁′2
from growing! us, for a wave to grow, 𝛽 − 𝑢𝑦𝑦 must change sign somewhere in the domain.
We have derived the Rayleigh-Kuo criterion for barotropic instability. Note that there is no
mention of normal modes, although we have still (in this derivation) assumed linearity.
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. W–-, -
In the absence of forcing and dissipation, (3.27) and (3.31a) imply an important relationship
between the change of the mean flow and the pseudomomentum, namely

𝜕𝑢
𝜕𝑡
+ 𝜕
𝜕𝑡
= 0. (3.34)

We have now essentially derived a special case of the non-acceleration result. If the waves are
steady and inviscid, then from (3.31a) 𝑣′𝜁′ = 0. en from (3.34) the mean flow does not
accelerate. We need to do a bit more work in the stratified case, but the essence of the result is
the same.

Now if for some reason increases, perhaps because a wave enters an initially quiescent
region because of stirring elsewhere, then mean flow must decrease. However, because the
vorticity flux integrates to zero, the zonal flow cannot decrease everywhere. us, if the zonal
flow decreases in regions away from the stirring, it must increase in the region of the stirring.
In the presence of forcing and dissipation this mechanism can lead to the production of a
statistically steady jet in the region of the forcing, since (3.27) and (3.31a) combine to give

𝜕𝑢
𝜕𝑡
+ 𝜕
𝜕𝑡
= −𝑟𝑢 + 1

𝛾
(𝜁′𝐹′𝜁 − 𝜁′𝐷′𝜁), (3.35)

and in a statistically steady state

𝑟𝑢 = 1
𝛾
(𝜁′𝐹′𝜁 − 𝜁′𝐷′𝜁). (3.36)

e terms on the right-hand side represent the stirring and dissipation of vorticity, and inte-
grated over latitude their sum will vanish, or otherwise the pseudomomentum budget cannot
be in a steady state. However, let us suppose that forcing is confined to mid-latitudes. In the
forcing region, the first term on the right-hand side of (3.36) will be larger than the second,
and an eastward mean flow will be generated. Away from the direct influence of the forcing,
the dissipation term will dominate and westward mean flows will be generated, as sketched in
Fig. 3.4. us, on a 𝛽-plane or on the surface of a rotating sphere an eastward mean zonal flow
can be maintained by a vorticity stirring that imparts no net momentum to the fluid. In general,
stirring in the presence of a vorticity gradient will give rise to a mean flow, and on a spherical
planet the vorticity gradient is provided by differential rotation.

It is crucial to the generation of a mean flow that the dissipation has a broader latitudi-
nal distribution than the forcing: if all the dissipation occurred in the region of the forcing
then from (3.36) no mean flow would be generated. However, Rossby waves are generated in
the forcing region, and these propagate meridionally before dissipating thus broadening the
dissipation distribution and allowing the generation of a mean flow.
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poleequator

Figure 3.4 Mean flow generation by a
meridionally confined stirring. Because of
Rossby wave propagation away from the
source region, the distribution of pseudo-
momentum dissipation is broader than
that of pseudomomentum forcing, and
the sum of the two leads to the zonal
wind distribution shown, with positive
(eastward) values in the region of the stir-
ring. See also Fig. 3.6.
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Figure 3.5 etime and zonally av-
eraged wind (solid line) obtained
by an integration of the barotropic
vorticity equation on the sphere.
e fluid is stirred in mid-latitudes
by a random wavemaker that is
statistically zonally uniform, acting
around zonal wavenumber 8, and
that supplies no net momentum.
Momentumconverges in the stirring
region leading to an eastward jet
with a westward flow to either side,
and zero area-weighted spatially in-
tegrated velocity. e dashed line
shows the r.m.s. (eddy) velocity cre-
ated by the stirring.
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Consider the horizontal problem with infinite deformation radius and linearized equation of
motion

󶀥 𝜕
𝜕𝑡
+ 𝑢(𝑦) 𝜕
𝜕𝑥
󶀵 𝑞′ + 𝑣′ 𝜕𝑞

𝜕𝑦
= 0, (3.37)

where 𝑞′ = ∇2𝜓′, 𝑣′ = 𝜕𝜓′/𝜕𝑥 and 𝜕𝑞/𝜕𝑦 = 𝛽−𝑢𝑦𝑦. If 𝑢 and 𝜕𝑞/𝜕𝑦 do not vary in space then
we may seek wavelike solutions in the usual way and obtain the dispersion relation

𝜔 ≡ 𝑐𝑘 = 𝑢𝑘 − 𝜕𝑞/𝜕𝑦
𝑘
𝑘2 + 𝑙2 (3.38)

where 𝑘 and 𝑙 are the 𝑥- and 𝑦-wavenumbers.
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Figure 3.6 e pseudomomen-
tum stirring (solid line, 𝐹′𝜁𝜁′),
dissipation (dashed line, 𝐷′𝜁𝜁′) and
their sum (dot–dashed), for the
same integration as Fig. 3.5. Because
Rossby waves propagate away from
the stirred region before breaking,
the distribution of dissipation is
broader than the forcing, resulting
in an eastward jet where the stirring
is centred, with westward flow on
either side.
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If the parameters do vary in the 𝑦-direction then we seek a solution of the form 𝜓′ =
󵰑𝜓(𝑦) exp[i𝑘(𝑥 − 𝑐𝑡)] and obtain

𝜕2 󵰑𝜓
𝜕𝑦2
+ 𝑙2(𝑦) 󵰑𝜓 = 0, where 𝑙2(𝑦) = 𝜕𝑞/𝜕𝑦

𝑢 − 𝑐
− 𝑘2 (3.39a,b)

If the parameter variation is sufficiently small, occurring on a spatial scale longer than the
wavelength of the waves, then we may expect that the disturbance will propagate locally as a
plane wave. e solution is then of WKB form namely

󵰑𝜓(𝑦) = 𝐴0𝑙−1/2 exp 󶀤i󵐐 𝑙 d𝑦󶀴 . (3.40)

where 𝐴0 is a constant. e phase of the wave in the 𝑦-direction, 𝜃, is evidently given by
𝜃 = ∫ 𝑙 d𝑦, so that the local wavenumber is given by d𝜃/d𝑦 = 𝑙. e group velocity is, as
before,

𝑐𝑥𝑔 = 𝑢 +
(𝑘2 − 𝑙2)𝜕𝑞/𝜕𝑦
(𝑘2 + 𝑙2)2

, 𝑐𝑦𝑔 =
2𝑘𝑙 𝜕𝑞/𝜕𝑦
(𝑘2 + 𝑙2)2

. (3.41a,b)

e group velocity can now vary spatially, although it is only allowed to vary slowly.

3.5.1 Wave amplitude
As a Rossby wave propagates its amplitude is not necessarily constant because, in the presence
of a shear, the wave may exchange energy with the background state. It goes like 𝑙−1/2(𝑦). is
variation can be understood from somewhat more general considerations. As we saw earlier
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in the simple one-layer case (and discussed more in the appendix) an inviscid, adiabatic wave
will conserve its wave activity meaning that

𝜕
𝜕𝑡
+ ∇ ⋅ = 0, (3.42)

where is the wave amplitude and is the flux, and = 𝒄𝑔 . In the stratified case we have

= 𝑞
′2

2𝜕𝑞/𝜕𝑦
, = −𝑢′𝑣′ 𝐣 + 𝑓0

𝑁2
𝑣′𝑏′ 𝐤, (3.43)

with is the Eliassen–Palm (EP) flux, and in the 2D case there is no buoyancy and the 𝐤
component is zero. If the waves are steady then ∇ ⋅ = 0, and in the two-dimensional case
under consideration this means that 𝜕𝑢′𝑣′/𝜕𝑦 = 0.

us 𝑢′𝑣′ = 𝑘𝑙| 󵰑𝜓|2 = constant, and since 𝑘 is constant the amplitude of a wave varies like

| 󵰑𝜓| = 𝐴0
󵀄𝑙(𝑦)

(3.44)

as in the WKB solution. e energy of the wave then varies like

Energy = (𝑘2 + 𝑙2)𝐴
2
0
𝑙
. (3.45)

3.5.2 Two examples
(i) Waves with a turning latitude
A turning line arises where 𝑙 = 0. e line arises if the potential vorticity gradient diminishes
to such an extent that 𝑙2 < 0 and the waves then cease to propagate in the 𝑦-direction. is
may happen even in in unsheared flow as a wave propagates polewards and the magnitude of
beta diminishes.

As a wave packet approaches a turning latitude then 𝑙 goes to zero so the amplitude, and the
energy, of the wave approach infinity. is may happen as a wave propagates polewards and
𝛽 diminishes. However, the wave will never reach the turning latitude because the meridional
component of the group velocity is zero, as can be seen from the expressions for the group
velocity, (3.41). As a wave approaches the turning latitude 𝑐𝑥𝑔 → (𝛽 − 𝑢𝑦𝑦)/𝑘2 and 𝑐

𝑦
𝑔 → 0, so

the group velocity is purely zonal and indeed as 𝑙 → 0

𝑐𝑥𝑔 − 𝑢
𝑐𝑦𝑔
= 𝑘
2𝑙
→ ∞. (3.46)

Because the meridional wavenumber is small the wavelength is large, so we do not expect the
waves to break. Rather, we intuitively expect that a wave packet will turn — hence the eponym
‘turning latitude’ — and be reflected.
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e linear equation of motion is, in terms of streamfunction,

󶀥 𝜕
𝜕𝑡
+ 𝑢(𝑦, 𝑧) 𝜕

𝜕𝑥
󶀵󶁦∇2𝜓′ + 𝑓

2
0
𝜌𝑅
𝜕
𝜕𝑧
󶀥 𝜌𝑅
𝑁2
𝜕𝜓′
𝜕𝑧
󶀵󶁶 + 𝜕𝜓

′

𝜕𝑥
𝜕𝑞
𝜕𝑦
= 0. (RP.1)

We suppose that the parameters of the problem vary slowly in 𝑦 and/or 𝑧 but are uniform in 𝑥
and 𝑡. e frequency and zonal wavenumber are therefore constant. We seek solutions of the
form 𝜓′ = 󵰑𝜓(𝑦, 𝑧)ei𝑘(𝑥−𝑐𝑡) and find (if, for simplicity,𝑁2 and 𝜌𝑅 are constant)

𝜕2 󵰑𝜓
𝜕𝑦2
+ 𝑓
2
0
𝑁2
𝜕2 󵰑𝜓
𝜕𝑧2
+ 𝑛2(𝑦, 𝑧) 󵰑𝜓 = 0 (RP.2a)

where
𝑛2(𝑦, 𝑧) = 𝜕𝑞/𝜕𝑦

𝑢 − 𝑐
− 𝑘2. (RP.2b)

e value of 𝑛2 must be positive in order that waves can propagate, and so waves cease to
propagate when they encounter either

1. A turning line, where 𝑛2 = 0, or
2. A critical line, where 𝑢 = 𝑐 and 𝑛2 becomes infinite.

e bounds may usefully be expressed as a condition on the zonal flow:

0 < 𝑢 − 𝑐 < 𝜕𝑞/𝜕𝑦
𝑘2
. (RP.3)

If the length scale over which the parameters of the problem vary is much longer than the
wavelengths themselves we can expect the solution to look locally like a plane wave and aWKB
analysis can be employed. In the purely horizontal problem we assume a solution of the form
𝜓′ = 󵰑𝜓(𝑦)ei𝑘(𝑥−𝑐𝑡) and find

𝜕2 󵰑𝜓
𝜕𝑦2
+ 𝑙2(𝑦) 󵰑𝜓 = 0, 𝑙2(𝑦) = 𝜕𝑞/𝜕𝑦

𝑢 − 𝑐
− 𝑘2. (RP.4)

e solution is of the form

󵰑𝜓(𝑦) = 𝐴𝑙−1/2 exp 󶀣 ± i󵐐 𝑙 d𝑦󶀳. (RP.5)

us, 𝑙(𝑦) is the local 𝑦-wavenumber, and the amplitude of the solution varies like 𝑙−1/2. At a
critical line the amplitude of the wave will go to zero although the energy may become very
large, and since the wavelength is small the waves may break. At a turning line the amplitude
and energy will both be large, but since the wavelength is long the waves will not necessarily
break. A similar analysis may be employed for vertically propagating Rossby waves.



. R W   I M 39

0 2 4 6
0

0.2

0.4

0.6

0.8

1

 

 Figure 3.7 Parameters for the first example
considered in section 3.5.2, with all variables
nondimensional. e zonal flow is uniform with
𝑢 = 1 and 𝑐 = 0 (so that 𝑢𝑦𝑦 = 0) and 𝛽 dimin-
ishes linearly as 𝑦 increases polewards as shown.
With zonal wavenumber 𝑘 = 1 there is a turning
latitude at 𝑦 = 0.8, and the wave properties are
illustrated in Fig. 3.8.
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Figure 3.8 Left: e group velocity evaluated using (3.41) for the parameters illustrated in
Fig. 3.7, which give a turning latitude at 𝑦 = 0.8. For 𝑥 < 0.5 we choose positive values of 𝑛,
and a northward group velocity, whereas for 𝑥 > 0.5 we choose negative values of 𝑛. Right
panel: Values of refractive index squared (𝑛2), the energy and the amplitude of a wave. 𝑛2 is
negative for 𝑦 > 0.8. See text for more description.

To illustrate this, consider waves propagating in a background state that has a beta effect
that diminishes polewards but no horizontal shear. To be concrete suppose that 𝛽 = 5 at 𝑦 = 0,
diminishing linearly to 𝛽 = 0 at 𝑦 = 0, and that 𝑢 − 𝑐 = 1 everywhere. ere is no critical line
but depending on the 𝑥-wavenumber there may be a turning line, and if we choose 𝑘 = 1 then
the turning line occurs when 𝛽 = 1 and so at 𝑦 = 0.8. Note that the turning latitude depends
on the value of the 𝑥-wavenumber — if the zonal wavenumber is larger then waves will turn
further south. e parameters are illustrated in Fig. 3.7.

For a given zonal wavenumber (𝑘 = 1 in this example) the value of 𝑙2 is computed using
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Figure 3.9 Parameters for the second example
considered in section 3.5.2, with all variables
nondimensional. e zonal flow has a broad east-
ward jet and 𝛽 is constant. ere is a critical line
at 𝑦 = 0.2, and with zonal wavenumber 𝑘 = 5
the wave properties are illustrated in Fig. 3.10.
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Figure 3.10 Left: e group velocity evaluated using (3.41) for the parameters illustrated
in Fig. 3.7, which give a critical line at 𝑦 = 0.2. For 𝑥 < 0.5 we choose positive values of 𝑛,
and a northward group velocity, whereas for 𝑥 > 0.5 we choose negative values of 𝑛. Right
panel: Values of refractive index squared, the energy and the amplitude of a wave. e value
of 𝑛2 becomes infinite at the critical line. See text for more description.

(3.39b), and the components of the group velocity using (3.41), and these are illustrated in
Fig. 3.8. Note that we may choose either a positive or a negative value of 𝑙, corresponding to
northward or southward oriented waves, and we illustrate both in the figure. e value of 𝑙2
becomes zero at 𝑦 = 0.8, and this corresponds to a turning latitude. e values of the wave
amplitude and energy are computed using (3.44) and (3.45) (with an arbitrary amplitude at
𝑦 = 0) and these both become infinite at the turning latitude.
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(ii) Waves with a critical latitude
A critical line occurs when 𝑢 = 𝑐, corresponding to the upper bound of 𝑐, and from (3.39) we
see that at a critical line the meridional wavenumber approaches infinity. From (3.41) we see
that both the 𝑥- and𝑦-components of the group velocity are zero— awave packet approaching
a critical line just stops. Specifically, as 𝑙 becomes large

𝑐𝑥𝑔 − 𝑢 → 0, 𝑐
𝑦
𝑔 → 0,

𝑐𝑥𝑔 − 𝑢
𝑐𝑦𝑔
→ − 𝑙
𝑘
→ −∞. (3.47)

From (3.44) the amplitude of the wave packet also approaches zero, but its energy ap-
proaches infinity. Since the wavelength is very small we expect the waves to break and deposit
their momentum, and this situation commonly arises when Rossby waves excited in midlati-
tudes propagate equatorward and encounter a critical latitude in the subtropics.

To illustrate this let us construct background state that has an eastward jet in midlatitudes
becoming westward at low latitudes, with 𝛽 constant chosen to be large enough so that 𝛽−𝑢𝑦𝑦
is positive everywhere. (Specifically, we choose𝛽 = 1 and 𝑢 = −0.03 sin(8π𝑦/5+π/2)−0.5), but
the precise form is not important.) If 𝑐 = 0 then there is a critical line when 𝑢 passes through
zero, which in this example occurs at 𝑥 = 0.2. (e value of 𝑢 − 𝑐 is small at 𝑦 = 1, but no
critical line is actually reached.) ese parameters are illustrated in Fig. 3.9. We also choose
𝑘 = 5, which results in a positive value for 𝑙2 everywhere.

As in the previous example we compute the value of 𝑙2 using (3.39b) and the components
of the group velocity using (3.41), and these are illustrated in Fig. 3.10, with northward prop-
agating waves shown for 𝑥 < 0.5 and southward propagating waves for 𝑥 > 0.5. e value
of 𝑙2 increases considerably at the northern and southern edges of the domain, and is actually
infinite at the critical line at 𝑦 = 0.2. Using (3.44) the amplitude of the wave diminishes as the
critical line approaches, but the energy increases rapidly, suggesting that the linear approxima-
tion will break down. e waves will actually stall before reaching the critical layer, because
both the 𝑥 and the 𝑦 components of the group velocity become very small. Also, because the
wavelength is so small we may expect the waves to break and deposit their momentum, but a
full treatment of waves in the vicinity of a critical layer requires a nonlinear analysis.

e situation illustrated in this example is of particular relevance to the maintenance of
the zonal wind structure in the troposphere. Waves are generated in midlatitude and prop-
agate equatorward and on encountering a critical layer in the subtropics they break, deposit
westward momentum and retard the flow, as the reader who braves the next section will dis-
cover explicitly.

. R W A   C L
Wenoted in the last section that as awave approaches a critical latitude themeridionalwavenum-
ber 𝑙 becomes very large, but the group velocity itself becomes small. ese observations sug-
gest that the effects of friction might become very large and that the wave would deposit its
momentum, thereby accelerating or decelerating the mean flow, and if we are willing to make
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one or two approximations we can construct an explicit analytic model of this phenomena.
Specifically, we will need to choose a simple form for the friction and assume that the back-
ground properties vary slowly, so that we can use a WKB approximation. Note that we have
to include some form of dissipation, otherwise the Eliassen–Palm flux divergence is zero and
there is no momentum deposition by the waves.

3.6.1 A model problem
Consider horizontally propagating Rossby waves obeying the linear barotropic vorticity equa-
tion on the beta-plane (vertically propagating waves may be considered using similar tech-
niques). e equation of motion is

󶀥 𝜕
𝜕𝑡
+ 𝑢 𝜕
𝜕𝑥
󶀵∇2𝜓 + 𝛽∗𝜕𝜓

𝜕𝑥
= −𝑟∇2𝜓, (3.48)

where 𝛽∗ = 𝛽 − 𝑢𝑦𝑦. e parameter 𝑟 is a drag coefficient that acts directly on the relative
vorticity. It is not a particularly realistic form of dissipation but its simplicity will serve our
purpose well. We shall assume that 𝑟 is small compared to the Doppler-shied frequency of
the waves and seek solutions of the form

𝜓′(𝑥, 𝑦, 𝑡) = 󵰑𝜓(𝑦)ei(𝑘(𝑥−𝑐𝑡)). (3.49)

Substituting into (3.48) we find, aer a couple of lines of algebra, that 󵰑𝜓 satisfies, analogously
to (3.39),

𝜕2 󵰑𝜓
𝜕𝑦2
+ 𝑙2(𝑦) 󵰑𝜓 = 0, where 𝑙2(𝑦) = 𝛽∗

𝑢 − 𝑐 − i𝑟/𝑘
− 𝑘2. (3.50a,b)

Evidently, as with the inviscid case, if the zonal wind has a lateral shear then 𝑙 is a function of
𝑦. However, 𝑙 now has an imaginary component so that the wave decays away from its source
region. We can already see that if 𝑢 = 𝑐 the decay will be particularly strong.

3.6.2 WKB solution
Let us suppose that the zonal wavenumber is small compared to the meridional wavenumber 𝑙,
which will certainly be the case approaching a critical layer. If 𝑟 ≪ 𝑘(𝑢−𝑐) then themeridional
wavenumber is given by

𝑙2(𝑦) ≈ 󶁥𝛽
∗(𝑢 − 𝑐 + i𝑟/𝑘)
(𝑢 − 𝑐)2 + 𝑟2/𝑘2

󶁵 ≈ 𝛽
∗

𝑢 − 𝑐
󶁥1 + i𝑟
𝑘(𝑢 − 𝑐)

󶁵 (3.51)

whence

𝑙(𝑦) ≈ 󶀥 𝛽
∗

𝑢 − 𝑐
󶀵
1/2
󶁥1 + i𝑟
2𝑘(𝑢 − 𝑐)

󶁵 . (3.52)
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e streamfunction itself is then given by, in the WKB approximation,

󵰑𝜓 = 𝐴𝑙−1/2 exp 󶀤±i 󵐐
𝑦
𝑙 d𝑦′󶀴 . (3.53)

But now the wave will decay as it moves away from its source and deposit momentum into the
mean flow, as we now calculate.

e momentum flux, 𝐹𝑘, associated with the wave with 𝑥-wavenumber of 𝑘 is given by

𝐹𝑘(𝑦) = 𝑢′𝑣′ = −i𝑘 󶀥𝜓
𝜕𝜓∗
𝜕𝑦
− 𝜓∗𝜕𝜓
𝜕𝑦
󶀵 , (3.54)

and using (3.52) and (3.53) in (3.54) we obtain

𝐹𝑘(𝑦) = 𝐹0 exp 󶀥±i 󵐐
𝑦

0
(𝑙 − 𝑙∗)d𝑦′󶀵 = 𝐹0 exp󶀦󵐐

𝑦

0

±𝑟𝛽∗1/2
𝑘(𝑢 − 𝑐)3/2

d𝑦′󶀶 . (3.55)

In deriving this expressionwe use that fact that the amplitude of 󵰑𝜓 (i.e., 𝑙−1/2) varies only slowly
with 𝑦 so that when calculating 𝜕 󵰑𝜓/𝜕𝑦 its derivative may be ignored. In (3.55) 𝐹0 is the value
of the flux at 𝑦 = 0 and the sign of the exponent must be chosen so that the group velocity
is directed away from the wave source region. Clearly, if 𝑟 = 0 then the momentum flux is
constant.

e integrand in (3.55) is the attenuation rate of the wave and it has a straightforward
physical interpretation. Using the real part of (3.52) in (3.41b), and assuming |𝑙| ≫ |𝑘|, the
meridional component of the group velocity is given by

𝑐𝑦𝑔 =
2𝑘𝑙 𝛽∗
(𝑘2 + 𝑙2)2

≈ 2𝑘 𝛽
∗

𝑙3
= 2𝑘(𝑢 − 𝑐)

3/2

𝛽∗1/2
. (3.56a,b)

us we have

Wave attenuation rate = 𝑟𝛽
∗1/2

𝑘(𝑢 − 𝑐)3/2
= 2 × Dissipation rate, 2𝑟

Meridional group velocity, 𝑐𝑦𝑔
. (3.57)

As the group velocity diminishes the dissipation has more time to act and so the wave is pref-
erentially attenuated, a result that we discuss more in the next subsection.

How does this attenuation affect the mean flow? e mean flow is subject to many waves
and so obeys the equation

𝜕𝑢
𝜕𝑡
= −󵠈
𝑘

𝜕𝐹𝑘
𝜕𝑦
+ viscous terms. (3.58)

Because the amplitude varies only slowly compared to the phase, the amplitude of 𝜕𝐹𝑘/𝜕𝑦
varies mainly with the attenuation rate (3.57) and is largest near a critical layer. Consider a
Rossbywave propagating away from some source regionwith a given frequency and𝑥-wavenumber.



44 C . R W  S W

Because 𝑘 is negative a Rossby wave always carries westward (or negative) momentum with it.
at is, 𝐹𝑘 is always negative and increases (becomes more positive) as the wave is attenuated;
that is to say, if 𝑟 ≠ 0 then 𝜕𝐹𝑘/𝜕𝑦 is positive and from (3.58) the mean flow is acceleratedwest-
ward as the wave dissipates. is acceleration will be particularly strong if the wave approaches
a critical layer where 𝑢 = 𝑐. Indeed, such a situation arises when Rossby waves, generated in
mid-latitudes, propagate equatorward. As the waves enter the subtropics 𝑢−𝑐 becomes smaller
and the waves dissipate, producing a westward force on the mean flow, even though a true crit-
ical layer may never be reached. Globally, momentum is conserved because there is an equal
and opposite (and therefore eastward) wave force at the wave source producing an eddy-driven
jet, as discussed in the previous chapter.

3.6.3 Interpretation using wave activity
Wecanderive and interpret the above results by thinking about the propagation ofwave activity.
For barotropic Rossby waves, multiply (3.48) by 𝜁/𝛽∗ and zonally average to obtain the wave
activity equation,

𝜕
𝜕𝑡
+ 𝜕
𝜕𝑦
= −𝛼 , (3.59)

where = 𝜁′2/2𝛽∗ is the wave activity density, 𝜕 /𝜕𝑦 = 𝑣′𝜁′ is its flux divergence, and
𝛼 = 2𝑟. Referring as needed to the discussion in sections 3.A.2 and 3.A.3, the flux obeys the
group velocity property so that

𝜕
𝜕𝑡
+ 𝜕
𝜕𝑦
(𝒄𝑔 ) = −𝛼 . (3.60)

Let us suppose that the wave is in a statistical steady state and that the spatial variation of
the group velocity occurs on a longer spatial scale than the variations in wave activity density,
consistent with the WKB approximation. We then have

𝑐𝑦𝑔
𝜕
𝜕𝑦
= −𝛼 . (3.61)

which integrates to give

(𝑦) = 0 exp󶀦−󵐐
𝑦 𝛼
𝑐𝑦𝑔
d𝑦′󶀶 . (3.62)

at is, the attenuation rate of the wave activity is the dissipation rate of wave activity divided
by the group velocity, as in (3.55) and (3.57) (note that 𝛼 = 2𝑟).
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In this appendix we derive various properties of Rossby waves useful in wave–mean-flow in-
teraction theory, assuming a good knowledge of stratified quasi-geostrophic theory. We use
the Boussinesq approximation throughout. is material was not presented in the lectures at
Walsh.
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3.A.1 e Eliassen–Palm Flux
e eddy flux of potential vorticity may be expressed in terms of vorticity and buoyancy fluxes
as

𝑣′𝑞′ = 𝑣′𝜁′ + 𝑓0𝑣′
𝜕
𝜕𝑧
󶀥 𝑏
′

𝑁2
󶀵 . (3.63)

e second term on the right-hand side can be written as

𝑓0𝑣′
𝜕
𝜕𝑧
󶀥 𝑏
′

𝑁2
󶀵 = 𝑓0
𝜕
𝜕𝑧
󶀥𝑣
′𝑏′
𝑁2
󶀵 − 𝑓0
𝜕𝑣′
𝜕𝑧
𝑏′
𝑁2

= 𝑓0
𝜕
𝜕𝑧
󶀥𝑣
′𝑏′
𝑁2
󶀵 − 𝑓0
𝜕
𝜕𝑥
󶀥𝜕𝜓
′

𝜕𝑧
󶀵 𝑏
′

𝑁2

= 𝑓0
𝜕
𝜕𝑧
󶀥𝑣
′𝑏′
𝑁2
󶀵 − 𝑓

2
0
2𝑁2
𝜕
𝜕𝑥
󶀥𝜕𝜓
′

𝜕𝑧
󶀵
2
,

(3.64)

using 𝑏′ = 𝑓0𝜕𝜓′/𝜕𝑧.
Similarly, the flux of relative vorticity can be written

𝑣′𝜁′ = − 𝜕
𝜕𝑦
(𝑢′𝑣′) + 1

2
𝜕
𝜕𝑥
(𝑣′2 − 𝑢′2) (3.65)

Using (3.64) and (3.65), (3.63) becomes

𝑣′𝑞′ = − 𝜕
𝜕𝑦
(𝑢′𝑣′) + 𝜕

𝜕𝑧
󶀥 𝑓0
𝑁2
𝑣′𝑏′󶀵 + 1

2
𝜕
𝜕𝑥
󶀥(𝑣′2 − 𝑢′2) − 𝑏

′2

𝑁2
󶀵 . (3.66)

us the meridional potential vorticity flux, in the quasi-geostrophic approximation, can be
written as the divergence of a vector: 𝑣′𝑞′ = ∇ ⋅ where

≡ 1
2
󶀥(𝑣′2 − 𝑢′2) − 𝑏

′2

𝑁2
󶀵 𝐢 − (𝑢′𝑣′) 𝐣 + 󶀥 𝑓0

𝑁2
𝑣′𝑏′󶀵𝐤. (3.67)

A particularly useful form of this arises aer zonally averaging, for then (3.66) becomes

𝑣′𝑞′ = − 𝜕
𝜕𝑦
𝑢′𝑣′ + 𝜕
𝜕𝑧
󶀥 𝑓0
𝑁2
𝑣′𝑏′󶀵 . (3.68)

e vector defined by

≡ −𝑢′𝑣′ 𝐣 + 𝑓0
𝑁2
𝑣′𝑏′ 𝐤 (3.69)

is called the (quasi-geostrophic) Eliassen–Palm (EP) flux,1 and its divergence, given by (3.68),
gives the poleward flux of potential vorticity:

𝑣′𝑞′ = ∇𝑥 ⋅ , (3.70)

where ∇𝑥⋅ ≡ (𝜕/𝜕𝑦, 𝜕/𝜕𝑧)⋅ is the divergence in the meridional plane. Unless the meaning is
unclear, the subscript 𝑥 on the meridional divergence will be dropped.
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3.A.2 e Eliassen–Palm relation
On dividing by 𝜕𝑞/𝜕𝑦 and using (3.70), the enstrophy equation (??) becomes

𝜕
𝜕𝑡
+ ∇ ⋅ = , (3.71a)

where

= 𝑞
′2

2𝜕𝑞/𝜕𝑦
, = 𝐷

′𝑞′
𝜕𝑞/𝜕𝑦
. (3.71b)

Equation (3.71a) is known as the Eliassen–Palm relation, and it is a conservation law for the
wave activity density . e conservation law is exact (in the linear approximation) if themean
flow is constant in time. It will be a good approximation if 𝜕𝑞/𝜕𝑦 varies slowly compared to
the variation of 𝑞′2.

If we integrate (3.71b) over a meridional area 𝐴 bounded by walls where the eddy activity
vanishes, and if = 0, we obtain

d
d𝑡
󵐐
𝐴
d𝐴 = 0. (3.72)

e integral is awave activity—aquantity that is quadratic in the amplitude of the perturbation
and that is conserved in the absence of forcing and dissipation. In this case is the negative of
the pseudomomentum, for reasons wewill encounter later. (‘Wave action’ is a particular form of
wave activity; it is the energy divided by the frequency and it is a conserved property in many
wave problems.) Note that neither the perturbation energy nor the perturbation enstrophy
are wave activities of the linearized equations, because there can be an exchange of energy
or enstrophy between mean and perturbation — indeed, this is how a perturbation grows in
baroclinic or barotropic instability! is is already evident from (??), or in general take (??)
with𝐷′ = 0 and multiply by 𝑞′ to give the enstrophy equation

1
2
𝜕𝑞′2
𝜕𝑡
+ 1
2
𝒖 ⋅ ∇𝑞′2 + 𝒖′𝑞′ ⋅ ∇𝑞 = 0, (3.73)

where here the overbar is an average (although it need not be a zonal average). Integrating this
over a volume 𝑉 gives

d𝑍̂′
d𝑡
≡ d
d𝑡
󵐐
𝑉

1
2
𝑞′2 d𝑉 = −󵐐

𝑉
𝒖′𝑞′ ⋅ ∇𝑞 d𝑉. (3.74)

e right-hand side does not, in general, vanish and so 𝑍̂′ is not in general conserved.

3.A.3 e group velocity property for Rossby waves
e vector describes how the wave activity propagates. In the case in which the disturbance
is composed of plane or almost plane waves that satisfy a dispersion relation, then = 𝒄𝑔 ,
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where 𝒄𝑔 is the group velocity and (3.71a) becomes

𝜕
𝜕𝑡
+ ∇ ⋅ ( 𝒄𝑔) = 0. (3.75)

is is a useful property, because if we can diagnose 𝒄𝑔 from observations we can use (3.71a)
to determine how wave activity density propagates. Let us demonstrate this explicitly for the
pseudomomentum in Rossby waves, that is for (3.71a).

e Boussinesq quasi-geostrophic equation on the 𝛽-plane, linearized around a uniform
zonal flow and with constant static stability, is

𝜕𝑞′
𝜕𝑡
+ 𝑢𝜕𝑞

′

𝜕𝑥
+ 𝑣′ 𝜕𝑞
𝜕𝑦
= 0, (3.76)

where 𝑞′ = [∇2 + (𝑓20 /𝑁2)𝜕2/𝜕𝑧2]𝜓′ and, if 𝑢 is constant, 𝜕𝑞/𝜕𝑦 = 𝛽. us we have

󶀥 𝜕
𝜕𝑡
+ 𝑢 𝜕
𝜕𝑥
󶀵󶁦∇2𝜓′ + 𝜕

𝜕𝑧
󶀤 𝑓
2
0
𝑁2
𝜕𝜓′
𝜕𝑧
󶀴󶁶 + 𝛽𝜕𝜓

′

𝜕𝑥
= 0. (3.77)

Seeking solutions of the form

𝜓′ = Re 󵰑𝜓ei(𝑘𝑥+𝑙𝑦+𝑚𝑧−𝜔𝑡), (3.78)

we find the dispersion relation,

𝜔 = 𝑢𝑘 − 𝛽𝑘
𝜅2
. (3.79)

where 𝜅2 = (𝑘2 + 𝑙2 + 𝑚2𝑓20 /𝑁2), and the group velocity components:

𝑐𝑦𝑔 =
2𝛽𝑘𝑙
𝜅4
, 𝑐𝑧𝑔 =

2𝛽𝑘𝑚𝑓20 /𝑁2
𝜅4
. (3.80)

Also, if 𝑢′ = Re 󵰑𝑢 exp[i(𝑘𝑥 + 𝑙𝑦 + 𝑚𝑧 − 𝜔𝑡)], and similarly for the other fields, then

󵰑𝑢 = −Re i𝑙 󵰑𝜓, 󵰑𝑣 = Re i𝑘 󵰑𝜓,
𝑏̃ = Re i𝑚𝑓0 󵰑𝜓, 󵰑𝑞 = −Re 𝜅2 󵰑𝜓,

(3.81)

e wave activity density is then

= 1
2
𝑞′2
𝛽
= 𝜅
4

4𝛽
| 󵰑𝜓2|, (3.82)

where the additional factor of 2 in the denominator arises from the averaging. Using (3.81) the
EP flux, (3.69), is

𝑦 = −𝑢′𝑣′ = 1
2
𝑘𝑙| 󵰑𝜓2|, 𝑧 = 𝑓0

𝑁2
𝑣′𝑏′ = 𝑓

2
0
2𝑁2
𝑘𝑚| 󵰑𝜓2|. (3.83)
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Using (3.80), (3.82) and (3.83) we obtain

= ( 𝑦, 𝑧) = 𝒄𝑔 . (3.84)

If the properties of the medium are slowly varying, so that a (spatially varying) group velocity
can still be defined, then this is a useful expression to estimate how thewave activity propagates
in the atmosphere and in numerical simulations.

3.A.4 Energy flux in Rossby waves
Start with

𝜕
𝜕𝑡
󶀡∇2 − 𝑘2𝑑󶀱 𝜓 + 𝛽

𝜕𝜓
𝜕𝑥
= 0. (3.85)

To obtain an energy equation multiply (3.85) by −𝜓 and obtain

1
2
𝜕
𝜕𝑡
󶀡(∇𝜓)2 + 𝑘2𝑑𝜓2󶀱 − ∇ ⋅ 󶀥𝜓∇

𝜕𝜓
𝜕𝑡
+ 𝐢𝛽
2
𝜓2󶀵 = 0, (3.86)

where 𝐢 is the unit vector in the 𝑥 direction. e first group of terms are the energy itself, or
more strictly the energy density. (An energy density is an energy per unit mass or per unit
volume, depending on the context.) e term (∇𝜓)2/2 = (𝑢2 + 𝑣2)/2 is the kinetic energy and
𝑘2𝑑𝜓2/2 is the potential energy, proportional to the displacement of the free surface, squared.
e second term is the energy flux, so that we may write

𝜕𝐸
𝜕𝑡
+ ∇ ⋅ 𝑭 = 0. (3.87)

where 𝐸 = (∇𝜓)2/2+𝑘2𝑑𝜓2 and 𝑭 = − 󶀡𝜓∇𝜕𝜓/𝜕𝑡 + 𝐢𝛽𝜓2󶀱. We haven’t yet used the fact that the
disturbance has a dispersion relation, and if we do so we may expect that the energy moves at
the group velocity. Let us now demonstrate this explicitly.

We assume a solution of the form

𝜓 = 𝐴(𝑥) cos(𝒌 ⋅ 𝒙 − 𝜔𝑡) = 𝐴(𝑥) cos (𝑘𝑥 + 𝑙𝑦 − 𝜔𝑡) (3.88)

where 𝐴(𝑥) is assumed to vary slowly compared to the nearly plane wave. (Note that 𝒌 is the
wave vector, to be distinguished from 𝐤, the unit vector in the 𝑧-direction.) e kinetic energy
in a wave is given by

KE = 𝐴
2

2
󶀢𝜓2𝑥 + 𝜓2𝑦󶀲 (3.89)

so that, averaged over a wave period,

KE = 𝐴
2

2
(𝑘2 + 𝑙2) 𝜔

2π
󵐐
2π/𝜔

0
sin2(𝒌 ⋅ 𝒙 − 𝜔𝑡)d𝑡. (3.90)
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e time-averaging produces a factor of one half, and applying a similar procedure to the po-
tential energy we obtain

KE = 𝐴
2

4
(𝑘2 + 𝑙2), PE = 𝐴

2

4
𝑘2𝑑, (3.91)

so that the average total energy is

𝐸 = 𝐴
2

4
(𝐾2 + 𝑘2𝑑), (3.92)

where𝐾2 = 𝑘2 + 𝑙2.
e flux, 𝑭, is given by

𝑭 = −󶀥𝜓∇𝜕𝜓
𝜕𝑡
+ 𝐢𝛽
2
𝜓2󶀵 = −𝐴2 cos2(𝒌 ⋅ 𝒙 − 𝜔𝑡) 󶀥𝒌𝜔 − 𝐢𝛽

2
󶀵 , (3.93)

so that evidently the energy flux has a component in the direction of the wavevector, 𝒌, and a
component in the 𝑥-direction. Averaging over a wave period straightforwardly gives us addi-
tional factors of one half:

𝑭 = −𝐴
2

2
󶀥𝒌𝜔 + 𝐢𝛽

2
󶀵 . (3.94)

We now use the dispersion relation 𝜔 = −𝛽𝑘/(𝐾2 + 𝑘2𝑑) to eliminate the frequency, giving

𝑭 = 𝐴
2𝛽
2
󶀦𝒌 𝑘
𝐾2 + 𝑘2𝑑

− 𝐢1
2
󶀶 , (3.95)

and writing this in component form we obtain

𝑭 = 𝐴
2𝛽
4
󶁦𝐢 󶀦𝑘
2 − 𝑙2 − 𝑘2𝑑
𝐾2 + 𝑘2𝑑

󶀶 + 𝐣󶀦 2𝑘𝑙
𝐾2 + 𝑘2𝑑

󶀶󶁶 (3.96)

Comparison of (3.96) with (3.15) and (3.92) reveals that

𝑭 = 𝒄𝑔𝐸 (3.97)

so that the energy propagation equation, (3.87), when averaged over a wave, becomes

𝜕𝐸
𝜕𝑡
+ ∇ ⋅ 𝒄𝑔𝐸 = 0. (3.98)

is is an important result, and more general than our derivation implies. One immediate
implication is that if there is a disturbance that generates waves, the group velocity is directed
away from the disturbance.

Most of the time in waves, energy is not conserved because it can be extracted from the
flow.
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.B A B: T WKB A  L W
We are concerned with finding solutions to an equation of the form

d2𝜉
d𝑧2
+ 𝑚2(𝑧)𝜉 = 0, (3.99)

where 𝑚2(𝑧) is positive for wavelike solutions. If 𝑚 is constant the solution has the harmonic
form

𝜉 = Re𝐴0ei𝑚𝑧 (3.100)
where𝐴0 is a complex constant. If𝑚 varies only ‘slowly’ with 𝑧— meaning that the variations
occur on a scale much longer than 1/𝑚 — one might reasonably expect that the harmonic
solution above would provide a reasonable first approximation; that is, we expect the solution
to locally look like a plane wave with local wavenumber𝑚(𝑧). However, we might also expect
that the solution would not be exactly of the form exp(i𝑚(𝑧)𝑧), because the phase of 𝜉 is 𝜃(𝑧) =
𝑚𝑧, so that d𝜃/d𝑧 = 𝑚 + 𝑧d𝑚/d𝑧 ≠ 𝑚. us, in (3.100) 𝑚 is not the wavenumber unless 𝑚
is constant. Nevertheless, this argument suggests that we seek solutions of a similar form to
(3.100), and we find such solutions by way of a perturbation expansion below. We note that the
condition that variations in𝑚, or in the wavelength𝑚−1, occur only slowly may be expressed
as

𝑚
|𝜕𝑚/𝜕𝑧|

≫ 𝑚−1 or 󶙥𝜕𝑚
𝜕𝑧
󶙥 ≪ 𝑚2. (3.101)

is conditionwill generally be satisfied if variations in the background state, or in themedium,
occur on a scale much longer than the wavelength.

3.B.1 Solution by perturbation expansion
To explicitly recognize the rapid variation of𝑚we rescale the coordinate 𝑧with a small param-
eter 𝜖; that is, we let 󵰁𝑧 = 𝜖𝑧 where 󵰁𝑧 varies by (1) over the scale on which𝑚 varies. Eq. (3.99)
becomes

𝜖2 d
2𝜉
d󵰁𝑧2
+ 𝑚2(󵰁𝑧)𝜉 = 0, (3.102)

and we may now suppose that all variables are (1). If 𝑚 were constant the solution would
be of the form 𝜉 = 𝐴 exp(𝑚󵰁𝑧/𝜖) and this suggests that we look for a solution to (3.102) of the
form

𝜉(𝑧) = e𝑔(󵰁𝑧)/𝜖, (3.103)
where 𝑔(󵰁𝑧) is some as yet unknown function. We then have, with primes denoting derivatives,

𝜉′ = 1
𝜖
𝑔′e𝑔/𝜖, 𝜉″ = 󶀤 1

𝜖2
𝑔′2 + 1
𝜖
𝑔″󶀴 e𝑔/𝜖. (3.104a,b)

Using these expressions in (3.102) yields

𝜖𝑔″ + 𝑔′2 + 𝑚2 = 0, (3.105)
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and if we let 𝑔 = ∫ ℎ d󵰁𝑧 we obtain

𝜖dℎ
d󵰁𝑧
+ ℎ2 + 𝑚2 = 0. (3.106)

To obtain a solution of this equation we expand ℎ in powers of the small parameter 𝜖,

ℎ(󵰁𝑧; 𝜖) = ℎ0(󵰁𝑧) + 𝜖ℎ1(󵰁𝑧) + 𝜖2ℎ2(󵰁𝑧) + ⋯ . (3.107)

Substituting this in (3.106) and setting successive powers of 𝜖 to zero gives, at first and second
order,

ℎ20 + 𝑚2 = 0, 2ℎ0ℎ1 +
dℎ0
d󵰁𝑧
= 0. (3.108a,b)

e solutions of these equations are

ℎ0 = ±i𝑚, ℎ1(󵰁𝑧) = −
1
2
d
d󵰁𝑧
ln 𝑚(󵰁𝑧)
𝑚0
. (3.109a,b)

where𝑚0 is a constant. Now, ignoring higher-order terms, (3.103) may be written in terms of
ℎ0 and ℎ1 as

𝜉(󵰁𝑧) = exp 󶀤󵐐ℎ0 d󵰁𝑧/𝜖󶀴 exp 󶀤󵐐ℎ1 d󵰁𝑧󶀴 , (3.110)

and, using (3.109) and with 𝑧 in place of 󵰁𝑧, we obtain

𝜉(𝑧) = 𝐴0𝑚−1/2 exp 󶀤±i 󵐐𝑚d𝑧󶀴 . (3.111)

where 𝐴0 is a constant, and this is the WKB solution to (3.99). In general

𝜉(𝑧) = 𝐵0𝑚−1/2 exp 󶀢i∫𝑚d𝑧󶀲 + 𝐶0𝑚−1/2 exp 󶀢−i∫𝑚d𝑧󶀲 . (3.112)

or
𝜉(𝑧) = 𝐷0𝑚−1/2 cos 󶀢∫𝑚d𝑧󶀲 + 𝐸0𝑚−1/2 sin 󶀢∫𝑚d𝑧󶀲 . (3.113)

A property of (3.111) is that the derivative of the phase is just 𝑚; that is, 𝑚 is indeed the
local wavenumber. Note that a crucial aspect of the derivation is that 𝑚 varies slowly, so that
there is a small parameter, 𝜖, in the problem. Having said this, it is oen the case that WKB
theory can provide qualitative guidance even when there is little scale separation between the
variation of the background state and the wavelength. Asymptotics oen works when it seem-
ingly shouldn’t.
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C 4
T H C

In this short chapter we take a look at the general circulation of the atmosphere, and in partic-
ular the Hadley Cell. Look again at the zonally averaged circulation in the top panel of Fig. 1.2.
e centre two circulations are the Hadley cells. Deep tropical convection lis air near at the
Intertropical Convergence Zone (ITCZ) near the equator. At the tropopause its vertical mo-
tion is inhibited by strong static stability, so it begins a poleward migration which extends as
far as some critical latitude 𝜗𝐻. In this chapter we will attempt to explain why the Hadley cell
terminates at 𝜗𝐻, and not some other latitude. We will outline three possibilities.

1. e Hadley Cell is terminated in order to satisfy certain thermodynamic constraints,
described in 4.1

2. e Hadley Cell is terminated by the onset of baroclinic instability, described in section
4.2.

3. e Hadley Cell is terminated by the effects of the breaking of Rossby waves, described
in section 4.3.

Almost certainly none of these models describes the real Hadley Cell in anything other than
an approximate way, but this does not mean they are not useful.

. A Z S S M   H C
We begin with a a model of the zonally symmetric circulation – that is, the circulation has
no eddies, in fact no variation at all in the zonal direction. A parcel of air moving polewards
away from the boundary layer will then conserve its axial angular momentum, as shown in
Figure 4.1. To construct a mathematical model, following Schneider & Lindzen (1977) and
Held & Hou (1980), we suppose the following.
(i) e circulation is steady.
(ii) epolewardsmoving air conserves its axial angularmomentum, whereas the zonal flow

associated with the near-surface, equatorwards moving flow is frictionally retarded and
weak.

53
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     Angular momentum conserving flow   

Equator                                                 Subtropics            Latitude  

Warm
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Cool
descent
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Frictional return flow

Weak zonal flow at surfaceGround

Large zonal flow aloft

Figure 4.1 A simple model of the Hadley Cell. Rising air near the equator moves pole-
wards near the tropopause, descending in the subtropics and returning near the surface. e
polewards moving air conserves its axial angular momentum, leading to a zonal flow that in-
creases away from the equator. By the thermal wind relation the temperature of the air falls
as it moves polewards, and to satisfy the thermodynamic budget it sinks in the subtropics.
e return flow at the surface is frictionally retarded and small.

(iii) e circulation is in thermal wind balance.
(iv) e flow is symmetric about the equator. Seasons can in fact be added to such a model.

4.1.1 Angular momentum conservation
Momentum equation:

𝜕𝑢
𝜕𝑡
− (𝑓 + 𝜁)𝑣 + 𝑤𝜕𝑢

𝜕𝑧
= − 1
𝑎 cos2 𝜗

𝜕
𝜕𝜗
(cos2𝜗𝑢′𝑣′) − 𝜕𝑢

′𝑤′
𝜕𝑧
, (4.1)

where 𝜁 = −(𝑎 cos 𝜗)−1𝜕𝜗(𝑢 cos 𝜗) and the overbars represent zonal averages. We simplify this
to

(𝑓 + 𝜁)𝑣 = 0. (4.2)

It is easy to show that this is equivalent to

2𝛺 sin 𝜗 = 1
𝑎
𝜕𝑢
𝜕𝜗
− 𝑢 tan 𝜗
𝑎
. (4.3)
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Axis of rotation Figure 4.2 If a ring of air at the equator moves
polewards it moves closer to the axis of rotation. If
the parcels in the ring conserve their angular mo-
mentum their zonal velocity must increase; thus, if
𝑚 = (𝑢 + 𝛺𝑎 cos 𝜗)𝑎 cos 𝜗 is preserved and 𝑢 = 0
at 𝜗 = 0 we recover (4.4).

Solution is

𝑢 = 𝛺𝑎sin
2𝜗
cos 𝜗
≡ 𝑈𝑀. (4.4)

Temperature field
ermal wind balance:

2𝛺 sin 𝜗𝜕𝑢
𝜕𝑧
= −1
𝑎
𝜕𝑏
𝜕𝜗
, (4.5)

where 𝑏 = 𝑔 𝛿𝜃/𝜃0 is the buoyancy and 𝛿𝜃 is the deviation of potential temperature from a
constant reference value 𝜃0. (Be reminded that 𝜃 is potential temperature, whereas 𝜗 is lati-
tude.) Vertically integrating from the ground to the height 𝐻 where the outflow occurs and
substituting (4.4) for 𝑢 yields

1
𝑎𝜃0
𝜕𝜃
𝜕𝜗
= −2𝛺

2𝑎
𝑔𝐻
sin3𝜗
cos 𝜗
, (4.6)

where 𝜃 = 𝐻−1 ∫𝐻0 𝛿𝜃d𝑧 is the vertically averaged potential temperature. If the latitudinal
extent of the Hadley Cell is not too great we can make the small-angle approximation, and
replace sin 𝜗 by 𝜗 and cos 𝜗 by one, then integrating (4.6) gives

𝜃 = 𝜃(0) − 𝜃0𝛺
2𝑦4
2𝑔𝐻𝑎2

, (4.7)

where 𝑦 = 𝑎𝜗 and 𝜃(0) is the potential temperature at the equator, as yet unknown. Away from
the equator, the zonal velocity given by (4.4) increases rapidly polewards and the temperature
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correspondingly drops. How far polewards is this solution valid? And what determines the
value of the integration constant 𝜃(0)? To answer these questions we turn to thermodynamics.

4.1.2 ermodynamics
In the above discussion, the temperature field is slaved to the momentum field in that it seems
to follow passively from the dynamics of the momentum equation. Nevertheless, the thermo-
dynamic equation must still be satisfied. Let us assume that the thermodynamic forcing can
be represented by a Newtonian cooling to some specified radiative equilibrium temperature,
𝜃𝐸; this is a severe simplification, especially in equatorial regions where the release of heat by
condensation is important. e thermodynamic equation is then

D𝜃
D𝑡
= 𝜃𝐸 − 𝜃
𝜏
, (4.8)

where 𝜏 is a relaxation time scale, perhaps a few weeks. Let us suppose that 𝜃𝐸 falls mono-
tonically from the equator to the pole, and that it increases linearly with height, and a simple
representation of this is

𝜃𝐸(𝜗, 𝑧)
𝜃0
= 1 − 2
3
𝛥𝐻𝑃2(sin 𝜗) + 𝛥𝑉 󶀤

𝑧
𝐻
− 1
2
󶀴 , (4.9)

where 𝛥𝐻 and 𝛥𝑉 are non-dimensional constants that determine the fractional temperature
difference between the equator and the pole, and the ground and the top of the fluid, respec-
tively. 𝑃2 is the second Legendre polynomial. At 𝑧 = 𝐻/2, or for the vertically averaged field,
this approximates to

𝜃𝐸 = 𝜃𝐸0 − 𝛥𝜃󶀤
𝑦
𝑎
󶀴
2
, (4.10)

where 𝜃𝐸0 is the equilibrium temperature at the equator, 𝛥𝜃 determines the equator–pole
radiative-equilibrium temperature difference, and

𝜃𝐸0 = 𝜃0(1 + 𝛥𝐻/3), 𝛥𝜃 = 𝜃0𝛥𝐻. (4.11)

Now, let us suppose that the solution (4.7) is valid between the equator and a latitude 𝜗𝐻
where 𝑣 = 0, so that within this region the system is essentially closed. Conservation of poten-
tial temperature then requires that the solution (4.7) must satisfy

󵐐
𝑌𝐻

0
𝜃d𝑦 = 󵐐

𝑌𝐻

0
𝜃𝐸 d𝑦, (4.12)

where 𝑌𝐻 = 𝑎𝜗𝐻 is as yet undetermined. Polewards of this, the solution is just 𝜃 = 𝜃𝐸. Now,
we may demand that the solution be continuous at 𝑦 = 𝑌𝐻 (without temperature continuity
the thermal wind would be infinite) and so

𝜃(𝑌𝐻) = 𝜃𝐸(𝑌𝐻). (4.13)
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e constraints (4.12) and (4.13) determine the values of the unknowns 𝜃(0) and 𝑌𝐻. A little
algebra (problem 4.??) gives

𝑌𝐻 = 󶀥
5𝛥𝜃𝑔𝐻
3𝛺2𝜃0
󶀵
1/2
, (4.14)

and
𝜃(0) = 𝜃𝐸0 − 󶀥

5𝛥𝜃2𝑔𝐻
18𝑎2𝛺2𝜃0

󶀵 . (4.15)

A useful non-dimensional number that parameterizes these solutions is

𝑅 ≡ 𝑔𝐻𝛥𝜃
𝜃0𝛺2𝑎2

= 𝑔𝐻𝛥𝐻
𝛺2𝑎2
, (4.16)

which is the square of the ratio of the speed of shallow water waves to the rotational velocity
of the Earth, multiplied by the fractional temperature difference from equator to pole. Typical
values for the Earth’s atmosphere are a little less than 0.1. In terms of 𝑅 we have

𝑌𝐻 = 𝑎 󶀤
5
3
𝑅󶀴
1/2
, (4.17)

and

𝜃(0) = 𝜃𝐸0 − 󶀤
5
18
𝑅󶀴𝛥𝜃 . (4.18)

e solution, (4.7) with 𝜃(0) given by (4.18) is plotted in Fig. 4.3. Perhaps the single most
important aspect of the model is that it predicts that the Hadley Cell has a finitemeridional ex-
tent, even for an atmosphere that is completely zonally symmetric. e baroclinic instability that
does occur in mid-latitudes is not necessary for the Hadley Cell to terminate in the subtropics,
although it may be an important factor, or even the determining factor, in the real world.

4.1.3 Zonal wind
e angular-momentum-conserving zonal wind is given by (4.4), which in the small-angle
approximation becomes

𝑈𝑀 = 𝛺
𝑦2
𝑎
. (4.19)

is relation holds for 𝑦 < 𝑌𝐻. e zonal wind corresponding to the radiative-equilibrium
solution is given using thermal wind balance and (4.10), which leads to

𝑈𝐸 = 𝛺𝑎𝑅, (4.20)

and this holds polewards of 𝑌𝐻, or 𝜗𝐻, as sketched in Fig. 4.4.
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Figure 4.3 e radiative
equilibrium temperature (𝜃𝐸,
dashed line) and the angular-
momentum-conserving
solution (𝜃𝑀, solid line) as
a function of latitude. e
two dotted regions have
equal areas. e parameters
are: 𝜃𝐸𝑂 = 303K, 𝛥𝜃 =
50K, 𝜃0 = 300K, 𝛺 =
7.272 × 10−5 s−1, 𝑔 =
9.81ms−2, 𝐻 = 10 km.
ese give 𝑅 = 0.076 and
𝑌𝐻/𝑎 = 0.356, corresponding
to 𝜗𝐻 = 20.4°.

Figure 4.4 e zonal wind corre-
sponding to the radiative equilibrium
temperature (𝑈𝐸,) and the angular-
momentum-conserving solution
(𝑈𝑀) as a function of latitude, given
(4.19) and (4.20) respectively. e
zonal wind (in the model) follows
the thick solid line: 𝑢 = 𝑈𝑚 for
𝜗 < 𝜗𝐻 (𝑦 < 𝑌𝐻), and 𝑢 = 𝑈𝐸 for
𝜗 > 𝜗𝐻 (𝑦 > 𝑌𝐻), and so has a
discontinuity at 𝜗𝐻

. B I  T   H C
One mechanism that could halt the Hadley Cell is baroclinic instability. Having assumed that
the surface winds are weak, and knowing the upper level zonal velocity from (4.4), the shear
𝜕𝑈𝑀/𝜕𝑧 is determined by the height of the tropopause𝐻, which we suppose to be a constant.
At some latitude 𝜗𝐶 the shear will become baroclinically unstable at which point any assump-
tion of zonal symmetry will break down and the Hadley Cell will terminate. What model of
baroclinic instability should we use to calculate this? e Eady model has no critical shear
— all shears are unstable — but it has no beta-effect and beta is almost certainly important.
e Charney model has beta, but it too has no critical shear. However, small shears give rise to
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shallow, weak instabilities that may not be important. us, we are led to the two-level Phillips
model of baroclinic instability, because it accounts for the 𝛽 effect.

In the Phillips model, a flow becomes unstable when it reaches a critical velocity difference
between upper and lower levels given by

𝑈 = 𝑈1 − 𝑈2 =
1
4
𝛽𝐿2𝑑 (4.21)

where 𝐿𝑑 = 𝑁𝐻/𝑓 is the baroclinic deformation radius, and on the sphere 𝛽 = 2𝛺 cos 𝜙/𝑎.
Both 𝛽 and the 𝑓 hiding in 𝐿𝑑 make this 𝑈 grow towards the equator and decay towards the
pole.

Now, from the Hadley Cell solution

𝑈 = 𝛺𝑎sin
2 𝜙
cos 𝜙

(4.22)

so that, modulo constant factors, the Hadley Cell terminates when

sin4 𝜙𝑐
cos2 𝜙𝑐
= 𝑁
2𝐻2
𝛺2𝑎2
, (4.23)

or, with a small angle approximation,

𝜗𝐻 ≈ 󶀥
𝑁2𝐻2
𝛺2𝑎2
󶀵
1/4
∼ (𝑁𝐻)1/2. (4.24)

As we discussed previously, both theory and modelling suggest that the tropopause will
move higher as Global Warming progresses. is model shows that such an increase in 𝐻
should be accompanied by a poleward expansion of the Hadley cell, perhaps by 1°– 2° over
the 21st century. But perhaps even more significant will be the changes in𝑁2, which is essen-
tially set by the moist adiabatic lapse rate. A warmer atmosphere will hold more moisture by
Clausius-Clapeyron (assuming no major changes in the relative humidity) which reduces the
moist adiabatic lapse rate and reduces 𝑁2. us the Hadley cell might in fact shrink equator
based on this reasoning. However, the value of 𝑁 in (4.24) should be evaluated at 𝜗𝐻 where
the baroclinic instability occurs. is is not determined by the moist adiabatic lapse rate, and
indeed model results suggest that subtropic static stability may increase with global warming,
which would lead to an expansion of the Hadley Cell.

. E  R- 
We will conclude this lecture with an outline of a third model for the extent of the Hadley Cell.
Recall we had reduced the zonal momentum equation (4.1) to a balance of two terms; let us
now include a third for the momentum balance within the Hadley Cell:

(𝑓 + 𝜁)𝑣 = − 𝜕
𝜕𝑦
󶀢𝑢′𝑣′󶀲 . (4.25)



60 C . T H C

Figure 4.5 A schematic for the mechanism described in section 4.3. Rossby waves are
generated through baroclinic instability at mid-latitudes, accelerating the flow eastwards:
𝜕(𝑢′𝑣′)/𝜕𝑦 > 0. Some propagate equatorwards, and deposit westward momentum,
𝜕(𝑢′𝑣′)/𝜕𝑦 < 0, near the critical latitude inside the Hadley cell. At some latitude the Rossby
wave momentum flux is neither convergent nor divergent, 𝜕(𝑢′𝑣′)/𝜕𝑦 = 0, corresponding
to the edge of the Hadley cell.

However, at the edge of the Hadley Cell we have 𝑣 = 0, and thus 𝜕𝑦 󶀢𝑢′𝑣′󶀲 = 0. is is not nec-
essarily the latitude where the flow is baroclinically unstable (Section 4.2). Rather, baroclinic
instability, occurring at some latitude possibly poleward of here, generates Rossby waves; some
of these propagate equatorwards and attenuate as they approach a critical latitude where the
mean zonal wind matches the Rossby wave’s phase speed (recall the discussion of chapter 3).
Recalling our previous discussion, angular momentum conservation initiates a situation with
weak winds in low-latitudes and strongly eastward winds inmid-latitudes. us a Rossby wave
generated at mid-latitude has a phase speed somewhat less than the peak eastward wind speed,
but certainly still positive for realistic parameters. is Rossbywave, then, will encounter a crit-
ical latitude equatorward of which it cannot flow. e wave breaks near this critical latitude
and accelerates the zonal wind westward. is acceleration means that the next Rossby wave
will encounter its critical latitude slightly more polewards. We thus have a situation in which
the Rossby wave momentum flux convergence 𝜕(𝑢′𝑣′)/𝜕𝑦 is positive in the mid-latitudes and
negative in the low-latitudes, requiring a zero crossing 𝜕(𝑢′𝑣′)/𝜕𝑦 = 0 at some latitude in
between, shown schematically in Figure 4.5. is, as was argued through (4.25), is the edge
of the Hadley cell. Note that this edge is equatorward of where the baroclinic instability oc-
curs (which was taken to be the edge in Section 4.2). e precise latitude will be established
through a feedback between the eastward acceleration by angular momentum conservation
and westward acceleration by Rossby wave breaking.
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We now turn our attention to the ocean. Our goal in this chapter and the next is to describe
a theory for the deep circulation of the ocean, sometimes called the meridional overturning
circulation (MOC) and occasionally the thermohaline circulation. We begin in this chapter by
showing that there have to be winds or some other form ofmechanical forcing in order to drive
a substantial deep ocean circulation. e root effect goes back to Sandström, and although his
rigour was suspect it seems his intuition was right.

. S’ E
We first give an argument that is similar in spirit to the one that Sandström gave in his original
papers (Sandström 1908, 1916).

5.1.1 Maintaining a steady baroclinic circulation
e Boussinesq equations are

D𝒗
D𝑡
= −∇𝜙 + 𝑏𝐤 + 𝑭, D𝑏

D𝑡
= 𝑄̇, ∇ ⋅ 𝒗 = 0, (5.1a,b,c)

where 𝐹 represents frictional terms and 𝑄̇ = 𝐽 + 𝜅∇2𝑏 (that is, the heating term here includes
the effects of diffusion). e circulation, 𝐶, changes according to

D𝐶
D𝑡
= D
D𝑡
󵐔𝒗 ⋅ d𝒓 = 󵐔󶀤D𝒗

D𝑡
⋅ d𝒓 + 𝒗 ⋅ d𝒗󶀴

= 󵐔𝑏𝐤 ⋅ d𝒓 + 󵐔𝑭 ⋅ d𝒓,
(5.2)

61
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(Note that rotation does no work.) Furthermore, we can write rate of change of circulation
itself as

D𝐶
D𝑡
= 󵐔󶀥𝜕𝒗
𝜕𝑡
+ 𝒗 ⋅ ∇𝒗󶀵 ⋅ d𝒓 = 󵐔󶀥𝜕𝒗

𝜕𝑡
+ 𝝎 × 𝒗󶀵 ⋅ d𝒓. (5.3)

Let us assume the flow is steady, so that 𝜕𝒗/𝜕𝑡 vanishes. Let us further choose the path of
integration to be a streamline, which since the flow is steady is also a parcel trajectory. e
second term on the right-most expression of (5.3) then also vanishes and (5.2) becomes

󵐔𝑏d𝑧 = −󵐔𝑭 ⋅ d𝒓 = −󵐔 𝑭
|𝒗|
⋅ 𝒗 d𝑟, (5.4)

where the last equality follows because the path is everywhere parallel to the velocity. Let us
now assume that the friction retards the flow, and that∮𝑭 ⋅ 𝒗/|𝒗| d𝑟 < 0. (One form of friction
that has this property is linear drag, 𝑭 = −𝐶𝒗 where 𝐶 is a constant. e property is similar
to, but not the same as, the property that the friction dissipates kinetic energy over the circuit.)
Making this assumption, if we integrate the term on the le-hand side by parts we obtain

󵐔𝑧d𝑏 < 0. (5.5)

Now, because the integration circuit in (5.6) is a fluid trajectory, the change in buoyancy d𝑏 is
proportional to the heating of a fluid element as it travels the circuit d𝑏 = 𝑄̇ d𝑡 = d𝑄, where
the heating includes diffusive effects).

󵐔𝑧d𝑄 < 0. (5.6)

us, the inequality implies that the net heating must be negatively correlated with height:
that is, the heating must occur, on average, at a lower level than the cooling in order that a steady
circulation may be maintained against the retarding effects of friction.

A compressible fluid
A similar result can be obtained for a compressible fluid. We write the baroclinic circulation
theorem as

D𝐶
D𝑡
= 󵐔𝑝d𝛼 + 󵐔𝑭 ⋅ d𝒓 = 󵐔𝑇d𝜂 + 󵐔𝑭 ⋅ d𝒓, (5.7)

where 𝜂 is the specific entropy. en, by precisely the same arguments as led to (5.6), we are
led to the requirements that

󵐔𝑇d𝜂 > 0 or equivalently 󵐔𝑝d𝛼 > 0. (5.8a,b)

Equation (5.8a) means that parcels must gain entropy at high temperatures and lose entropy at
low temperatures; similarly, from (5.6b), a parcel must expand (d𝛼 > 0) at high pressures and
contract at low pressures.
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For an ideal gas we can put these statements into a form analogous to (5.6) by noting that
d𝜂 = 𝑐𝑝(d𝜃/𝜃), where 𝜃 is potential temperature, and using the definition of potential temper-
ature, (??). With these we have

󵐔𝑇d𝜂 = 󵐔𝑐𝑝
𝑇
𝜃
d𝜃 = 󵐔 𝑐𝑝 󶀥

𝑝
𝑝𝑅
󶀵
𝜅
d𝜃, (5.9)

and (5.8a) becomes

󵐔𝑐𝑝 󶀥
𝑝
𝑝𝑅
󶀵
𝜅
d𝜃 > 0 . (5.10)

Because the path of integration is a fluid trajectory, d𝜃 is proportional to the heating of a fluid
element. us [and analogous to the Boussinesq result (5.6)], (5.10) implies that the heating
(the potential temperature increase) must occur at a higher pressure than the cooling in order that
a steady circulation may be maintained against the retarding effects of friction.

ese results may be understood by noting that the heatingmust occur at a higher pressure
than the cooling in order that workmay be done, the work being necessary to convert potential
energy into kinetic energy to maintain a circulation against friction. More informally, if the
heating is below the cooling, then the heated fluid will expand and become buoyant and rise,
and a steady circulation between heat source and heat sink can readily be imagined. On the
other hand, if the heating is above the cooling there is no obvious pathway between source and
sink.

5.1.2 A rigorous result
Following Paparella & Young (2002) We now show that more rigorously that, if the diffusivity
is small, the circulation is in a certain sense weak. Now including molecular viscosity and
diffusivity, the equations of motion are

𝜕𝒗
𝜕𝑡
+ (𝒇 + 2𝝎) × 𝒗 = −∇𝐵 + 𝑏𝐤 + 𝜈∇2𝒗, (5.11a)

D𝑏
D𝑡
= 𝜕𝑏
𝜕𝑡
+ ∇ ⋅ (𝑏𝒗) = 𝑄̇ = 𝐽 + 𝜅∇2𝑏, (5.11b)

∇ ⋅ 𝒗 = 0, (5.11c)

Multiply the momentum equation by 𝒗 and integrate over a volume to give

d
d𝑡
󶄄1
2
𝒗2󶄔 = ⟨𝑤𝑏⟩ − 𝜀, (5.12)

where angle brackets denote a volume average and

𝜀 = −𝜈 󶄁𝒗 ⋅ ∇2𝒗󶄑 = 𝜈 󶄁𝝎2󶄑 , (5.13)
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aer integrating by parts. e dissipation, 𝜀, is a positive definite quantity.
Write the buoyancy equation as

D𝑏𝑧
D𝑡
= 𝑧D𝑏
D𝑡
+ 𝑏D𝑧
D𝑡
= 𝑧𝑄̇ + 𝑏𝑤, (5.14)

whence
d
d𝑡
⟨𝑏𝑧⟩ = 󶄁𝑧𝑄̇󶄑 + ⟨𝑏𝑤⟩ . (5.15)

Subtracting (5.15) from (5.12) gives the energy equation

d
d𝑡
󶄄1
2
𝒗2 − 𝑏𝑧󶄔 = − 󶄁𝑧𝑄̇󶄑 − 𝜀. (5.16)

In a steady state:
󶄁𝑧𝑄̇󶄑 = −𝜀 < 0. (5.17)

is is an analogue of our earlier results. It says that if we want to have a dissipative, statistically
steady flow there has to be a negative correlation between heating and 𝑧. Put simply, the heating
has to be below the cooling. But note that the heating and cooling include the diffusive terms.

With diffusion only
Take 𝑄̇ = 𝜅∇2𝑏 whence (5.17) becomes

𝜅
𝑉
󵐐𝑧∇2𝑏d𝑉 = −𝜀 (5.18)

e horizontal part of the integral vanishes so that

𝜅
𝐻
󵐐
0

−𝐻
𝑧𝜕
2𝑏
𝜕𝑧2
d𝑧 = −𝜀. (5.19)

where an overbar is a horizontal average. Integrating the LHS by parts gives

𝜅
𝐻
󶁢𝑏(0) − 𝑏(−𝐻)󶁲 = 𝜀. (5.20)

e LHS is bounded by the surface buoyancy gradient, so the KE dissipation goes to zero as
𝜅 → 0.

e result is (at least from a physicist’s point of view) quite rigorous. It can also be extended
to a nonlinear equation of state (Nycander 2010). It tells us there the dissipation of kinetic
energy in a fluid diminishes with the diffusivity, and that if 𝜅 = 0 then dissipation vanishes. It
doesn’t say there is no flow at all, but it is hard to envision a flow in a finite domain that does
not dissipated kinetic energy. e result is oen characterized as saying that the flow is non
turbulent.



. B  M D S T 65

. B  M D S T
Now we talk about scaling, becoming a bit less rigorous. Interestingly the scaling, dating from
Rossby (1965), predates the rigorous theories, and it also provides much stronger bounds.
However, it is a scaling and not a rigorous result and therefore open to dispute.

5.2.1 Equations of motion
A non-rotating Boussinesq fluid heated and cooled from above obeys the equations.

D𝒗
D𝑡
= −∇𝜙 + 𝜈∇2𝒗 + 𝑏k, (5.21)

D𝑏
D𝑡
= 𝜅∇2𝑏 (5.22)

∇ ⋅ 𝒗 = 0. (5.23)

with boundary conditions
𝑏(𝑥, 𝑦, 0, 𝑡) = 𝑔(𝑥, 𝑦), (5.24)

For algebraic simplicity consider the two-dimensional version of these equations, in 𝑦 and
𝑧. We can define a streamfunction

𝑣 = −𝜕𝜓
𝜕𝑧
, 𝑤 = 𝜕𝜓

𝜕𝑦
, 𝜁 = ∇2𝑥𝜓 = 󶀥

𝜕2𝜓
𝜕𝑦2
+ 𝜕
2𝜓
𝜕𝑧2
󶀵 , (5.25)

Taking the curl of the momentum equation gives

𝜕∇2𝜓
𝜕𝑡
+ 𝐽(𝜓, ∇2𝜓) = 𝜕𝑏

𝜕𝑦
+ 𝜈∇4𝜓 (5.26a)

𝜕𝑏
𝜕𝑡
+ 𝐽(𝜓, 𝑏) = 𝜅∇2𝑏 (5.26b)

where 𝐽(𝑎, 𝑏) ≡ (𝜕𝑦𝑎)(𝜕𝑧𝑏) − (𝜕𝑧𝑎)(𝜕𝑦𝑏).

Non-dimensionalization and scaling
We non-dimensionalize (5.26) by formally setting

𝑏 = 𝛥𝑏 𝑏̂, 𝜓 = 𝛹󵰁𝜓, 𝑦 = 𝐿 󵰁𝑦, 𝑧 = 𝐻󵰁𝑧, 𝑡 = 𝐿𝐻
𝛹
̂𝑡, (5.27)

where the hatted variables are non-dimensional, 𝛥𝑏 is the temperature difference across the
surface, 𝐿 is the horizontal size of the domain, and 𝛹, and ultimately the vertical scale𝐻, are
to be determined. Substituting (5.27) into (5.26) gives

𝜕󵰁∇2 󵰁𝜓
𝜕 ̂𝑡
+ ̂𝐽( 󵰁𝜓, ∇2 󵰁𝜓) = 𝐻

3𝛥𝑏
𝛹2
𝜕𝑏̂
𝜕 󵰁𝑦
+ 𝜈𝐿
𝛹𝐻
󵰁∇4 󵰁𝜓, (5.28a)
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Figure 5.1 Temperature (left) and streamfunction (right) fields. From the top, the Rayleigh
numbers are 106, 107, 108.

𝜕𝑏̂
𝜕 ̂𝑡
+ ̂𝐽( 󵰁𝜓, 𝑏̂) = 𝜅𝐿

𝛹𝐻
󵰁∇2𝑏̂, (5.28b)

where 󵰁∇2 = (𝐻/𝐿)2𝜕2/𝜕 󵰁𝑦2+𝜕2/𝜕󵰁𝑧2 and the Jacobian operator is similarly non-dimensional. If
we now use (5.28b) to choose 𝛹 as

𝛹 = 𝜅𝐿
𝐻
, (5.29)

so that 𝑡 = 𝐻2 ̂𝑡/𝜅, then (5.28) becomes

𝜕󵰁∇2 󵰁𝜓
𝜕 ̂𝑡
+ ̂𝐽( 󵰁𝜓, 󵰁∇2 󵰁𝜓) = 𝑅𝑎𝜎𝛼5 𝜕𝑏̂

𝜕 󵰁𝑦
+ 𝜎󵰁∇4 󵰁𝜓, (5.30)

𝜕𝑏̂
𝜕 ̂𝑡
+ ̂𝐽( 󵰁𝜓, 𝑏̂) = 󵰁∇2𝑏̂, (5.31)

and the non-dimensional parameters that govern the behaviour of the system are

𝑅𝑎 = 󶀥𝛥𝑏𝐿
3

𝜈𝜅
󶀵 , (the Rayleigh number), (5.32a)
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Figure 5.2 Temperature (left) and streamfunction (right) fields. From the top, the Rayleigh
numbers are 109, 1010, 1011.

𝜎 = 𝜈
𝜅
, (the Prandtl number), (5.32b)

𝛼 = 𝐻
𝐿
, (the aspect ratio). (5.32c)

5.2.2 Rossby’s Scaling
For steady non-turbulent flows, and also perhaps for statistically steady flows, then we can
demand that the buoyancy term in (5.30) is (1). If it is smaller then the flow is not buoyancy
driven, and if it is larger there is nothing to balance it. Our demand can be satisfied only if the
vertical scale of the motion adjusts appropriately and, for 𝜎 = (1), this suggests the scalings

𝐻 = 𝐿𝜎−1/5𝑅𝑎−1/5 = 󶀥𝜅
2𝐿2
𝛥𝑏
󶀵
1/5
, 𝛹 = 𝑅𝑎1/5𝜎−4/5𝜈 = (𝜅3𝐿3𝛥𝑏)1/5. (5.33a,b)
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e vertical scale𝐻 arises as a consequence of the analysis, and the vertical size of the domain
plays no direct role. [For 𝜎 ≫ 1 we might expect the nonlinear terms to be small and if the
buoyancy term balances the viscous term in (5.30) the right-hand sides of (5.33) are multiplied
by 𝜎1/5 and 𝜎−1/5. For seawater, 𝜎 ≈ 7 using the molecular values of 𝜅 and 𝜈. If small scale
turbulence exists, then the eddy viscositywill likely be similar to the eddy diffusivity and𝜎 ≈ 1.]
Numerical experiments (Figs. 5.1 and 5.2, taken from Ilicak & Vallis 2012) do provide some
support for this scaling, and a few simple and robust points that have relevance to the real
ocean emerge, as follows.
• Most of the box fills up with the densest available fluid, with a boundary layer in tem-

perature near the surface required in order to satisfy the top boundary condition. e
boundary gets thinner with decreasing diffusivity, consistent with (5.33). is is a diffu-
sive prototype of the oceanic thermocline.
• e horizontal scale of the overturning circulation is large, being at or near the scale of

the box.
• e downwelling regions (the regions of convection) are of smaller horizontal scale than

the upwelling regions, especially as the Rayleigh number increases.

5.2.3 e importance of mechanical forcing
e above results do not, strictly speaking, prohibit there from being a thermal circulation,
with fluid sinking at high latitudes and rising at low, even for zero diffusivity. However, in
the absence of any mechanical forcing, this circulation must be laminar, even at high Rayleigh
number, meaning that flow is not allowed to break in such a way that energy can be dissipated
— a very severe constraint that most flows cannot satisfy. e scalings (5.33) further suggest
that the magnitude of the circulation in fact scales (albeit nonlinearly) with the size molecular
diffusivity, and if these scalings are correct the circulation will in fact diminish as 𝜅 → 0. For
small diffusivity, the solution most likely to be adopted by the fluid is for the flow to become
confined to a very thin layer at the surface, with no abyssal motion at all, which is completely
unrealistic vis-à-vis the observed ocean. us, the deep circulation of the ocean cannot be
considered to be wholly forced by buoyancy gradients at the surface.

Suppose we add amechanical forcing,𝑭, to the right-hand side of themomentum equation
(5.11a); this might represent wind forcing at the surface, or tides. e kinetic energy budget
becomes

𝜀 = ⟨𝑤𝑏⟩ + ⟨𝑭 ⋅ 𝒗⟩ = 𝐻−1𝜅[𝑏(0) − 𝑏(−𝐻)] + ⟨𝑭 ⋅ 𝒗⟩ . (5.34)

In this case, even for 𝜅 = 0, there is a source of energy and therefore turbulence (i.e., a dissi-
pative circulation) can be maintained. e turbulent motion at small scales then provides a
mechanism of mixing and so can effectively generate an ‘eddy diffusivity’ of buoyancy. Given
such an eddy diffusivity, wind forcing is no longer necessary for there to be an overturning
circulation. erefore, it is useful to think of mechanical forcing as having two distinct effects.
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(i) e wind provides a stress on the surface that may directly drive the large-scale circula-
tion, including the overturning circulation.

(ii) Both tides and the wind provide a mechanical source of energy to the system that allows
the flow to become turbulent and so provides a source for an eddy diffusivity and eddy
viscosity.

In either case, we may conclude that the presence of mechanical forcing is necessary for
there to be an overturning circulation in the world’s oceans of the kind observed.

. TRSCPDU
Why is the downwelling region narrower than the upwelling? e answer is that high Rayleigh
number convection is much more efficient than diffusional upwelling, so that the the convec-
tive buoyancy flux can match the match the diffusive flux only if the convective plumes cover
a much smaller area than diffusion. (Tom Haine explained this to me.) Suppose that the basin
is initially filled with water of an intermediate temperature, and that surface boundary condi-
tions of a temperature decreasing linearly from low latitudes to high latitudes are imposed. e
deep water will be convectively unstable, and convection at high latitudes (where the surface
is coldest) will occur, quickly filling the abyss with dense water. Aer this initial adjustment,
the deep, dense water at lower latitudes will slowly warmed by diffusion, but at the same time
surface forcing will maintain a cold high latitude surface, thus leading to high latitude convec-
tion. A steady state or statistically steady state is eventually reached with the deep water having
a slightly higher potential density than the surface water at the highest latitudes, and so with
continual convection, but convection that takes place only at the highest latitudes.

To see this more quantitatively consider the respective efficiencies of the convective heat
flux and the diffusive heat flux. Consider an idealized re-arrangement of two parcels, initially
with the heavier one on top as illustrated in Fig. 5.3. e potential energy released by the re-
arrangement, 𝛥𝑃 is given by

𝛥𝑃 = 𝑃final − 𝑃initial (5.35)
= 𝑔 󶁡(𝜌1𝑧2 + 𝜌2𝑧1) − (𝜌1𝑧1 + 𝜌2𝑧2)󶁱 (5.36)
= 𝑔(𝑧2 − 𝑧1)(𝜌1 − 𝜌2) = 𝜌0𝛥𝑏𝛥𝑧 (5.37)

where 𝛥𝑧 = 𝑧2 − 𝑧1 and 𝛥𝑏 = 𝑔(𝜌1 − 𝜌2)/𝜌0.
e kinetic energy gained by this re-arrangement, 𝛥𝐾 is given by 𝛥𝐾 = 𝜌0𝑤2 and equating

this to (5.35) gives
𝑤2 = −𝛥𝑏𝛥𝑧. (5.38)

Note that if the heavier fluid is initially on top then 𝜌2 > 𝜌1 and, as defined, 𝛥𝑏 < 0. e
vertical convective buoyancy flux per unit area, 𝐵𝑐, is given by 𝐵𝑐 = 𝑤𝛥𝑏 and using (5.38) we
find

𝐵𝑐 = (−𝛥𝑏)3/2(𝛥𝑧)1/2. (5.39)
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Figure 5.3 Two fluid parcels, of density 𝜌1 and 𝜌2 and initially at positions 𝑧1
and 𝑧2 respectively, are interchanged. If 𝜌2 > 𝜌1 then the final potential energy is
lower than the initial potential energy, with the difference being converted into
kinetic energy.

z2

z1ρ1

ρ2

Δz

e upwards diffusive flux, 𝐵𝑑, per unit area is given by

𝐵𝑑 = 𝜅
𝛥𝑏
𝐻

(5.40)

where𝐻 the thickness of the layer overwhich the flux occurs. In a steady state the total diffusive
flux must equal the convective flux so that, from (5.39) and (5.40),

(−𝛥𝑏)3/2(𝛥𝑧)1/2𝛿𝐴 = 𝜅
𝛥𝑏
𝐻
, (5.41)

where 𝛿𝐴 is the fractional area over which convection occurs. us If we set 𝛥𝑧 = 𝐻, we get

𝛿𝐴 =
𝜅

(𝛥𝑏)1/2𝐻3/2
(5.42)

is is a small number, although it is not quite right yet — we don’t really know𝐻. Let us use
(5.33a), namely𝐻 = (𝜅2𝐿2/𝛥𝑏)1/5 then

𝛿𝐴 =
𝜅

(𝛥𝑏)1/2(𝜅2𝐿2/𝛥𝑏)3/10

= 󶀥 𝜅
2

𝛥𝑏𝐿3
󶀵
1/5
= (𝑅𝑎 𝜎)−1/5.

(5.43)

For geophysically relevant situations this is a very small number, usually smaller than 10−5.
Although the details of the above calculation may be questioned (for example, the use of the
same buoyancy difference and vertical scale in the convection and the diffusion), the physical
basis for the result is clear: for realistic choices of the diffusivity the convection is much more
efficient than the diffusion and so will occur over a much smaller area. is result almost
certainly transcends the limitations of its derivation.
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In this chapter we try to understand the processes that give rise to a deep meridional over-
turning circulation. We’ll present a zonally-averaged model of the meridional overturning
circulation of the ocean, following Nikurashin & Vallis (2011, 2012). It is a quantitative model,
and might even be called a theory, depending on what one’s definition of theory is.

. A M   W- O C
e model is motivated by the plot of the stratification shown in Fig. 6.1, and the schematic of
water mass properties of the Atlantic shown in Fig. 6.3. e following features are apparent.

1. Twomainmasses of water, known asNorth Atlantic DeepWater (NADW) andAntarctic
Bottom Water (AABW). Both are interhemispheric. NADW appears to outcrop in high
northern latitudes and high southern latitudes, and AABW just at high Southern.

2. Isopycnals are flat over most of the ocean, and slope with a fairly uniform slope in the
Southern Ocean.

3. e circulation is along isopycnals in much of the interior. ere is some water mass
transformation between AABW and NADW, but most of it occurs near the surface.

. A T   MOC   S H
Let us first imagine there is a wall at the equator, and make a model of the circulation in the
SouthernHemisphere; that is, essentially of AABW.emodel will have the following features,
or bugs if you are being critical.

1. Zonally averaged.

2. Simple geometry. A zonally re-entrant channel at high latitudes, with an enclosed basin
between it and the equator.

71
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Figure 6.1 Stratification in the Pacific at 150°W
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Figure 6.2 A schematic of deep ocean circulation.
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Figure 6.3 A simpler schematic of deep ocean circulation

3. We solve the equations of motion separately in the two regions and match the solutions
at the boundary.

4. Mesoscale eddies are parameterized with a very simple down-gradient scheme.

5. ere are no wind-driven gyres.

6.2.1 Equations of motion
With quasi-geostrophic scaling the zonally-averaged zonal momentum and buoyancy equa-
tions are

𝜕𝑢
𝜕𝑡
− 𝑓0𝑣 = −

𝜕
𝜕𝑦
𝑢′𝑣′ + 𝜕𝜏
𝜕𝑧
, (6.1)

𝜕𝑏
𝜕𝑡
+ 𝑁2𝑤 = − 𝜕

𝜕𝑦
𝑣′𝑏′ + 𝜅𝑣

𝜕2𝑏
𝜕𝑧2
. (6.2)

where 𝑏 is buoyancy (‘temperature’) and 𝑁2 = 𝜕𝑧𝑏0. To these we add ermal wind relation
and mass continuity:

𝑓0
𝜕𝑢
𝜕𝑧
= − 𝜕𝑏
𝜕𝑦
, 𝜕𝑣
𝜕𝑦
+ 𝜕𝑤
𝜕𝑧
= 0.

Define a residual flow such that

𝑣∗ = 𝑣 − 𝜕
𝜕𝑧
󶀤 1
𝑁2
𝑣′𝑏′󶀴 , 𝑤∗ = 𝑤 + 𝜕

𝜕𝑦
󶀤 1
𝑁2
𝑣′𝑏′󶀴 .
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Figure 6.4 Cross-section of a structure of the
single-hemisphere ocean model. ere is a
channel between 𝑦1 and 𝑦2. e arrows indi-
cate the fluid flow driven by the equatorward
Ekman transport in the channel, and the solid
lines are isopycnals.

Figure 6.5 As for Fig. 6.4, but
now for a two-hemisphere
ocean with a source of dense
water, 𝑏3, at high northern
latitudes.
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Figure 6.6 Idealized geometry of the Southern Ocean: a re-entrant channel, partially
blocked by a sill, is embedded within a closed rectangular basin; thus, the channel has pe-
riodic boundary conditions. e channel is a crude model of the Antarctic Circumpolar
Current, with the area over the sill analogous to the Drake Passage.

whence

𝜕𝑢
𝜕𝑡
− 𝑓0𝑣∗ = 𝑣′𝑞′ +

𝜕𝜏
𝜕𝑧

(6.3a)

𝜕𝑏
𝜕𝑡
+ 𝑁2𝑤∗ = 𝜅𝑣

𝜕2𝑏
𝜕𝑧2
. (6.3b)

ese are the so-called transformed Eulerian mean (TEM) equations. e theory of them is
extensive and suffice it to say here that 𝑣∗ and 𝑤∗ more nearly represent the trajectories of
fluid parcels. Note that there are no fluxes in the buoyancy equation and that only the PV flux,
𝑣′𝑞′, need be parameterized. If we now put back some of the terms we omitted, our complete
equations are

𝜕𝑢
𝜕𝑡
− 𝑓𝑣∗ = 𝑣′𝑞′ + 𝜕𝜏

𝜕𝑧
(6.4a)

𝜕𝑏
𝜕𝑡
+ 𝑣∗ 𝜕𝑏
𝜕𝑦
+ 𝑤∗ 𝜕𝑏
𝜕𝑧
= 𝜅𝑣
𝜕2𝑏
𝜕𝑧2
. (6.4b)
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Figure 6.7 Schematic of the single hemisphere meridional overturning circulation crudely
representing AABW. in black lines are the isopycnals, thick black line is a overturning
streamfunction, dashed vertical line is the northern edge of the channel, shaded gray areas
are the convective region and the surface mixed layer.

where (𝑣∗, 𝑤∗) = (−𝜕𝜓/𝜕𝑧, 𝜕𝜓/𝜕𝑦) and𝑓𝜕𝑢/𝜕𝑧 = −𝜕𝑏/𝜕𝑦. e stress 𝜏 in only non-zero near
the top (wind-stress) and bottom (Ekman drag), and 𝜏 integrates to zero. We’ll look for steady
state solutions and drop the ∗ notation so that all variables are residuals and zonal averages.

Equations in the channel
We parameterize

𝑣′𝑞′ = −𝐾𝑒
𝜕𝑞
𝜕𝑦
. (6.5)

where, approximately, for the large-scale ocean

𝑞 ≈ 𝑓 𝜕
𝜕𝑧
󶀦 𝑏
𝑏𝑧
󶀶 , so that 𝜕𝑞

𝜕𝑦
≈ 𝑓 𝜕
𝜕𝑧
󶀧
𝑏𝑦
𝑏𝑧
󶀷 = −𝑓𝜕𝑆

𝜕𝑧
(6.6)

where 𝑆 = −𝑏𝑦/𝑏𝑧 is the slope of the isopycnals. us

𝑣′𝑞′ = 𝑓𝐾𝑒
𝜕𝑆
𝜕𝑧
. (6.7)

and the momentum equation becomes

− 𝑓𝑣 = 𝑓𝐾𝑒
𝜕𝑆𝑏
𝜕𝑧
+ 𝜕𝜏
𝜕𝑧
. (6.8)
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Since 𝑣∗ = −𝜕𝜓/𝜕𝑧 we integrate this from the top to a level 𝑧 and obtain

𝜓 = −𝜏𝑤
𝑓
+ 𝐾𝑒𝑆. (6.9)

We have assumed 𝜓 = 0 and 𝑆 = 0 at the top, and 𝜏 = 𝜏𝑤 at the top (base of mixed layer) and
𝜏 = 0 in the interior. [Justify condition on 𝑆 at the top a bit better.]

e buoyancy equation in terms of streamfunction is

𝒗 ⋅ ∇𝑏 = 𝜅𝑣
𝜕2𝑏
𝜕𝑧2

⟹ 𝜕𝜓
𝜕𝑦
𝜕𝑏
𝜕𝑧
− 𝜕𝜓
𝜕𝑧
𝜕𝑏
𝜕𝑦
= 𝜅𝑣
𝜕2𝑏
𝜕𝑧2

(6.10)

or

𝜕𝜓
𝜕𝑦
+ 𝑆𝜕𝜓
𝜕𝑧
= 𝜕
2
𝑧𝑏
𝜕𝑧𝑏
. (6.11)

e boundary condition on 𝜓 for this will be supplied by the basin! e other boundary con-
dition we will need is the buoyancy distribution at the top, and so we specify

𝑏(𝑦, 𝑧 = 0) = 𝑏0(𝑦). (6.12)

Equations in the basin
In the basin the slope of the isopycnals is assumed zero and (6.11) becomes the conventional
upwelling diffusive balance,

𝑤𝜕𝑏
𝜕𝑧
= 𝜅𝜕
2𝑏
𝜕𝑧2

or 𝜕𝜓
𝜕𝑦
𝜕𝑏
𝜕𝑧
= 𝜅𝑣
𝜕2𝑏
𝜕𝑧2
. (6.13)

Integrate this from the edge of the channel, 𝑦 = 0, to the northern edge, 𝑦 = 𝐿, and obtain

𝜓|𝑦=0 = −𝜅𝑣𝐿
𝑏𝑧𝑧
𝑏𝑧
. (6.14)

6.2.2 Scaling
Let hats denote non-dimensional values and let

𝑧 = ℎ󵰁𝑧, 𝑦 = 𝑙 󵰁𝑦, 𝜏𝑤 = 𝜏0󵰁𝜏𝑤, (6.15)

𝑓 = 𝑓0 󵰁𝑓, 𝜓 =
𝜏0
𝑓0
󵰁𝜓, 𝑆 = ℎ

𝑙
󵰁𝑆, (6.16)
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where ℎ is a characteristic vertical scale such that 𝑆 ∼ ℎ/𝑙. It will emerge as part of the solution.
If we have scaled properly then variables with hats on are of order one. e nondimensional
equations of motion are then

Buoyancy evolution: 𝜕 󵰁𝑦 󵰁𝜓 + 󵰁𝑆𝜕󵰁𝑧 󵰁𝜓 = 𝜖󶀥
𝑙
𝐿
󶀵 𝜕󵰁𝑧󵰁𝑧𝑏̂
𝜕󵰁𝑧𝑏̂
, (6.17a)

Momentum balance: 󵰁𝜓 = − 󵰁𝜏󵰁𝑓
+ 𝛬󵰁𝑆, (6.17b)

Boundary condition: 󵰁𝜓| 󵰁𝑦=0 = −𝜖
𝜕󵰁𝑧󵰁𝑧𝑏̂
𝜕󵰁𝑧𝑏̂
, (6.17c)

where

𝛬 = Eddies
Wind
= 𝐾𝑒
𝜏0/𝑓0
ℎ
𝑙
∼ 1. and 𝜖 = Mixing

Wind
= 𝜅𝑣
𝜏0/𝑓0
𝐿
ℎ
∼ 0.1 − 1. (6.18a,b)

ese are the two important nondimensional numbers in the problem and we can obtain es-
timates of their values by using some observed values for the other parameters. us, with
𝜅𝑣 = 10−5 m2 s−1, 𝐾𝑒 = 103 m2 s−1, 𝜏0 = 0.1 N m−2, 𝑓0 = 10−4 s−1, 𝜌0 = 103 kg m−3,
𝐿 = 10, 000 km, 𝑙 = 1, 000 km, and ℎ = 1 km we find

𝛬 = 1, 𝜖 = 0.1, and 𝑙
𝐿
= 0.1. (6.19)

Note that𝛬 and 𝜖 are not independent of each other for they both depend on the vertical scale
of stratification ℎ which is a part of the solution, and for that we must look at some limiting
cases.

e weak diffusiveness limit
Suppose that mixing is small and that 𝜖 ≪ 1. We can then require that 𝛬 = 1 in order that
the eddy-induced circulation nearly balance the wind-driven circulation (because the diffusive
term is small), whence the vertical scale ℎ is given by

ℎ
𝑙
= 𝜏0/𝑓0
𝐾𝑒
. (6.20)

If 𝐾𝑒 does become small then ℎ becomes large, meaning that the isopycnals are near vertical.
Using the above value for ℎ we find that

𝜖 = 𝜅𝑣𝐾𝑒
(𝜏0/𝑓0)2

𝐿
𝑙

(6.21)
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is is an appropriate measure of the strength of the diapycnal diffusion in the ocean. Using
(6.17c) we see that 󵰁𝜓 ∼ 𝜖 so that the dimensional strength of the circulation goes as

𝛹 = 𝜖𝜏0
𝑓0
= 𝜅𝑣
𝐾𝑒
𝜏0/𝑓0
𝐿
𝑙
. (6.22)

Another way to obtain this is to note that for weak diffusion the balance in the dimensionalmo-
mentum equation is between wind forcing and eddy effects (because they must nearly cancel)
so that 𝜏𝑤

𝑓
∼ 𝐾𝑒𝑆, (6.23)

which may be written as
ℎ
𝑙
∼ 𝜏𝑤
𝐾𝑒𝑓
. (6.24)

Advective-diffusive balance in the basin gives

𝜕𝜓
𝜕𝑦
𝜕𝑏
𝜕𝑧
= 𝜅𝑣
𝜕2𝑏
𝜕𝑧2

⟹ 𝛹 = 𝜅𝑣𝐿
ℎ

(6.25)

and (6.24) and (6.25) together give (6.22).

e strong diffusiveness limit
is limit may be appropriate for the abyssal ocean and in any case it is worth doing, so let
us take 𝜖 ≫ 1 and the circulation in the basin will in some sense be strong. As before the
nondimensional strength of the circulation is given by

󵰁𝜓 = (𝜖) ≫ 1. (6.26)

e fact that 󵰁𝜓 ≠ (1) means we haven’t scaled things in an ideal fashion, but let’s proceed
anyway. Dimensionally

𝛹 = 𝜖𝜏0
𝑓0

or 𝛹 = 𝜅𝑣𝐿
ℎ

(6.27a,b)

but ℎ and 𝜖 are both different than before.
Now, if 󵰁𝜓 ∼ 𝜖 ≫ 1 the diffusion driven circulation in the basin cannot be matched by a

purely wind-driven circulation in the channel, since the latter is (1). We can only match the
circulation with an eddy-driven circulation and therefore we require

𝛬 = (𝜖). (6.28)

In particular, if we set 𝛬 = 𝜖 then

𝜖 = 𝛬 = 󵀌󶀥 𝐾𝑒𝜅𝑣𝐿
(𝜏0/𝑓)2𝑙

󶀵. (6.29)
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is is the square root of the expression for 𝜖 in the weak diffusiveness limit. Using (6.29) and
(6.27a) we find

ℎ = 󵀊
𝜅𝑣
𝐾𝑒
𝐿𝑙 and 𝛹 = 󵀊𝐾𝑒𝜅𝑣𝐿

𝑙
. (6.30a,b)

Discussion of limits
If diffusion is weak the stratification itself is set by the eddies. us, upwelling-diffusion gives
𝜓 ∼ 𝜅𝑣𝐿/ℎ, with ℎ being set by the wind as in (6.24), thus giving a circulation strength that is
linearly proportional to diffusivity, as in (6.22). In the strong diffusion case the diffusion itself
affects the stratification, and so we get a weaker dependence of the circulation strength on 𝜅𝑣.
In this limit diapycnal mixing deepens the isopycnals in the basin away from the channel, so
that the isopycnals are steeper in the channel. is steepening is balanced the slumping effects
of baroclinic instability, and wind only has a secondary effect. From an asymptotic perspective
in the small 𝜖 limit the residual circulation is zero to lowest order. At next order it follows the
isopycnals except in the mixed layer.

Instead of varying diffusivity we can think of the wind changing. In the weak wind limit
the circulation is diffusively driven and independent of the wind strength. In the strong wind
limit the circulation actually decreases as the wind increases. is is because the wind steepens
the isopycnals so the diffusive term (∼ 𝜅𝑣𝑏𝑧𝑧) gets smaller and hence the circulation weaker.

6.2.3 Numerical solution of the equations
Matlab code. Show some figures with description.

. A I C
We now introduce another ‘water mass’ into the mix — North Atlantic Deep Water, or NADW.
We will construct a model of similar type to what we did in the previous lecture, but now we
will divide the ocean into three regions, namely

1. a southern channel, say from 50° S to 70° S
2. a basin region, say from from 50° S to 60°N;
3. a northern convective region.

e idea will be to write down the dynamics in these three regions and match them at the
boundaries. e main difference, and it is an important one, between this model and the pre-
vious one is the presence of an interhemispheric cell that is primarily wind driven, and sits on
top of the lower cell. It is convenient to write down the equations of motion for each region
separately, with the first two regions being similar to those of the previous section.
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Figure 6.8 Schematic of the interhemispheric MOC. in solid black lines are the isopyc-
nals, dashed lines with arrows are the streamlines, dashed vertical lines are the boundaries
between adjacent regions, shaded gray areas are the convective regions at high latitudes and
the surface mixed layer,and the red arrow represents downward diffusive heat flux. Labels
1, 2, and 3 (in circles) denote the circumpolar channel, ocean basin, and isopycnal outcrop
regions.

6.3.1 Equations of motion
In the equations below use restoring conditions at the top, but a specified buoyancy would
work too.

Region 1, the southern channel
In the channel the buoyancy equation takes its full advective-diffusive form (although we later
find that in some circumstances diffusion is unimportant). e momentum equation has a
wind-driven component and and eddy-driven component, as before. In dimensional form the
equations are

Buoyancy advection: 𝐽(𝜓1, 𝑏1) = 𝜅𝑣
𝜕2𝑏1
𝜕𝑧2

(6.31a)

Momentum: 𝜓1 = −
𝜏(𝑦)
𝑓
− 𝐾𝑒𝑆 (6.31b)
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Surface boundary, at 𝑧 = 0 ∶ −𝜅𝜕𝑏1
𝜕𝑧
= 𝜆(𝑏∗(𝑦) − 𝑏1) (6.31c)

Buoyancy match to interior: 𝑏1(𝑧)|𝑦=0 = 𝑏2(𝑧) (6.31d)

Streamfunction match to interior 𝜓󶙡𝑦=0 = −𝜅𝑣𝐿
𝑏𝑧𝑧
𝑏𝑧

(6.31e)

ese are more-or-less the same as those for the channel in the previous section, although we
have explicitly added a buoyancy condition and we use a restoring condition on temperature.

Region 2, the basin
In the basin the isopycnals are flat and the buoyancy equation is an upwelling-diffusive balance.
We won’t need the momentum equation, and so we have

Upwelling diffusive: (𝜓3 − 𝜓1)
𝐿
𝜕𝑏2
𝜕𝑧
= 𝜅𝑣
𝜕2𝑏2
𝜕𝑧2

(6.32a)

Surface boundary: −𝜅𝜕𝑏2
𝜕𝑧
󶙥
𝑧=0
= 𝜆(𝑏∗ − 𝑏2) (6.32b)

e upwelling diffusive balance is just 𝑤𝜕𝑧𝑏 = 𝜕2𝑧𝑏 with flat isopycnals, with 𝜓1 and 𝜓3 being
the streamfunctions at the southern and northern ends of the basin, respectively. If 𝜓1 ≠ 𝜓2
there is a net convergence and hence an upwelling. If 𝜅𝑣 = 0 then either there is no upwelling or
no vertical buoyancy gradient. However, there can be an interhemispheric flow; the properties
of the water mass do not change, and we expect the meridional flow to occur in a western
boundary current.

Region 3, the northern convective region
In this region the values of buoyancy at the surface (i.e., 𝑏3(𝑦, 𝑧 = 0)) are mapped on to the flat
isopycnals in the interior (i.e, 𝑏2(𝑧)). We assume this matching occurs by convection. at is,
the surface waters convect downward to the level of neutral buoyancy and thenmovemeridion-
ally. By thermal wind the outcropping isopycnals give rise to a zonal flow, with the total zonal
transport being determined by the meridional temperature gradient and the depth to which
flow convects, which is a function of such things as the winds, eddy strength and diapycnal
mixing in the Southern channel. e zonal flow is thus

𝑢3(𝑦, 𝑧) = −
1
𝑓
󵐐
𝑧

−ℎ

𝜕𝑏3
𝜕𝑦
d𝑧′ + 𝐶 (6.33)

where 𝐶 is determined by the requirement that ∫0−ℎ 𝑢3 d𝑧 = 0. When the relatively shallow
eastward moving zonal flow collides with the eastern wall it subducts and returns. When the
deep westward flow collides with the western wall it may move equatorward in a frictional
deep western boundary current. It is the upper, northward moving branch of the deep western
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boundary current that feeds the eastward moving flow. e total volume transport in these
zonal flows thus translates to a meridional streamfunction that has the value

𝜓3(𝑧) = 󵐐
𝑧

−ℎ
d𝑧′ 󵐐
𝐿𝑛

𝐿𝑦
𝑢3 d𝑦 (6.34)

where 𝐿𝑦 is the latitude of the southern edge of the convecting region and 𝐿𝑛 = 𝐿𝑦 + 𝑙𝑛 is the
northern edge of the domain. Summing up, the equations in the convective region are

Convective matching: 𝑏2(𝑧) ⇒ 𝑏3(𝑦, 𝑧 = 0) (6.35)

ermal wind: 𝑓𝑢3(𝑦, 𝑧) = −󵐐
𝑧

−ℎ

𝜕𝑏3
𝜕𝑦
d𝑧′ + 𝐶 (6.36)

Mass Continuity: 𝜓3(𝑧) = 󵐑𝑢3 d𝑦d𝑧 (6.37)

We now discuss how all this fits together.

6.3.2 Scaling and Dynamics
Our main focus is on the upper cell, since the lower cell has essentially the same dynamics as
in the single hemisphere case. We proceed by writing down some parametric expressions for
the streamfunctions in the three domains.

𝛹1 = 󶀥
𝜏0
𝑓1
− 𝐾𝑒
ℎ
𝑙𝑠
󶀵𝐿𝑥, (6.38a)

𝛹2 = 𝛹3 − 𝛹1 =
𝜅𝑣
ℎ
𝐿𝑥𝐿𝑦, (6.38b)

𝛹3 =
𝛥𝑏ℎ2
𝑓3
. (6.38c)

We don’t like these equations because when doing scaling we don’t like having additive expres-
sions but for now we damn the torpedoes. e four unknowns are 𝛹1, 𝛹2, 𝛹3 and ℎ and there
are four equations (note that (6.38b) is two equations). If we combine them we obtain

𝛥𝑏ℎ2
𝑓3
− 󶀥𝜏0
𝑓1
− 𝐾𝑒
ℎ
𝑙𝑠
󶀵𝐿𝑥 =
𝜅𝑣
ℎ
𝐿𝑥𝐿𝑦 (6.39)

is expression is very similar to one obtained by Gnanadesikan (1999).

With no northern source
Suppose that 𝛥𝑏 = 0 and that there is no deep water formation in the North Atlantic. If also
𝜅𝑣 is small then we obtain ℎ/𝑙𝑠 = (𝜏0/𝑓1)/𝐾𝑒, which is essentially the same as (6.20), obtained
previously. If 𝜅𝑣 is large then we find ℎ2 = 𝜅𝑣𝐿𝑙𝑠/𝐾𝑒; that is, we recover (6.30a). Pretty much
everything is the same as it was section 6.2.
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With no southern channel
If there is no southern channel then 𝛹1 = 0 and we have

𝛥𝑏ℎ2
𝑓3
= 𝜅𝑣
ℎ
𝐿𝑥𝐿𝑦 (6.40)

and

ℎ3 = 𝜅𝑣 󶀦
𝑓3𝐿𝑥𝐿𝑦
𝛥𝑏
󶀶 and 𝛹3 = 𝛹2 = (𝜅𝑣𝐿𝑥𝐿𝑦)2/3 󶀥

𝛥𝑏
𝑓3
󶀵
1/3
. (6.41)

[Check algebra.] ese are classical expressions for the thickness of a diffusive thermocline
and the strength of a diffusively-driven overturning circulation, going back to Robinson and
Stommel. is is also the same as the strong diffusivity limite.

With all three regions
is is the new bit. e weak diffusivity limit is the interesting case, as the strong diffusivity
limit is really just the case with no Southern channel.

In this case the upwelling is weak and |𝛹3| ≈𝛹1| and

𝛥𝑏ℎ2
𝑓3
− 󶀥𝜏0
𝑓1
− 𝐾𝑒
ℎ
𝑙𝑠
󶀵𝐿𝑥 = 0. (6.42)

In this case the basin is just a ‘pass-through’ region: water formed in the North Atlantic just
passes through the basin without change, and upwells in the Southern Ocean. For themoment
let us also assume that𝐾𝑒 is small and then

𝛥𝑏ℎ2
𝑓3
= 𝜏0
𝜌0𝑓1
𝐿𝑥, (6.43)

which results in a depth scale ℎ for the stratification,

ℎ = 󶀥𝜏0𝑓3𝐿𝑥
𝑓1𝛥𝑏
󶀵
1/2

(6.44)

Putting in the numbers, we find ℎ ≈ 320m. Furthermore, the strength of the circulation is just
determined by the wind stress,

𝛹1 = 𝛹3 = 󶀥
𝜏0𝐿𝑥
𝑓1
󶀵 (6.45)

which is about 10 Sv.
In the more general case we solve (6.42) to give

ℎ = 󶀥𝜏0𝑓3𝐿𝑥
𝑓1𝛥𝑏
󶀵
1/2
󶀢−𝛼 + √1 + 𝛼2󶀲 (6.46)
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where 𝛼 is the nondimensional number given by the ratio of the wind to eddy effects

𝛼 = 1
2
𝐾𝑒
𝑙𝑠
󶀥𝐿𝑥𝑓1𝑓3
𝜏0𝛥𝑏
󶀵
1/2
= 1
2
𝛹∗

𝛹
. (6.47)

where

𝛹 = 𝜏0
𝑓1
𝐿𝑥, 𝛹∗ = −𝐾𝑒ℎ

𝐿𝑥
𝑙𝑠
= −𝑘𝑒
𝐿𝑥
𝑙𝑠
󶀥𝜏0𝑓3𝐿𝑥
𝑓1𝛥𝑏
󶀵
1/2
. (6.48)

If we put in numbers then 𝛼 ≈ 0.08, 𝛹∗ ≈ 1.6Sv and 𝛹 ≈ 10 Sv. at is, the wind-induced
circulation is the dominant factor in the meridional overturning circulation, and if we take 𝛼
to small then we have

ℎ ≈ 󶀥𝜏0𝑓3𝐿𝑥
𝑓1𝛥𝑏
󶀵
1/2
, 𝛹 ≈ 𝜏0

𝑓1
𝐿𝑥 (6.49)

Discussion
Although there can be no certainties when eddy diffusivities are present, the use of represen-
tative parameters suggests that the eddy-induced circulation is indeed smaller than the wind-
driven circulation in the Southern Ocean. at is, putting in numbers, we find 𝛼 ≈ 0.08 with
𝛹∗ ≈ 1.6Sv and 𝛹 ≈ 10 Sv. is suggests that, for typical oceanic parameters, the strength of
the eddy-induced circulation on isopycnals corresponding to the middepth overturning cell is
only about 10-20% of the wind-driven circulation. us, rather than the residual circulation
vanishing as is sometimes assumed, the middepth residual circulation is comparable to the
wind-driven circulation and acts to pull 𝑂(10) Sv of deep water formed at high northern lati-
tudes in the North Atlantic back up to the surface. As a result, the depth scale of stratification ℎ
is not linearly proportional to the wind stress 𝜏, as one would obtain from the vanishing resid-
ual circulation argument with a simple eddy parameterization, but rather it scales with 𝜏 as 𝜏1/2
and is dependent on 𝛥𝑏 which is the buoyancy range for isopycnals which are shared between
the circumpolar channel and the isopycnal outcrop region in the Northern Hemisphere.

In summary, in the limit of weak diapycnalmixing, relevant to the presentmiddepth ocean,
the strength of the middepth overturning circulation is primarily determined by the Ekman
transport in the Southern Ocean. e rest of the ocean is essentially forced to adjust and pro-
duce the amount of deep water demanded by the Ekman transport and the associated wind-
driven upwelling in the Southern Ocean. For instance, during the transient adjustment, the
Ekman transport in the circumpolar channel, in conjunction with the surface buoyancy flux,
pulls dense waters up from the deep ocean, converts them into light waters at the surface, and
pumps these waters into, or just below, the main thermocline in the ocean basin. e rate at
which these light waters are then imported into the deep water formation region in the North
Atlantic, converted back into dense waters, and exported to the ocean basin at middepth, is
controlled by the meridional pressure gradient set up by the outcropping isopycnals in the
north. Hence light waters pumped into the ocean basin by the Ekman transport in the south
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accumulate in, or just below, the main thermocline deepening therefore the middepth isopy-
cnals and increasing the transport of light water into the deep water formation region in the
north until the transports in the north and south match. e established interhemispheric bal-
ance sets the depth of the isopycnals in the ocean basin and thus stratification throughout the
entire ocean.

In the case when deep waters are not produced in the north, as observed in the Pacific
Ocean, light waters pumped into the ocean basin by the Southern Ocean wind will deepen the
mid-depth isopycnal in the ocean basin, and thus steepen their slopes in the Southern Ocean,
until the eddy-induced circulation in the Southern Ocean cancels the wind-driven circulation
resulting in a zero residual circulation and water mass transformation.
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