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Abstract: In the paper we consider how orbits characterised by the presence of so-called sliding
motion, which orbits typically occur in hybrid systems of Filippov type, are affected by stable
singular perturbations. To be able to pursuit our analysis we consider a planar minimal system
and we tune a system parameter such that a stable periodic orbit of the system touches the
discontinuity surface: this is the so-called grazing-sliding bifurcation. We then check the effect of
stable singular perturbation on the grazing cycle. In the unperturbed system the periodic orbit
remains stable, and its local return map becomes piecewise linear. The effect of an arbitrarily
small stable singular perturbation is that the local return map changes qualitatively, giving rise
to, for example, period-adding cascades or small-scale chaos.
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1. INTRODUCTION

Recently much of research effort has been focused on
analysis and control design of hybrid systems [Branicky
(1996); Zhang et al. (2000); Lygeros (2005)], that is sys-
tems characterised by continuous and discrete evolution.
A class of hybrid systems of our interest are so-called
Filippov type systems, that is systems where the dynamics
is governed by smooth vector fields in distinct domains
of phase space. When so-called switching manifolds are
reached by an evolving trajectory the systems switches
from one vector field to another. Thus, the system trajec-
tories are continuous but non-differentiable at the points
where the aforementioned switchings take place.

In the simplest case we have two domains such that

ẋ =
{

f−(x) if h(x) < 0,
f+(x) if h(x) ≥ 0.

(1)

The boundary between the domains is called the switching
manifold : Hs = {h(x) = 0}.
A special feature of Filippov systems is the so-called sliding
mode, which means that a trajectory of the system does
not follow any of the ODEs governing the domains but
it rather ‘slides’ along the switching manifold, following a
convex combination of the ODEs governing the adjacent
domains:

ẋ = fs(x) =
[∂h(x)f−(x)] · f+(x)− [∂h(x)f+(x)] · f−(x)

∂h(x)[f−(x)− f+(x)]
.

(2)
Sliding occurs in all points x0 of the switching manifold
Hs where both vector fields point toward Hs, that is,
∂h(x)f+(x) < 0 and ∂h(x)f−(x) > 0. Figure 1 illustrates
the sliding evolution taking place along Hs.

An important question for modelling is how sliding in a
Filippov system is affected by perturbations. If we add a
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Fig. 1. A trajectory x(t) through a point x0 on the
switching manifold Hs ‘sliding’ along Hs when the
vector fields f+ and f− both point toward Hs

small perturbation to f− or f+ or to the switching decision
h (the derivative of the perturbation is also assumed to be
small) then any exponentially stable periodic orbit or equi-
librium of a Filippov system persists [di Bernardo et al.
(2007)] and remains stable. This also applies to pseudo-
equilibria (equilibria of the sliding flow fs, sitting exactly
on the switching manifold) and to periodic orbits that
have sliding segments. This persistence mirrors the results
of classical bifurcation and invariant manifold theory for
smooth dynamical systems [Fenichel (1979)].

Another typical perturbation arising in the modelling pro-
cess are stable singular perturbations. In a simple model
one replaces rapidly converging parts of the dynamics
with their equilibrium, making the assumption that this
equilibrium follows the slow dynamics quasi-statically. In
a more complex model (or in reality) the equilibrium of the
fast dynamics is not attained perfectly, which constitutes
a small perturbation. Practical examples of this type of
perturbation are small capacitances and inductances in
electrical circuits, imperfect rigidity in mechanical sys-
tems, or fast chemical reactions (or other processes) in
biological systems. Again, for smooth dynamical systems
classical theory [Fenichel (1979)] proves that all hypber-
bolic equilibria, periodic orbits and, more generally, nor-



mally hyperbolic invariant manifolds persist. That is, for
example, an exponentially stable equilibrium or periodic
orbit (and any of its bifurcations) observed in a simple
model obtained by making quasi-static assumptions is also
present when the fast dynamics is taken into account as
long as the difference in time scale is sufficiently large. In
general, in smooth dynamical systems any phenomenon
that persists under regular perturbations (perturbations
of the right-hand-side) also persists under stable singular
perturbations. The theoretical result [Fenichel (1979)] re-
duces hyperbolic singular perturbations to regular ones by
proving the existence of a normally hyperbolic invariant
manifold.

2. SINGULARLY PERTURBED FILIPPOV SYSTEMS

In order to find general statements how the dynamics and
in particular the sliding type of motion in Filippov systems
is affected by stable singular perturbations one has to
study slow-fast systems of the form

ẋ =
{

f−(x, y, ε) if h(x, y, ε) < 0,
f+(x, y, ε) if h(x, y, ε) ≥ 0,

(3)

εẏ = g(x, y, ε). (4)

In system (3), (4) ε measures the difference in the time
scales between the evolution of the slow variable x (usually
vector valued) and the evolution of the fast variable y (in
our case y is a scalar variable). We assume that for ε = 0
the (then algebraic) equation (4) can be solved for y for
all x, and that this solution y0(x) satisfies the stability
condition

0 > −c > Respec∂2g(x, y0(x), 0) (5)

with a uniform decay rate c. Condition (5) means that
y0(x) is a locally exponentially stable equilibrium of the
fast subsystem (4) if we treat the variable x in (4) as a
parameter and set ε to 0 in the right-hand-side of (4).

Let us assume that the quasi-static approximation (called
the reduced system from now)

ẋ =
{

f−(x, y0(x), 0) if h(x, y0(x), 0) < 0,
f+(x, y0(x), 0) if h(x, y0(x), 0) ≥ 0

(6)

has a stable periodic orbit x(t) which is switching in
x0 = x(t0) from the subdomain {x : h(x, y0(x), 0) ≥ 0}
to sliding inside the manifold {x : h(x, y0(x), 0) = 0} (as
shown in Figure 1). What happens to this periodic orbit if
we include the singular perturbation effects by changing ε
to a positive value?

3. MINIMAL EXAMPLE

To address this question we consider a system that admits
an analytical expression for the local return map built
around a periodic point of a periodic orbit. To this aim we
use the Hopf normal form for f+ combined with a constant
vector field for f− (the phase space dimension of the slow
vector field is n = 2). We extend this two-dimensional
system with an additional fast and stable scalar ODE for
the variable y:
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Fig. 2. Grazing-sliding scenario for the reduced system (9)
of the minimal example. (a): the periodic orbit lies
entirely in H+; (b): the periodic orbit touches the
switching line {x1 = −1} at xg; the line P is the
Poincaré section chosen for the return map M1 in (10);
(c): the periodic orbit has a small sliding segment from
xh to xl.

ẋ =


[
µx1 − ωx2 − (x2

1 + x2
2)x1

ωx1 + µx2 − (x2
1 + x2

2)x2

]
if θx1 + (1− θ)y ≥ −1[

1
0

]
if θx1 + (1− θ)y < −1

(7)
εẏ = ε

[
µx1 − ωx2 − (x2

1 + x2
2)x1

]
+ x1 − y (8)

for θ < 1.

The quasi-static approximation replaces y by y0(x, µ) = x1

(ε = 0 in (8)). Thus, the reduced model is

ẋ =


[
µx1 − ωx2 − (x2

1 + x2
2)x1

ωx1 + µx2 − (x2
1 + x2

2)x2

]
if x1 ≥ −1[

1
0

]
if x1 < −1,

(9)

which is identical with the slow part (7). Only the switch-
ing function has changed to

h0(x) = x1 + 1.
For the reduced system (9) the flow in H+ = {h0 ≥ 0} can
be decomposed into a pair of uncoupled equations for the
polar coordinates r and φ of x ∈ R2 (x = r · (cosφ, sinφ)):

ṙ = µr − r3, φ̇ = ω.
For µ > 0 and ω 6= 0 it has a unique stable periodic

orbit corresponding to r =
√

µ, φ = ωt (a circle around
the origin, see Figure 2(a)). This periodic orbit is also a
periodic orbit of the reduced Filippov system (9) for µ < 1.
When we change µ to values larger than 1 the periodic
orbit of the Filippov system (9) acquires a sliding segment
starting from some point xh = [−1, xh,2]T (x2,h > 0) and
ending at xl = [−1, 0]T , making the overall orbit piecewise
smooth (shown in Figure 2(c)): it has a corner at xh and
its second derivative is discontinuous at xl. The periodic
orbit is grazing the switching manifold H0

s = {h0 = 0} for
µ = 1 as shown in Figure 2(b). This scenario is so-called
grazing-sliding bifurcation. In the planar case considered
here the effect of the grazing-sliding is an acquisition of
a segment of sliding, and a discontinuous change in the
value of the non-trivial Floquet multiplier corresponding
to the periodic orbit, under the variation of µ through 1.
For higher dimensional systems this scenario might lead to
more complex dynamics, for instance to the sudden onset
of chaos [di Bernardo et al. (2007)].

The point xg = [−1, 0]T satisfies the conditions for a
grazing-sliding event. Namely



• h(xg, y(xg)) = 0, (switching on the manifold Hs at
xg),

• hxf+ = 0, (grazing contact with Hs at xg),
• (hxf+)xf+ > 0, (the grazing contact with Hs at xg is

quadratic),
• (hx + hxgx/gy)f+ > 0 (the reduced vector field f−

points towards the switching surface);

subscripts denote differentiation with respect to indicated
variables.

Let us now consider the local return map Mµ for the
periodic orbit at µ = 1 to the section L1 = {x : x1 =
0, x2 > 0} (see Figure 2(b)). It has the form

M1x2 = 1 +
{

e−4π/ω[x2 − 1] + O(|x2 − 1|2) if x2 < 1
0 if x2 ≥ 1.

(10)

The map M1 is piecewise asymptotically linear in its fixed
point x2 = 1 corresponding to the periodic orbit. For µ > 1
the map Mµ is constant near its fixed point. In summary, in
the reduced system (9) the only effect of the grazing-sliding
bifurcation is that the periodic orbit changes its shape,
and that its Floquet multiplier jumps from exp(−4πµ/ω)
to 0 at the grazing parameter µ = 1. The periodic orbit
is stable for all µ ≈ 1. We will now study the system
dynamics for ε > 0.

4. SLOW MANIFOLDS IN THE NEIGHBOURHOOD
OF GRAZING

We have chosen the right-hand-side g of the fast equation
(8) such that for ε > 0 the subspace M+ = {(x, y) : x1 =
y} is the exact slow invariant manifold of the flow Et

+
(following ẋ = f+, εẏ = g). That is, any trajectory will
converge to M+ with a convergence rate of order ε−1 as
long as it stays in the half space H+ = {(x, y) : θx1 + (1−
θ)y ≥ −1}. The graph of the invariant manifold M+ is for
all µ and ε

ym,+(x) = x1. (11)
Since f+ does not depend on y the stable fibres of the
manifold M+ are: F+(x0) = {(x, y) : x = x0, y ∈ R} for
all x0 ∈ R2 (all points within a stable fibre converge to
each other with a rate O(ε−1) following flow Et

+ forward
in time). The graph of the slow invariant manifold M−
of E− (the flow following ẋ = f−, εẏ = g) is not known
analytically. Its expansion up to order ε is
ym,−(x, µ, ε) = x1+ε

[
µx1 − ωx2 − (x2

1 + x2
2)x1 − 1

]
+O(ε2).

(12)
The expressions for the slow invariant manifolds for E+

and E−, (11) and (12) differ from each other by a term
of order ε (the difference is ε + O(ε2) for x = (−1, 0),
y = −1, µ = 1, thus, it is non-zero at the grazing
point). Hence, we expect that any trajectory crossing the
switching manifold will show a small boundary layer; see
Figure 3 for an illustration of the invariant manifolds M±
and the switching manifold Hs = {(x, y) : θx1 + (1 −
θ)y = −1} near the grazing point at µ = 1.

The switching manifold Hs for the example (7), (8) is a
two-dimensional plane. Its intersection with the invariant
manifold M+ is

Hs ∩M+ = {(x, y) : x1 = y = −1}.
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Fig. 3. Illustration of the manifolds near the grazing point
pg for the slow-fast example (7), (8) for ε > 0, θ < 0
and µ = 1 (zoom-in near the grazing point pg of
the periodic orbit). The grazing periodic orbit lies
entirely inH+ (and, thus, inM+). The other invariant
manifold M− (for H−) has a distance of O(ε) from
M+. The illustration shows the grazing periodic orbit
and a typical (for θ < 0) switching trajectory near the
periodic orbit, switching from E+ to E−, back to E+,
and then re-approaching M+.

5. DYNAMICS OF THE SYSTEM VIA RETURN
MAPS

To be able to establish the dynamics around the grazing
cycle of singularly perturbed system under consideration
we construct the local return map around a periodic
point of the grazing-cycle.To this aim we can proceed as
follows. Let us derive an expression for the return map
to the section Σ1 = {(x, y) : x1 = 0, x2 > 0, y ∈ R}
(which is away from the grazing point; see Figure 3 for
L1 = Σ1 ∩ M+ ), more specifically the local return
map to a small neighbourhood U ⊂ Σ1 of the point
(x, y)T = (0, 1, 0)T , which is the fixed point at µ = 1
corresponding to the grazing periodic orbit. Any trajectory
starting in U spends a time of approximately π/(2ω)
following E+ before it reaches the vicinity of the switching
manifold Hs in a small neighbourhood V of the point
pg = (−1, 0,−1)T . During this time the difference between
y and x1 (which is the distance to the slow invariant
manifold M+) decays such that |y−x1| ∼ exp(−π/(2ωε))
when the trajectory reaches V, which is beyond all orders
of ε. A trajectory leaving V follows E+ for a time of
approximately 3π/(2ω) until it reaches Σ1. Again, after
this time the y-component and the x1-component of the
trajectory will be exp(−2π/(3ωε)) close. This means that
the return map P is a one-dimensional map from the line
L1 = Σ1 ∩M+ = {(x, y) : x1 = y = 0, x2 > 0} back to
itself if we ignore terms of order exp(−c/ε) where c > 0
is of order 1. It is a composition of four maps. Calling the
time derivative of h with respect to each of the flows as
h′±, respectively,

h′±(x, y) = ∂h(x, y)
d

dt
Et
±(x, y)|t=0 = [∂1hf±+ε−1∂2hg](x, y),



(dropping the argument ε) theses maps, say P1 to P4, can
be described as follows

(1) P1, maps from the line L1 = {x1 = y = 0, x2} ∩
U to the curve L2 = {x1 = y, h′+(x, y) = 0} ∩ V
by following the flow E+ within the slow invariant
manifold M+ (see Fig. 3),

(2) P2, the Poincaré-section discontinuity mapping from
L2 to the plane Σ = {(x, y) : h′+(x, y) = 0} ∩ V,

(3) P3, maps from Σ back to L2, following the projec-
tion along the stable fibres of E+: P3(x1, x2, y) =
(x1, x2, x1),

(4) P4, maps from L2 ⊂ V back to L1 ⊂ U following E+

inside the slow invariant manifold M+.

The character of the ‘full’ return map really depends
on the character of P2; P2 is either piecewise affine or
discontinuous with the discontinuity occurring at the point
corresponding to the grazing periodic orbit. In the later
case the map P2 also contains a square root singularity
on one side of the discontinuity. The type of the map P2

and hence the dynamics of the system depends on the
sign of the parameter θ. This parameter determines the
intersection between the switching surfaceHs and the slow
manifolds M±.

In the case of θ < 0 we observe the emergence of a repelling
sliding region. That is we observe a creation of a region
within Hs where the vector fields f± point away from Hs

(this also implies a violation of one of the conditions for
grazing-sliding at the grazing point).

To elucidate why P2 can become discontinuous let us
focus on Fig 3. There we depict a segment of the
grazing cycle (that lives entirely on the slow manifold M+

and grazes the switching surface at pg). Consider now a
trajectory evolving in a sufficiently small neighbourhood
of the grazing cycle which starts also on M+. After some
time it reaches the switching surface at some point along
the set Hs∪M+. In the standard grazing-sliding case any
trajectory that evolves in sufficiently small neighbourhood
of the grazing cycle and hits the switching surface is bound
to follow the sliding motion for some non-zero time in
the neighbourhood of the grazing point (pg in our case).
However, in the case depicted in Fig 3 the trajectory
after reaching Hs ∪ M+ switches to vector field f−– it
does not follow sliding. This is due to the creation of
the repelling sliding region in the neighbourhood of pg.
Then the trajectory reaches again the switching surface
Hs before attaining the slow manifold M−. At this point
the trajectory switches again to f+ and moves towards
the slow manifold M+. In this case the essential effect
of the stable singular perturbation is the creation of
the non-sliding evolution (evolution following f−) in the
neighbourhood of pg This translates onto the character of
the map P2 – a discontinuous map captures the system
dynamics. In the case of positive θ the theory of grazing-
sliding bifurcations holds and the map is piecewise affine
to leading order. However, another effect of the singular
perturbation is that the map has non-zero slope for sliding
trajectories and for instance an onset of chaotic motion
can be observed in the system where the slow dynamics is
two-dimensional.
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Fig. 4. Approximate local return map to L1, P , for ε =
0.01, µ = 1 + ε/2, ω = 8π obtained numerically as
the first return to L1 (neglecting the distance of the
return point to M+; see Figure 3).

To summarise: in an appropriate co-ordinate set, for θ < 0,
the map P2 can be given by

P2(x̃1) =
{

x̃1 x̃1 ≥ 0
s0 +

√
ε(a

√
−2x̃1 + b(−2x̃1)3/2) +O(ε) x̃1 < 0

,

where s0, a and b are some constant; for θ > 0, P2 (to
leading order in x̃1) can be expressed as

P2(x̃1) =
{

x̃1 x̃1 ≥ 0
Ax̃1 x̃1 < 0

where A is some constant. For a detailed derivation of P2

we refer to [Sieber and Kowalczyk (2008)].

In Fig. 4 we present a local return map around a grazing-
sliding cycle from a section L1 back to itself. Indeed we
observe that the graph is continuous for θ positive and
discontinuous for negative θ. Piecewise discontinuous maps
characterised by square root singularity on one side, among
other dynamics outcomes, exhibit for instance inverse
period adding cascades. In fig .5 we present different phase
portraits of the slow-fast system (7) for µ ≈ 1. Under
increasing µ through µ = 1 we observe an inverse period-
adding cascade. In Fig. 5(a) for µ = 1.001 we can see
a stable orbit of period-8. Increasing µ leads to a series
of bifurcations that decrease the period of the orbit. We
observe a period-5 orbit at µ = 1.01 (In Fig. 5(b)) and a
period-3 orbit at µ = 1.05 (In Fig. 5(c)-(d)).

6. CONCLUSIONS

Stable singular perturbations have a much stronger influ-
ence on the dynamics in Filippov systems than in smooth
dynamical systems. In the paper we have studied periodic
orbits with an infinitesimally small sliding segment that is
close to a grazing-sliding bifurcation. We found two generic
cases depending on the geometry: the local return map
around the grazing periodic orbit develops a discontinuity
if the condition on the existence of an attracting sliding
region is violated. Otherwise, the continuity of the return
map persists but the asymptotic slope may have a change
of order 1.

The qualitative change of the local return map induces
qualitative changes to the dynamics on a small scale. A
piecewise discontinuous map with a square-root singularity
of the slope on one side of the discontinuity, as occurs for



(a) µ = 1.001 zoom (b) µ = 1.01 zoom

(c) µ = 1.05 zoom (d) µ = 1.05

Fig. 5. Periodic orbits of the slow-fast system (7) for
ω = 8π, θ = −0.5 and ε = 0.01 in projection on
the (x1, x2) plane. In Fig (a) to (c) only zoom in the
neighbourhood of the switching surface is depicted

θ < 0 in the minimal example, shows inverted period-
adding cascades of periodic orbits if one varies the pa-
rameter µ through its critical value [Dutta and Banerjee
(2008)]. The parameter range where these cascades can be
observed is of order ε. In the other case, θ > 0, the observed
dynamics depends strongly on the one-sided derivative A.
It can be chaotic if A < −1, which is possible for small θ.

The results presented can be generalised to higher-
dimensional slow-fast systems in a straightforward manner
as long as the dimension of the fast subsystem is 1. There
are, however, some technical difficulties to generalising our
finding for higher dimensional fast subsystems (y ∈ Rm,
m > 1).

The small-scale instabilities described in our paper might
account for discrepancies between dynamics of systems
with discontinuous nonlinearities that have been observed
experimentally, and the numerical results of the models.
See [Banerjee and Verghese (2001); Virgin and Begely
(1999)] for examples relevant to engineering applications.
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