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Abstract

We show that an inverted pendulum that is balanced on a cart by linear state-
dependent delayed control may exhibit small chaotic motion about the upside-down
position. In periodic windows associated with this chaotic regime we find periodic
orbits of arbitrarily high period that correspond to complex balancing motion of
the pendulum with bounded velocity of the cart.

This result shows that complex balancing is possible in a controlled mechanical
system with a geometric nonlinearity even when the control law is only linear. This
is in contrast to other proposed models that require a nonlinearity of the controller,
such as round-off due to digitization.

We find the complex motion by studying homoclinic bifurcations of a reduced
three-dimensional vector field near a triple-zero eigenvalue singularity. More gener-
ally, the dynamics we describe must be expected in any system with a triple-zero
singularity and reflection symmetry.
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differential equation, triple-zero singularity, homoclinic tangency
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1 Introduction

Balancing a long stick is easier than balancing a short stick. This well-known
fact is due to the human reaction time, which introduces the effect of a time
delay into this control problem. This reaction time is about 100 ms for eye-
hand coordination [1], which is not negligible for a short stick (about 30 cm)
since the inherent time scale for the stick motion is of the same order [2]. In
fact, any stabilization scheme using state-dependent feedback control will be
adversely affected by control loop latency, that is, a non-zero reaction time
between the measurement of the state of the system and the control action.
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Delay-induced instabilities have been studied extensively in other systems with
delay, for example, in coupled neurons [3,4], lasers subject to optical feedback
due to external reflections [5], and in cutting processes [6].

We consider here the idealized model of balancing control, namely an inverted
planar pendulum on a moving cart that is stabilized by a state-dependent
control force D; see Fig. 1 and Sec. 2 for the mathematical details. Due to
the latency of the control loop, the control force takes effect only after some
fixed delay τ . This leads to a mathematical description by a delay differential
equation (DDE) with an infinite-dimensional phase space; see [7,8] as general
references to the theory of DDEs. The DDE is symmetric with respect to
reflection at the origin, the upside-down position of the pendulum, due to the
reflection symmetry of the pendulum. Perfect control is achieved when the
upside-down position is stable, while the cart moves with constant velocity.
(This velocity at the stable limit can be brought to zero by choosing a suitable
initial condition or by introducing a small amount of damping.)

Linear stability analysis shows that there is a region in the parameter space of
the controller where perfect control can be achieved, provided the delay τ is not
too large [2,9]. Furthermore, stability is generally lost in a Hopf bifurcation. It
is possible to compute the criticality of this Hopf bifurcation, which gives a first
idea of how the system behaves beyond the stability boundary [9–11]. If the
Hopf bifurcation is supercritical then the pendulum performs (initially) small
oscillations about the upside-down position but with finite velocity of the cart.
Such small oscillations have been observed in experiments [11]. They are an
example of a relaxed form of stabilization that we call balancing motion (much
like what actually happens when you balance a stick). Such a balancing motion
is stable and bounded around the upside-down position while the velocity of
the cart is also bounded.

It has been an open question whether there are more complex balancing mo-
tions in the system apart from perfect stabilization and simple oscillations
after the first Hopf bifurcation. Mathematically, such balancing motion cor-
responds to a symmetric attractor of the system with bounded velocity of
the cart. It is not straightforward to find complex balancing motions of the
inverted pendulum. Indeed, bifurcation analysis shows that any such solution
in the controlled pendulum, if it exists, cannot be found by simply following
the bifurcations of the initial symmetric periodic orbits [13]. In particular,
the simple oscillations lose their stability in a symmetry breaking bifurcation
(pitchfork bifurcation of periodic orbits), which results in a complete loss of
control [9,13]. There are now two (symmetrically related) periodic orbits. Each
of these nonsymmetric periodic orbits corresponds to the pendulum wanting to
fall to one side, which the controller will attempt to compensate for by increas-
ing the velocity of the cart. Hence, the parameter region where nonsymmetric
regimes are prevalent is typically not regarded as physically relevant.
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Computer-based balancing experiments have shown chaotic balancing motions
with small amplitudes, referred to as micro chaos [12]. However, this dynamics
is due to discontinuities associated with digital sampling in time and space.
Consequently, the results in Ref. [12] leave the general question open whether
complex nonlinear vibrations are possible entirely within the setting of linear

control of a mechanical system with a geometric nonlinearity.

In this paper we show that complex balancing motions of the linearly con-
trolled inverted pendulum exist, which answers this general question to the
positive. Specifically, we find bounded symmetric chaotic motion of the pen-
dulum around its upside-down position inside the parameter region associated
with pairs of nonsymmetric attractors. This motion consists of long stretches
where the pendulum is about to fall over to one side and the cart speeds
up to compensate, followed by another stretch where the pendulum is about
to fall over to the other side and the cart reverses direction. The velocity of
the cart performs a chaotic motion as well with long, irregular excursions in
the positive and negative directions that may leave any bounded region. This
chaotic motion is not balancing according to our definition requiring bounded
velocity of the cart, but associated with it there are stable symmetric periodic
orbits of arbitrarily large period. Since they have bounded velocity of the cart,
these periodic orbits correspond to complex balancing motion. The parameter
islands where these balancing motions occur, so-called periodic windows in
the parameter space, are not connected to the primary family of symmetric
periodic orbits that emerged from the Hopf bifurcation.

We obtain these results by considering a three-dimensional vector field, derived
first in Ref. [13] (see Section 2.1), describing the dynamics on the center man-
ifold reduction of the system near a codimension-three triple-zero eigenvalue
bifurcation. Reference [13] considers only the bifurcation diagram related to
the loss of stability of the origin, the perfectly balanced upside-down position
of the pendulum, and the onset of small stable oscillations. In this paper we
consider the parameter region where the primary oscillations are of saddle
type. After the reduction to a (symmetric) local Poincaré map, this oscillation
corresponds to a symmetric saddle fixed point with one-dimensional stable
and unstable manifolds. Well established numerical algorithms [14] allow us
to locate a first quadratic tangency of these manifolds. Then, the existence of
infinitely many stable symmetric periodic orbits of arbitrarily large period fol-
lows from general statements on homoclinic tangencies [15] in two-dimensional
maps. Furthermore, the pair of nonsymmetric attractors merge and form a
single symmetric chaotic attractor in a crisis bifurcation [16]. These theoret-
ical results are indeed of relevance for the original control system, which is
demonstrated by showing examples of merging chaotic attractors and sym-
metric periodic orbits of long period in the full DDE.

The mechanism we describe in this paper is not specific to our particular
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Fig. 1. Sketch of the inverted pendulum of length L and mass Mp on a cart of mass
Mc at horizontal position δ. The inclination angle θ is defined such that it is positive
in the position shown in the sketch.

model system, but is directly associated with the symmetric triple-zero singu-
larity. One must expect crisis bifurcations and complicated symmetric attract-
ors in any system that features this singularity. Interestingly, the triple-zero
singularity appears to be prevalent when a control loop controlling a saddle
equilibrium is subject to delay. For example, Ref. [17] investigated the inver-
ted pendulum subject to a PMD (proportional minus delay) controller and
found the same singularity when increasing the control loop latency; see [18]
for other examples.

The paper is organized as follows. We first introduce the details of the mathe-
matical model in Sec. 2, where we also explain the center manifold reduction
and present the bifurcation diagram of the reduced three-dimensional vector
field model near the triple-zero eigenvalue bifurcation. In Sec. 3 we show that
there are complex symmetric dynamics in the reduced model, and in Sec. 4 we
give examples of complex balancing motion in the full control system. Finally,
in Sec. 5 we conclude and point to some open problems.

2 Model equations

The dynamics of the setup in Fig. 1 are governed by the second-order differ-
ential equation for the angular displacement θ of the pendulum, which can be
written as (see also Refs. [2,9,17]):

(
1 − 3m

4
cos2 θ

)
θ̈ +

3m

8
θ̇2 sin(2θ) − 3

2

g

L
sin θ +

3F

2L(Mp +Mc)
cos θ = 0. (1)

Here, F is the horizontal driving force applied to the cart, and m = Mp/(Mp+
Mc) is the ratio of the mass of the uniform pendulum Mp with respect to the
sum of the mass of the cart Mc and the mass of the pendulum. The length of
the pendulum is L and g is the gravitational acceleration. We adjust the time
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scale to the intrinsic time scale of the pendulum by rescaling time introducing
a new dimensionless time tnew = told ·

√
3g/

√
2L. This converts equation (1)

to its dimensionless form

(
1 − 3m

4
cos2 θ

)
θ̈ +

3m

8
θ̇2 sin(2θ) − sin θ +D cos θ = 0 (2)

where D = F/(g(Mc +Mp)) is the rescaled horizontal driving force. Because
friction is not taken into account, the equation of motion for the displacement
δ of the cart does not couple back into (2). It reads

δ̈(t) = L
m
2

sin θθ̇2 + 2

3
D − m

4
sin(2θ)

1 − 3m
4

cos2 θ
(3)

when also written with respect to the dimensionless time. The force D is
applied as a feedback control depending on the state of the system with the
goal of stabilizing the pendulum at its upright position, which is θ = 0. The
feedback control force D is a function of the state of the system at some fixed
time τ ago, where τ is the latency of the overall system. We study the case of
a linear PD (proportional plus derivative) control force

D(t) = aθ(t− τ) + bθ̇(t− τ) (4)

which is given by the control gains a and b. It features a single fixed delay time
τ > 0 in the controller and converts the differential equation (2) into a DDE.
This delay τ in the dimensionless time corresponds to a delay of τ ·

√
2L/

√
3g

in the original time.

2.1 Center manifold reduction

We now show how one can reduce the DDE (2) to a system of ordinary differ-
ential equations (ODEs) on a three-dimensional local center manifold around
the origin. This follows the procedure as outlined, for example, in Refs. [7,8].
The material presented here allows the reader to link back the results of sec-
tion 3 to the original DDE (2). After rescaling time back by

√
2L/

√
3g, the

results can be interpreted in terms of the original physical quantities in (1).

First, we rescale time and angular velocity such that the delay is 1, and equa-
tion (2) is a DDE of the form

ẋ(t) = f(x(t), x(t− 1), λ) (5)
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where the right-hand-side f : R
2 × R

2 × R
4 → R

2 is

f1(x, y, λ) = x2

f2(x, y, λ) =
−3

8
m sin(2x1)x

2
2 + τ 2 sin x1 − cos x1(τ

2ay1 + τby2)

1 − 3

4
m cos2 x1

.
(6)

and the parameter set λ = (a, b, τ,m) is in R
4. System (5)–(6) establishes a

nonlinear evolution equation in C([−1, 0]; R2), the space of continuous func-
tions on the interval [−1, 0].

Note that, because f is odd, that is,

f(−x,−y, λ) = −f(x, y, λ), (7)

the system has the symmetry of reflection in the origin. Consequently, the ori-
gin 0 is always an equilibrium, and any solution of (5)–(6) is either symmetric
under this symmetry or it is nonsymmetric and its image under reflection in
the origin is also a solution.

The linear stability analysis of the origin 0 depending on the parameters a,
b, τ , and m shows that there is a bounded region of stability of 0 in the
(a, b)-plane if τ ∈ (0, τ∗) where

τ∗ =
1

2

√
8 − 6m

is the maximal permissible delay for linear stability (this corresponds to a
delay time

√
L(4 − 3m)/

√
3g in the unscaled time in the original physical

quantities); see also Refs. [2,9]. For τ → τ∗ the region of linear stability shrinks
to the point a = 1, b = τ∗ and the origin 0 has a triple-zero eigenvalue
singularity. At this point λ∗ = (1, τ∗, τ∗) the linearization of the origin

ẋ(t) =


0 1

2 0


x(t) +


 0 0
−2 −2


x(t− 1) (8)

has an eigenvalue 0 with algebraic multiplicity three and geometric multiplicity
one.

Equation (8) is a linear evolution equation in C([−1, 0]; R2). It induces an
invariant splitting of C([−1, 0]; R2) into a direct sum N ⊕H where N is the
three-dimensional generalized nullspace of the right-hand-side of (8) and H is
the invariant complement of N in C([−1, 0]; R2). The nonlinear system (5)–(6)
is a small perturbation of (8) near the origin for λ near λ∗.

Local center manifold theory for DDEs [7,8] states that there exists a smooth
mapH : N×R

4 → H such that the manifold {xN+H(xN , λ) ∈ C([−1, 0]; R2) :
xN ∈ N} is invariant under the evolution of the nonlinear system (5)–(6)
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locally around the origin for λ near λ∗. This manifold is called the local center
manifold, and the dynamics on it are governed by a three-dimensional ODE.
The goal of the center manifold reduction is to find a suitable approximation
of this ODE.

Specifically, we expand N in the basis

b1 =


1

0


 , b2 =


s

1


 , b3 =


1 + 1

2
s2

s


 (9)

where s ∈ [−1, 0] acts as the spatial variable in C([−1, 0]; R2). The next step
is to introduce a small scaling parameter r and zoom into the neighborhood of
the origin in phase space and λ∗ in parameter space by the change of variables,
parameters and time scale:

x = r3u1b1 + r5u2b2 + r7u3b3 + r3z,

(a, b, τ) =
(
1 + α

1

3
r6, τ∗ + β

τ∗
3
r2, b+ γ

τ∗
3
r4

)
,

told = r2tnew.

(10)

Here u = (u1, u2, u3) ∈ R
3 is the new magnified variable representing the

component of x in the center subspace N , z is the magnified component of
x in H, and µ = (α, β, γ) ∈ R

3 is an unfolding parameter of the triple-zero
singularity. The three-dimensional local center manifold can be expressed as a
graph z = z(u, µ, r). By using the invariant projections induced by the basis
(9), we split system (5)–(6) into an ODE on N and an evolution equation on
H. Then we use the substitution (10) and expand with respect to r; details
of these computations can be found in Ref. [13]. The result is that the graph
z(u, µ, r) is of order r6 and that u satisfies the three-dimensional ODE




u̇1

u̇2

u̇3




=




u2

u3

−αu1 + γu2 + βu3 + u3
1




+ r2R(u, µ, r) (11)

where R is a smooth function of its arguments. Note that affine and quadratic
terms are not present in (11) due to the symmetry (7). The form of the linear
and the dominant cubic term are determined by the triple-zero singularity. The
original parameters (a, b, τ) can be recovered from the unfolding parameter
µ = (α, β, γ) using (10), and the coefficient in front of the cubic term is
independent of the fourth parameter m (and, hence, was scaled to 1).
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Fig. 2. Bifurcation diagram of the truncated system, system (11) for r = 0. The
shaded area of the diagram is shown in more detail in Fig. 5.

2.2 Basic dynamics of the reduced system

Consider the truncated system, equation (11) with r = 0. Any hyperbolic
equilibrium, periodic orbit, or normally hyperbolic invariant manifold in the
truncated system persists under the small perturbation by r2R, and, hence,
exists in the full DDE system (5)–(6) for sufficiently small r and for the para-
meters obtained by (10).

Figure 2 summarizes the results (first obtained in Ref. [13]) of the bifurcation
analysis of the reduced system (11) with linear stability analysis in combina-
tion with numerical continuation of periodic orbits using AUTO [19]. As the
truncated system (11) has cone structure one can restrict the continuation to
the parameter sphere α2 + β2 + γ2 = 1, which we parametrize by ϕ and ψ
given by

α = sin
π

2
ϕ, β = cos

π

2
ϕ cos 2πψ, γ = cos

π

2
ϕ sin 2πψ. (12)
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Date: Mon Oct 27 20:15:10 2003
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Title: Parsed dynamical system
Date: Mon Oct 27 20:00:39 2003
x Range = [ -1, 1 ];   y Range = [ -0.80000000000000004, 0.80000000000000004 ]
Initial Conditions: ( x, y, z, time )=( -0.18880328143002392, -0.61127250253156096, 0.12111417474958235, 0 )
Parameters: ( phi, psi )=( 0.40000000000000002, 0.6966 )
Num Pts = 6002;  Time Step = 0.01

u2

u1 u1

(b)

Fig. 3. One of the two coexisting nonsymmetric attractors for (ϕ,ψ) = (0.4, 0.6958)
(a) and the symmetric attractor for (ϕ,ψ) = (0.4, 0.6966) (b) as observed in a
simulation of the truncated system, (11) with r = 0. The intersections of the gray
trajectories with the plane {u3 = 0} are shown as black dots.

The region marked by I in Fig. 2 is the region of linear stability of 0. In the
region marked by II there is a family of stable symmetric periodic orbits bi-
furcating from the Hopf bifurcation at 0. These periodic oscillations around
the upside-down position were found in experiments in Ref. [11]. Indeed, there
is only one two-parameter family of symmetric periodic orbits that is connec-
ted to the origin. It exists in a bounded region of the (ϕ, ψ)-plane. Its left
boundary is the symmetric Hopf bifurcation of 0, the S-shaped solid curve
connecting the points DZ−, PH and DZ+ in Fig. 2. (Note that there is also
a Hopf curve of the nonsymmetric saddles between PH and DZ+.) The right
boundary is formed by global bifurcations in which the symmetric periodic
orbit disappears, namely the dashed curves in Fig. 2. Along the dashed curve
between DZ− and HC there is a heteroclinic connection between the pair of
nonsymmetric saddles. Along the dashed curve connecting DZ+ and HC a
homoclinic figure-eight shaped connection to 0 exists. Throughout the entire
region of their existence, the symmetric periodic orbits undergo only saddle-
node bifurcations and pitchfork bifurcations, where they lose their stability to
a branch of nonsymmetric periodic orbits. Consequently, this primary family
of symmetric periodic orbits is the only non-trivial symmetric balancing re-
gime that is ‘connected’ to the origin in the parameter plane, meaning that it
can be found by continuation from 0.

3 Complex symmetric motion in the reduced system

The coexisting stable pair of nonsymmetric periodic orbits that branches from
the primary symmetric periodic orbit at the pitchfork bifurcation (the dot-
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dashed boundary of region II in Figure 2) undergoes a period doubling bi-
furcation along the dot-dot-dashed closed curve. This is the first in an infinite
sequence of period doublings leading to a pair of nonsymmetric chaotic at-
tractors. Figure 3 shows two attractors in projection onto the (u1, u2)-plane
for nearby parameter values inside the period doubling island of Fig. 2, ob-
tained by simulations of the truncated system, (11) for r = 0. While Fig. 3
(a) shows one of the two nonsymmetric chaotic attractors, Fig. 3 (b) shows a
bigger symmetric chaotic attractor. It is created in a crisis bifurcation [20] that
‘merges’ the two nonsymmetric attractors. Roughly speaking, the attractor in
panel (b) can be obtained by overlaying that in panel (a) with its symmetric
counterpart, obtained by rotating panel (a) by π. Also shown in Fig. 3 are
the intersection points (in black) of the attractors with the plane {u3 = 0};
providing evidence that the attractors are indeed chaotic. Each attractor in-
tersects this plane in two locations, one for positive and one for negative u2.
The symmetric attractor in this section in Fig. 3 (b) consists approximately
of the two nonsymmetric pieces of the nonsymmetric attractor in Fig. 3 (a).

3.1 Homoclinic tangency

We now give a more precise statement about this mechanism in terms of a
homoclinic bifurcation of the Poincaré map to a section, which we choose to
be {u3 = 0}. This will also allow us to show that stable symmetric periodic
orbits exist near symmetric chaotic attractors in so-called periodic windows.
These complex symmetric periodic orbits correspond to balancing motion of
the pendulum.

As was shown in Fig. 3 the attractors intersect the section {u3 = 0} transvers-
ally and in two distinct regions. We define by Π the return map of the flow of
the truncated system (11) from each of these regions back to the same region.
In other words, the map Π is defined as the second return to the section. The
primary symmetric periodic orbit intersects the section in two points trans-
versally along the curve of pitchfork bifurcations shown in Fig. 2. Hence, Π
is a Poincaré map for the primary symmetric periodic orbit, a well defined
two-dimensional diffeomorphism in its domain of definition, the two regions
as defined above. (Note that Π cannot be extended to a global Poincaré map
on the entire plane {u3 = 0}.) Because the section {u3 = 0} was chosen to
contain the origin, the map Π inherits the odd symmetry (7) from the flow.
Consequently, we can concentrate on Π in one of the two regions, say, on that
for negative u2. In this region there is a unique fixed point S corresponding to
the primary symmetric periodic orbit. After the pitchfork bifurcation (to the
right of the dot-dashed curve in Fig. 2) S is a saddle with eigenvalues Λ1 and
Λ2 satisfying 0 < Λ2 < Λ1Λ2 < 1 < Λ1. Hence, it has one-dimensional stable
and unstable invariant manifolds, W s(S) and W u(S), respectively.
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Fig. 4. Unstable and stable manifolds of S for the map Π at the parameter values
ϕ = 0.4, (a) ψ = 0.6950, (b) ψ = 0.6958, and (c) ψ = 0.6966. Panel (d) shows
the result of a long term simulation of Π for ψ = 0.6966, corresponding to the
arrangement of the invariant manifolds in panel (c).

To show that these manifolds undergo a first quadratic homoclinic tangency we
compute appropriate finite parts of these manifolds with a prescribed accuracy.
We use the algorithm from Refs. [14,21] in the form of an extension module
[22] that works as part of the Tcl/Tk version of the package DsTool [23]. The
return map Π is computed by integration of the vector field with a Runge-
Kutta fourth order discretization.

Figure 4 shows conclusive evidence that there is indeed a first quadratic tan-
gency, which is crossed with positive velocity under variation of the parameter
ψ. Panels (a) to (c) show the fixed point S, one side of its stable manifold
W s(S) and both sides of its unstable manifold W u(S) for fixed ϕ = 0.4 and
three different, but close values of ψ. Clearly, W s(S) and W u(S) do not in-
tersect in panel (a), but do intersect in panel (c). Because finite initial pieces
of these manifolds depend smoothly on parameters, these numerical results
provide accurate evidence that a first tangency exists and where it is located.
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Panel (b) shows the approximate moment of tangency. Figure 4 (d) is the
result of a long-time simulation of Π (after discarding transients) showing an
attractor resembling the closure of both parts of W u(S) for the same para-
meter values as Fig. 4 (c). This attractor indeed has the properties predicted
by theory, which is numerical evidence that it is chaotic.

The importance of the first tangency is that it corresponds to an attractor
crisis that creates a single symmetric chaotic attractor of Π by merging two
smaller nonsymmetric chaotic attractors that are the result of the period doub-
ling sequence. Before the tangency there are two distinct chaotic attractors of
Π, one on each side of the shown branch of W s(S), consisting of the closure
of the respective branch of W u(S). However, after the tangency it is possible
to pass from one side of W s(S) to the other. This mechanism creates a single
attractor and is often referred to as a crisis bifurcation [20]. More specifically,
this is a symmetry-restoring (interior) crisis in which two symmetrically re-
lated attractors hit the boundary of their basin of attraction simultaneously
and merge. It occurs if W u(S) and W s(S) have a homoclinic tangency and
the union of the nonsymmetric attractors is equal to the closure of the whole
unstable manifold W u(S) at the moment of tangency. This phenomenon was
classified as intermittent switching in Ref. [16]. It was observed for example
in Ref. [24] in a DDE model (also with Z2-symmetry) of a laser with phase-
conjugate feedback.

The dynamics on the symmetric chaotic attractor follow one of the two non-
symmetric subparts for a long time before crossing W u(S) to then follow the
other part, before switching back, and so on. This corresponds to the inver-
ted pendulum making small chaotic oscillations while leaning to one side at
a time. The pendulum does not fall over because the controller compensates
by increasing the velocity of the cart, then changing direction and so on. In
other words, the velocity of the cart also performs a chaotic motion but with
potentially very large excursions depending on the exact nature of the chaotic
attractor.

3.2 Existence of symmetric periodic orbits

To make rigorous statements about the existence of complicated symmetric
periodic orbits of Π in the vicinity of the homoclinic tangency we perform a
symmetry reduction for Π as follows. Let us denote by Π̂ the first return to
the section composed with the symmetry operation of rotation by π. Then Π̂
is a diffeomorphism in the same domain of definition as Π, but it does not
have reflectional symmetry in the origin. In particular, the map Π̂ satisfies

(
Π̂

)2

= Π̂ ◦ Π̂ = Π.

12



This means that symmetric periodic orbits of Π correspond to periodic orbits
of Π̂ with odd period. Similarly, nonsymmetric periodic orbits of Π are periodic
orbits of even minimal period of Π̂.

In particular, S is a fixed point, that is, a point of (odd) period 1 of Π̂. The
pitchfork bifurcation of S for Π corresponds to a period doubling bifurcation
of S for Π̂. After this period doubling, S is a saddle fixed point of Π̂. The
one-dimensional stable and unstable invariant manifolds of S with respect to
Π̂ and Π are identical. Thus, we denote them by W u(S) and W s(S) for Π̂ as
well.

The existence of the quadratic tangency of W u(S) and W s(S) allows us to
apply the well-established theory of homoclinic tangencies in two-dimensional
diffeomorphisms; see, for example, Ref. [15]. The saddle value of S for the
parameter values of Fig. 4(c) is less than 1, that is, the eigenvalues Λj (j = 1, 2)
of Π̂ at S satisfy the relation

Λ1 < −1 < Λ1Λ2 < 0 < Λ2 < 1. (13)

The following lemma is an immediate consequence of the general theoretical
results [15] for two-dimensional diffeomorphisms close to homoclinic tangencies
for saddle fixed points satisfying relation (13).

Lemma 1 Close to the homoclinic tangency there exist infinitely many open

sets of parameters ψ where the map Π̂ has stable periodic orbits with odd

period.

Indeed, the general results are much deeper stating that there exist infinitely
many stable periodic orbits simultaneously for residual sets in the so called
Newhouse regions of the parameter space. We remark that [15] assumes that
the map is orientation preserving, which Π̂ is not. However, this assumption
is not actually necessary for the construction of the stable periodic orbits.

Although these periodic orbits typically have a large period and a small basin
of attraction, they are robust with respect to small perturbations of the map.
Hence, they exist as symmetric periodic orbits in the non-truncated system
(11) and in the full DDE system (5)–(6) as well. Any of these periodic orbits
corresponds to a symmetric small-amplitude regime in (5)–(6) with a periodic
and, hence, bounded velocity of the cart. In other words, we have found many
balancing motions of the inverted pendulum that are given by these more
complex symmetric periodic orbits.
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Fig. 5. Curve of homoclinic tangency and the region of stable symmetric attractors
in the bifurcation diagram. The arrow shows the line along which we chose the
parameter values for Figs. 3, 4 and 6.

3.3 The relevant region in parameter space

The homoclinic tangency of Π (and Π̂) to S forms a smooth curve in the
(ϕ, ψ)-plane that is robust with respect to small perturbations, for example,
small nonzero r in (11) or numerical errors. In Figure 5 we have added as a
solid black polygon an approximation of the curve of homoclinic tangency to
S to the bifurcation diagram. The corners of this polygon have been found by
identifying the first homoclinic tangency up to 4 digits in ϕ and ψ. Since the
saddle value of S is smaller than 1 along the whole curve, Lemma 1 implies
that there exist many regions near the curve of homoclinic tangency where
symmetric stable periodic orbits exist.

If the nonsymmetric attractors of Π are equal to the closure of the whole
unstable manifold W u(S) at the curve of homoclinic tangency, one observes
an attractor crisis [20] as depicted in Fig. 3 and Fig. 4(d). This defines one
boundary of the region in the (ϕ, ψ)-plane where chaotic symmetric attractors
may occur. A numerical approximation of this region is hatched in Fig. 5. Its
other boundary is defined by the occurrence of a pair of (symmetrically re-
lated) heteroclinic tangencies between S and the pair of nonsymmetric saddle

equilibria E± = (±
√

sin(πϕ/2), 0, 0) of the truncated system (11). The saddles

E± both have a two-dimensional stable manifold W s(E±). The intersections
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of these stable manifolds with the plane {u3 = 0} generically are curves that
establish the boundary between the existence of stable bounded dynamics
of Π and escape to infinity. Consequently, a tangency between W u(S) and
W s(E+) (and simultaneously between W u(S) and W s(E−)) is a codimension-
one bifurcation that defines the boundary of the parameter region where Π
can have stable bounded regimes. The heteroclinic tangency forms a smooth
curve in the (ϕ, ψ)-plane, which we approximated by the thick gray polygon
in Figure 5. The corners were found by checking the boundedness of a nu-
merical trajectory over large integration times. We started simulations in the
vicinity of the nonsymmetric fixed points of Π and checked whether the orbit
escapes to infinity within 15000 iterates of Π. (Note that the return map Π
is not well defined near the saddles E±, such that algorithms for computing
one-dimensional manifolds cannot be readily applied.)

We remark that, at the moment of the homoclinic tangency, the (chaotic)
nonsymmetric attractors may be substantially smaller than the closure of the
unstable manifold W u(S). In this case, there is no attractor crisis at the tan-
gency, but a change in the basin of attraction of the nonsymmetric attractor
(also referred to as a basin boundary metamorphosis [20]). This happens along
the part of the black solid tangency curve in Fig. 5 that does not bound the
shaded region, to the left of the codimension-two point where the black and
gray curves meet. (This point appears to be what is known as a double crisis
vertex [25] in systems without symmetry.) In fact, the tangency curve even
crosses the period doubling curve (for ϕ < 0.25), so that the homoclinic tan-
gency takes place when the two nonsymmetric fixed points of Π are stable.

4 Complex symmetric motion in the full DDE system

The center manifold reduction (see Section 2) guarantees that all phenomena
observed in the truncated system (11) that are robust with respect to small
perturbations are also present in the full DDE system (5)–(6). In particular the
curves of period doubling, and homoclinic and heteroclinic tangency shown in
Fig. 5 will persist. This implies the existence of symmetric high-period periodic
attractors and of symmetric chaotic attractors in the hatched region of Fig. 5
for the DDE system as well.

Furthermore, in Ref. [13] we could establish a very good quantitative agree-
ment between the bifurcation diagrams of the truncated system and that of the
full DDE system even quite far away from the triple-zero singularity. However,
symmetric chaotic attractors of Π may not be robust in the sense of persist-
ence with respect to small perturbations, and the complex stable symmetric
periodic orbits, while being robust according to Lemma 1, may have extremely
small basins of attraction and are typically difficult to find. Hence, it is worth
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Fig. 6. Simulation results for DDE system (5)–(6),(14) with m = 0 demonstrating
the transition to symmetric attractors. The first column shows the projection onto
the (x1, x2)-plane, the second column shows the projection of a Poincaré map, the
third column shows the time trace of the velocity of the cart δ̇. Parameter values
are ϕ = 0.4 and ψ = 0.702 for (a)–(c), ψ = 0.705 for (d)–(f), and ψ = 0.71 for
(g)-(i).

illustrating numerically that we can observe the phenomena described in sec-
tion 3 in the full DDE system (5)–(6) as well. We set the scaling parameter to
r = 0.5 and the mass ratio to m = 0. (Note that m only enters in the formula
for τ ∗.) To convert the parameters ϕ and ψ back to the original parameters a,
b, and τ we use the scaling (10) and transformation (12). The velocity of the
cart is governed by the equation

δ̈(t) = L
m
2
x1(t)x2(t)

2 + 2

3
[aτ 2x1(t−1) + bτx2(t−1)] − m

4
τ 2 sin(2x1(t))

1 − 3m
4

cos2 x1(t)
(14)

in the time scale corresponding to a delay of 1. We simulate the full DDE
system (5)–(6), (14) for x and δ̇ using a 4th-order fixed step Adams-Bashforth
method with a stepsize of 0.05.
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Figure 6 shows simulation results for three different parameter values near
(ϕ, ψ) = (0.4, 0.7), after discarding a transient of duration 5000. Three dif-
ferent regimes are shown by three panels each. The first panel shows the
(x1(t), x2(t))-projection of the attractor of the DDE. The second panel shows
the attractor of the Poincaré map defined by the second return to the hyper-
plane {x2(t) − x2(t− 0.05) = 0} (by only plotting the head point). The third
panel shows the corresponding time profile of the cart velocity δ̇(t). Panels
(a) and (b) show a nonsymmetric chaotic attractor, which does not corres-
pond to successful balancing, since |δ̇(t)| increases on average according to
panel (c). Panel (d) and (e) show a symmetric periodic orbit. It corresponds
to successful balancing motion because δ̇(t) remains bounded as can be seen
from panel (f). Finally, panels (g) and (h) show a symmetric chaotic attractor
and panel (i) the corresponding motion of the cart velocity. The dynamics of
the cart velocity in panel (i) consists of large irregular excursions with a zero
mean. Therefore, seen over a sufficiently long timescale, the velocity of the
cart resembles a random walk.

We remark that it was checked with extended simulations that the attractors
in Fig. 6(a), (b), (g) and (h) are indeed examples of chaotic attractors (which
must exist according to theory). The computed trajectories do not repeat over
an integration time of 1.5×105. Note that panels (a) and (g) only show a short
segment of the computed trajectory so that the structure of the respective
attractor is visible, while the panels (b) and (h) show the entire computed
attractor of the Poincaré map.

In summary, Fig. 6 shows that the symmetric attractors that exist in the
reduced system according to Lemma 1 can indeed be found in numerical sim-
ulations of the full DDE. In particular, complex balancing motion due to
complicated symmetric periodic orbits exists even quite far away from the
triple-zero singularity.

5 Discussion and conclusions

The controlled inverted pendulum is a model case for investigating nonlin-
ear phenomena due to delay-induced instabilities. Previous [1,9,17] and recent
[11,13] studies considered the linear stability of the origin and found a primary
family of small-scale (symmetric) periodic balancing motions branching off in
a Hopf bifurcation. We showed that more complex balancing motions are pos-
sible. The mechanism that gives rise to this behavior is a homoclinic tangency
in which two nonsymmetric attractors collide and form a bigger symmetric
attractor.

While existing models for small chaotic oscillations require nonlinearities (such
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as round-off) of the control loop, our results show that complex balancing mo-
tions are possible and supported in a system with a linear PD controller,
where the geometric nonlinearity of the controlled mechanical system is the
only (weak) nonlinearity. The mechanism we found occurs naturally in a neigh-
borhood of the symmetric triple-zero singularity. Therefore, one must expect
the emergence of complex symmetric attractors in many other systems — in
particular, in other symmetric control problems with delay.

A characteristic feature of the complex balancing motions described in this
paper is that they are located in islands in the parameter space that are
isolated from the stability regions of the origin and the primary periodic orbits.
While some of these islands may be big enough to be accessible experimentally,
they will be difficult to find experimentally (it was already difficult to find them
in the model) because they cannot simply be reached by following a known
solution under variation of a parameter. Finding complex balancing regimes
in an experiment is a challenging open problem.

A related open question is whether the more complex phenomena described in
this paper can also be found in more realistic balancing models. For example,
the model compared with the experiments in Ref. [11] included viscous friction
and a component of the control force D depending on the displacement δ and
the velocity δ̇ of the cart (in order to keep δ near 0). This is an interesting
and challenging question because even small friction and a weak dependence
of D on δ and δ̇ are singular perturbations of (2)–(3).

Acknowledgments

The research of J.S. is supported by EPSRC grant GR/R72020/01 and that
of B.K. by an EPSRC Advanced Research Fellowship.

References

[1] J. L. Cabrera, J. G. Milton, On-off intermittency in a human balancing task,
Physical Review Letters 89 (158702).

[2] G. Stépán, L. Kollár, Balancing with reflex delay, Mathematical and Computer
Modelling 31 (2000) 199–205.

[3] C. M. Marcus, R. M. Westervelt, Stability of analog networks with delay, Phys.
Rev. A 39 (1989) 347–359.

18



[4] L. P. Shayer, S. A. Campbell, Stability, bifurcation, and multistability in a
system of two coupled neurons with multiple time delays, SIAM J. of Appl.
Math. 61 (2) (2000) 673–700.

[5] B. Krauskopf, D. Lenstra (Eds.), Fundamental Issues of Nonlinear Laser
Dynamics, American Institute of Physics, 2000.

[6] F. C. Moon, Dynamics and Chaos in Manufacturing Processes, Wiley, New
York, 1998.

[7] J. K. Hale, S. M. V. Lunel, Introduction to Functional Differential Equations,
Vol. 99 of Applied Mathematical Sciences, Springer-Verlag, 1993.

[8] O. Diekmann, S. van Gils, S. M. V. Lunel, H.-O. Walther, Delay Equations,
Vol. 110 of Applied Mathematical Sciences, Springer-Verlag, 1995.

[9] G. Stépán, Retarded Dynamical Systems: Stability and Characteristic
Functions, Longman Scientific and Technical, 1989.

[10] S. A. Campbell, J. Bélair, Analytical and symbolically-assisted investigation of
Hopf bifurcation in delay-differential equations, Canadian Applied Mathematics
Quarterly 3 (2) (1995) 137–154.

[11] M. Landry, S. A. Campbell, K. Morris, C. Aguilar, Dynamics of an inverted
pendulum with delayed feedback control, Preprint, University of Waterloo,
submitted (2003).

[12] G. Haller, G. Stépán, Micro-chaos in digital control, J. Nonlinear Sci. 6 (1996)
415–448.

[13] J. Sieber, B. Krauskopf, Bifurcation analysis of an inverted pendulum with
delayed feedback control near a triple-zero eigenvalue, Nonlinearity 17 (1) (2004)
85–104.

[14] B. Krauskopf, H. M. Osinga, Growing 1D and quasi 2D unstable manifolds of
maps, J. Comp. Phys. 146 (1) (1998) 404–419.

[15] J. Palis, F. Takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic
bifurcations, Cambridge studies in advanced mathematics, Cambridge
University Press, 1993.

[16] C. Grebogi, E. Ott, F. Romeiras, J. Yorke, Critical exponents for crisis-induced
intermittency, Phys. Rev. A 36 (11) (1987) 5365–5380.

[17] F. M. Atay, Balancing the inverted pendulum using position feedback, Appl.
Math. Letters 12 (1999) 51–56.

[18] J. Sieber, B. Krauskopf, Extending the permissible control loop latency for the
controlled inverted pendulum, Applied Nonlinear Mathematics Research Report
2004.13, University of Bristol
(http://www.enm.bris.ac.uk/anm/preprints/2004r13.html).

19



[19] E. J. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov,
B. Sandstede, X. Wang, AUTO97, Continuation and bifurcation software for
ordinary differential equations (1998).

[20] K. Alligood, T. Sauer, J.A. Yorke, Chaos: An Introduction to Dynamical
Systems, Springer, New York, 1997.

[21] B. Krauskopf, H. M. Osinga, Investigating torus bifurcations in the forced Van
der Pol oscillator, in: E. Doedel, L. Tuckerman (Eds.), Numerical Methods for
Bifurcation Problems and Large-Scale Dynamical Systems, Vol. 119 of IMA
Vol. Math. Appl., Springer-Verlag, 2000.

[22] J. England, B. Krauskopf, H. Osinga, Computing one-dimensional stable
manifolds of planar maps without the inverse, Preprint 2003.02, University of
Bristol, Bristol Centre for Applied Nonlinear Mathematics (2003).

[23] A. Back, J. Guckenheimer, M. Myers, F. Wicklin, P. Worfolk, DsTool: computer
assisted exploration of dynamical systems, Notices Amer. Math. Soc. 39 (4)
(1992) 303–309.

[24] B. Krauskopf, G.R. Gray, D. Lenstra, Semiconductor laser with phase-conjugete
feedback: dynamics and bifurcations, Phys. Rev. E 58 (1998) 7190–7197.

[25] H. B. Stewart, Y. Ueda, C. Grebogi, J. A. Yorke, Double crises in two-parameter
dynamical systems, Phys. Rev. Lett. 75 (13) (1995) 2478–2481.

20


