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Abstract

For passive dispersive re�ector (PDR) lasers we investigate a single mode model

containing two functions characterizing the in�uence of the PDR. We study numer-

ically the e�ect of the shape of these functions on the existence and robustness of

self-pulsations. The possibility of tuning the frequency and modulation depth of the

self-pulsations has been demonstrated.

1 Introduction

Multi-section DFB-lasers can exhibit self-pulsations (SP) [1]-[12]. SP of dispersive

self Q-switching (DQS) type have been studied both experimentally [2] -[6], [11],[12]

and theoretically [7] -[10], [12] for lasers containing two active DFB-sections.

Although the basic mechanisms for the generation of these SP are well understood,

it is still a challenge to �nd design rules for tailoring the parameters of the SP such

as the repetition frequency and the pulse shape. Especially, the question in which

range the SP parameters can be varied by changing the device parameters (section

lengths, grating period) is crucial for applications.

Since the calculations of the transient behaviour of a multi-section DFB-lasers by

means of the TDE model [17] is rather time consuming and since the number of

device parameter to be taken into account is high, in the following we introduce a

single mode model containing only a few parameters. The derivation of this model

is based on two important simpli�cations.

First, we pro�t from the fact that the DFB-section serving as dispersive re�ector is

usually kept close to the gain transparency. Therefore, the carriers of this section

couple only weakly to the photons. Taking into account this e�ect we completely

replace the re�ector by a passive section, as sketched in Figure 1.

passive dispersive reflector gain section

gain currentphase current

Passive Dispersive Reflector Laser
Fig. 1: Scheme of a passive

dispersive re�ector (PDR) laser.

Only the carriers in the gain sec-

tion couple to the optical �eld.

The waveguide in the PDR sec-

tions is passive. The exam-

ple sketched here consists of a

phase tuning section and a DFB-

section.
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In this modelling a PDR-laser has only one active DFB-section. The passive part

of the device may consist of di�erent phase and re�ector sections. Furthermore,

chirped gratings allow a nearly arbitrary tuning of the re�ector properties.

Our second simpli�cation is based on the observation that in the frame of the single

mode model all the many device parameters enter only few functions of the car-

rier density (gain, losses, �ll & Petermann factors). We call these functions rate

equation (RE) functions. It seems natural to consider the RE-functions as the basic

characteristics determining the nature of the SP. This allows us to split the tailoring

procedure into two almost independent steps. In a �rst step, we have to �nd such

RE-functions providing the desired properties of the SP of a PDR-laser. In the

next step the properties of the PDR must be tailored for obtaining the appropriate

RE-functions.

The goal of our study is to demonstrate that the SP frequency of a PDR-laser de-

pends strongly on the parameters of the passive dispersive re�ector. The paper is

organised as follows. In Section 2 we derive some normal form for a system of two

rate equations containing only two RE-functions. Furthermore, we present a typical

pair of RE-functions. Section 3 contains a stability analysis of the stationary states

in dependence on the PDR parameters. In Section 4 we study the generation of SP

via Hopf bifurcation and we apply a continuation method to compute the periodic

solutions. The in�uence of the PDR parameters on the self-pulsation frequency and

on the modulation depth is discussed in Section 5. A summary and conclusions are

given in Section 6.

2 Mode Equations

2.1 The single mode rate equations

We start from the rate equations presented in [12]. In our case of a PDR -laser, only

one DFB-section is active. Therefore, the carrier number N in this section and the

photon number S are the dynamic variables, and the equations read

dN

dt
=

I

e
�
N

�e
� vg�gS; (1)

d

dt

 
S
p
Kz

!
= (vg�g � 
p)

 
S
p
Kz

!
; (2)

where e is the elementary charge, vg the group velocity, I the injection current into

the gain section and �e the spontaneous life-time of carriers.

For the modal gain g we use the simple linear approximation

g(N) = g0 (N �Ntr) ; (3)
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where g0 is the di�erential gain and Ntr is the transparency concentration. Further-

more, �(N) is a longitudinal �ll factor, i.e., the relative part of power contained

in the gain section1, 
p(N) is the optical loss rate due to the radiation emitted at

the facets and due to the internal losses, and Kz(N) is the longitudinal analogy to

Petermann's K-factor of the excess spontaneous emission [14].

Under our assumption that the carrier numbers change only in one part of the de-

vice, the functions �(N); 
p(N) and Kz(N) may exhibit considerable variations with

changing carrier number N . A detailed description of the calculation of these func-

tions by means of the coupled mode equations has been given in previous papers

[7, 12, 15].

2.2 Transformation to normal form

As mentioned in the introduction, many parameters enter the rate equations in the

single mode model. In this section we transform the rate equations (1)-(2) to some

normal form.

Let Nth be the smallest zero of the function vg�(N)g(N)� 
p(N). Nth is called the

threshold carrier number. By means of the nonlinear coordinate transformation

n =
N �Nth

Nth �Ntr

; p = vgg
0�e�(Nth)

q
Kz(Nth)q
Kz(N)

S

Nth �Ntr

we introduce the quasi-carrier number n and the quasi-photon number p as new

variables. In these variables the rate equations (1)-(2) read as follows

dn

d�
= J � n� (1 + n)K(n)p; (4)

dp

d�
= G(n)p (5)

with

G(n) = T

"
�(n)

�(Nth)
(1 + n)�


p(n)


p(Nth)

#
; (6)

K(n) =
�(n)

�(Nth)

vuut Kz(N)

Kz(Nth)
; (7)

where J = (I � Ith)=(Ith � Itr) is the relative excess injection rate, � = t=�e is the

dimensionless time and T = 
th
p
�e is the dimensionless photon loss rate. Here Itr =

eNtr=�e and Ith = eNth=�e are the transparency and threshold currents, respectively.

1This di�ers from the common notation where � is used for the transverse con�nement factor,

which we assume to be included in g, for brevity.
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The equations (4)-(7) describe the single mode dynamics of a laser consisting of one

active section and an arbitrary passive re�ector.

Typically we have 
th
p

= 5 � 1011s�1, thus we �nd the following orders of magnitude

T � 500; 0 < J < 10; jnj � 1:

The most simple case is that without re�ector, i.e., a solitary active DFB-section.

In this situation, �; Kz and 
p are independent of the carrier number such that we

have

�(n) � K(n) � 1; G(n) � Tn: (8)

1

2

3

4

without

PDR
with

n
0

T
hr

es
ho

ld

-0.2 -0.1 0.0 0.1

-100

-50

0

50

G
K

n

The plots of these functions are shown in

Figure 2 (dashed lines). Thus, any single

section DFB-laser can be described by the

reduced rate equations with only two pa-

rameters, the excess injection J and T .

A dispersive re�ector in�uences the dy-

namics via the shape of the two functions

K(n); G(n), which are the RE-functions

discussed in the introduction. In case of a

single section re�ector with a uniform in-

dex coupled grating, examples for the car-

rier density dependence on the quantities

composing the RE functions (�; 
p; Kz)

can be found in [7, 10]. The most promi-

nent feature is a narrow resonance-like en-

hancement of Kz which implies a corre-

sponding resonance of K(n). This reso-

nance is closely related to the appearence

of a mode degeneracy at the point where

Kz diverges [10]. We believe that such a

resonance ofKz due to a mode degeneracy
Fig. 2: Typical pro�le of the RE

functions K(n) and G(n) for a soli-

tary gain section (dashed lines) and

for PDRL (solid lines).

is a rather general consequence of disper-

sive re�ectors. This phenomenon has also

been obtained in [12] for more complicated

re�ectors composed of a DFB-section ac-

complished by a phase tuning section.

Using the formula and parameter values for a conventional DFB-laser described in

[12], [15], [17] we have calculated the RE functions for devices with similar re�ector

structures. A typical example of a function representing the resonance structure of

K(n) is drawn in Figure 2 (solid line). The position of the resonance, its width and

height vary in dependence on the parameters of the re�ector. To study the conse-

quences of these di�erent con�gurations on the dynamics, we shall use the following
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simple Lorentzian model for the resonance

K(n) = K0 +
AW 2

4(n� n0)2 +W 2
(9)

where n0 (detuning) determines the position of the resonance, A is its amplitude

and W its width. In the sequel we set K0 such that K(0) = 1 which is consistent

with (7).

The in�uence of di�erent re�ectors on the RE-function G(n) is mainly an enhance-

ment of its slope within a �nite interval. For the following investigations, this feature

will be modeled by the simple function

G(n) = T

�
n+ � �� � tanh

�
n

�

��
: (10)

The parameters � and � characterize the width of the slope enhancement region

and the magnitude of the relative slope enhancement, respectively.

3 Stability of the equilibria

System (4)-(5) has two stationary solutions,

(n1; p1) =

 
0;

J
K(0)

!
[laser �on�], (11)

(n2; p2) = (J ; 0) [laser �o��]: (12)

To determine the stability of these solutions we compute the eigenvalues of the

Jacobian of the right-hand side of (4)-(5) at these points.

The eigenvalues at the o�-state are

�o�
1

= �1�K(J ), �o�
2

= G(J ).

Since G(J ) > 0 for J > 0 the o�-state is unstable above threshold.

In what follows we focus on the on-state which has a physical sense only for J =K(0) >

0. Its stability is governed by the pair of complex eigenvalues

�on
�

= �
 � i
q
!2 � 
2

where 
 expresses the damping 
 and ! the frequency


 =
1

2

"
1 +

 
1 +

K 0
(0)

K(0)

!
J
#
; !2

= G0
(0)J . (13)

In case of a solitary gain section described by (8) the on-state (n1; p1) is a stable

focus with damping 
 = (1 + J ) =2 and frequency ! =

p
TJ provided !2 > 
2.
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The expressions in (13) describe the in�uence of the values K 0
(0)=K(0) and G0

(0)

on the damping 
 and the frequency !.

Now we study how the stability of the on-state depends on the parameters A and

n0 for �xed W . A simple analysis shows that the damping 
 as a function of n0
has at most two roots for any A and W . If A is su�ciently large, the function


(n0) has two simple zeroes, its graph is shown in Figure 3 (solid line). This curve

visualizes that the resonance of K(n) a�ects the stability of the on-state only if its

position is within an interval near threshold. In this region the damping is strongly

enhanced for n0 > 0. For large A and decreasing n0 the stability of the on-state

changes rapidly near n0 = 0 from a strongly damped focus to a strongly unstable

focus. For jn0j � W the resonance of K(n) does not in�uence the damping of the

on-state. It is as small as without PDR (dashed line in Figure 3). We conclude that

the introduction of a PDR changes essentially the behaviour of damping.

-0,10 -0,05 0,00 0,05 0,10

-50

0

50
with PDR
without PDR

n
03

n
01

n
02da

m
pi

ng

detuning n
0

Fig. 3: Dependence of 
 on the detuning n0 for a solitary gain section

(dashed line) and for a gain section with a passive dispersive re�ector

(solid line) (W = 0:02; A = 1;J = 2).

One of the basic functions of optical devices is the optical switching between stable

steady states. Now we demonstrate how the region of enhanced positive damping

can be used to design an optical switching device. To this purpose we apply an

external injected current of step type

J =

(
1 : 0 � � � 0:5

2 : 0:5 < � < 1

and solve the initial value problem (4)-(5) with (9), (10) starting from the on-state

for di�erent detuning n0 = n01 = 0:05 and n0 = n02 = 0:005.
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Figures 4b;c show the time behaviour of p=p0

(p0 = (Nth � Ntr)=(vgg
0�e)) for two di�er-

ent values of detuning: n01 corresponds to

the damping of the solitary gain section and

n02 to enhanced damping (Fig. 3). Figure

4
b shows the temporal evolution of photon

number/p0 calculated numerically for n0 =

n01. The most important feature of this tran-

sient response is that the switching is accom-

panied by weakly damped oscillations. These

oscillations are referred to as relaxation oscil-

lations.

Figure 4
c represents the in�uence of en-

hanced damping on the switching properties.

Fig. 4: Time behaviour of the

injected current a). Dynamic

response of PDRL for di�erent

detuning values b) n01 = 0:05

(damping of the solitary gain sec-

tion), c) n02 = 0:005 (enhanced

damping); where W = 0:02; A =

1, � = 5;� = 0:1. J0 = e(Nth �
Ntr)=�e.

In case n0 = n02 and when the injected cur-

rent changes from J = 1 to J = 2 the tran-

sient response practically re�ects the form of

the injected current such that the switching

time is shorter by 2 orders of magnitude com-

pared with the previous case.

From the Figures 4b;c it is evident that

the passive dispersive re�ector leads to the

0 1 2

0

5

10

p
min

p
max

ph
ot

on
 n

um
be

r 
/ 

p 0

time (0.5ns/div.)

increase of the damping and strongly reduces

the switching time between stationary states.

For negative detuning n0 = n03 (see Fig. 3)

the stationary state corresponding to J=2 is
unstable and we observe self-pulsations (Fig.

5). The nature of these self-pulsations is dis-

cussed in the following section.

Fig. 5: Time evolution of photon

number/p0 for negative damping

and detuning value n03 = �0:005
(region of SP), where J = 2,

W = 0:02; A = 1, � = 5;� = 0:1.

We would like to emphasize that for a de-

tuning n0 near the threshold a PDRL shows

two di�erent kinds of dynamic behaviour:

fast response without relaxation oscillations

(fast switching) for small positive n0 and self-

pulsations for negative detuning.
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4 Bifurcation Analysis

In the previous section we have shown that the on-state is unstable for su�ciently

large amplitude A if the detuning n0 belongs to some interval B2 < n0 < B1 < 0.

Since 
(n0) has simple zeroes for n0 = B2 and n0 = B1, these points are Hopf

bifurcation points. In this section we explore the families of periodic solutions we

expect to emerge at the Hopf points B1 and B2 and compute the bifurcation curves

in the (A; n0)-plane
2.

Firstly, we study the bifurcation of a branch of periodic solutions and its con-

tinuation for varying n0 for a small �xed value of A. Figure 6
a displays the

corresponding bifurcation diagram. It shows that a small amplitude A induce a

small region of instability of the on-state where a unique branch of stable SP exists.

-0.01 0.00

3.6

4.0

4.4

4.8
a)

.
. .

B
2 B

1

pe
ak

 p
ho

to
n 

nu
m

be
r 

/ 
p 0

-0.2 -0.1 0.0

0

30

60

.

b)

.

B
3

detuning

.
.

B
2 B

1

pe
ak

 p
ho

to
n 

nu
m

be
r 

/ 
p 0

Fig. 6: Bifurcation diagrams of the stable and unstable on-states (thin solid lines and

thin doted lines, respectively), and stable (thick solid lines) and unstable (thick doted

lines) periodic solutions. The insets show the phase portraits of the two-dimensional

system (10)-(11) in the (n; p)-plane. Used parameters: a)A = 0:015; b)A = 1, and

W = 0:02;J = 2; � = 5;� = 0:1.

2The bifurcation detection and continuation software package AUTO has been used to perform

the numeric computations [16].
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(Note the di�erent scaling of the n0-axis in Fig. 6
a and in Fig. 6

b). Both Hopf

points B1 and B2 are supercritical.

For larger values of A the bifurcation scenario changes. The corresponding bifurca-

tion diagram is presented in Fig. 6b. The lower Hopf point B2 becomes subcritical

and a branch of unstable periodic solutions emerges for decreasing n0. For n0 < B2

we have the coexistence of a stable steady state, a stable SP and an unstable periodic

solution separating the attractors. The branch of the unstable periodic solutions

bifurcating from B2 and the branch of stable SP emanating from B1 merge in a

saddle-node bifurcation at n0 = B3 < B2. The subcritical Hopf point B2 and the

saddle-node point B3 imply a hysteresis phenomenon with jumping behaviour at B3

and B2 (depicted by dashed arrows in Fig. 6b).

Varying both parameters n0 and A we obtain the Hopf curve P1-P2-P3 in the (A; n0)-

plane where the curve P1-P2 is a supercritical Hopf curve and the curve P2-P3 is a

subcritical Hopf curve (see Fig. 7). At the point P2 the Hopf bifurcation is degen-

erated and a branch of saddle-node bifurcations of periodic solutions emerges (the

curve P2-P4 in Fig. 7). These bifurcation curves divide the parameter plane into

three regions. The on-state is the only attractor in region I. In region II the stable

on-state and a stable SP coexist and are separated by an unstable periodic solution.

The on-state is unstable and the SP is stable in region III. Since point P3 is near the

minimum Amin of the Hopf curve the scenario of Fig. 6
b is predominant for �xed A

and varying detuning n0.

The other RE function parameters in�uence the bifurcation curves of Figure 7 in

the following manner: a decrease ofW contracts the regions II and III where P3 and

P4 are shifted towards P1. At the same time Amin tends to the origin. A change of

� or � implies only a minor change of the line P2-P4.

-0,20 -0,15 -0,10 -0,05 0,00

0

1

2
P

4
P

3

P
2

P
1

III

II

I M

A

detuning

Fig. 7: Decomposition of

the (n0; A)-plane in three re-

gions with di�erent qualitative be-

haviour, where W = 0:02;J = 2

and � = 5;� = 0:1
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5 Tuning the SP Frequency and Extinction

Ratio

In what follows we are interested in tuning (in the sense of increasing) the frequency

of the stable self-pulsations compared with the relaxation frequency f0 =
p
TJ =2�

of the solitary gain section.

Let us �rst consider the case � = 0, W = 0:05 and draw the curves of the same

frequency and the curves of the same modulation depth in the (A; n0)-plane.

-0,3 -0,2 -0,1 0,0
0,0

0,5

1,0

1,5

2,0

P
2

P
4

P
3

P
1

detuning

0.95 f
0

15 dB
0.80 f

0

25 dB
0.70 f

0

33 dB

A

Fig. 8: Isofrequency con-

tours with � = 0, W =

0:05;J = 2. The bold con-

tours represent curves with

the same frequency of self-

pulsations. The big marks in-

dicate the same modulation

depth. The modulation depth

is measured in terms of dB=

10 log(pmax=pmin).

Our numerical investigations yield for any W the following results (see Fig. 8):

(i). Each curve of the same frequency is also a curve of the same modulation depth.

(ii). The frequency (modulation depth) monotonically decreases (increases) with

increasing distance from the curve of supercritical Hopf bifurcation.

Next we �x a point M in the (A; n0)-plane (see Fig. 7) and draw the curves of the

same frequency and the curves of the same modulation depth in the (�;�)-plane

(Fig. 9). This picture shows that

(i). frequency and modulation depth increase with increasing � if � is su�ciently

large, i. e. the interval of gain enhancement covers the variation of n along the

orbit of the SP,

(ii). the frequency of the SP is larger than f0 for � > 0.
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∆
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83 dB
50 dB
16 dB

2.4 f
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2.0 f
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1.2 f
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Fig. 9: Contours of

constant frequency and

modulation depth in the

(�;�)-plane for parame-

ters W = 0:02;J = 2 and

A = 0:5; n0 = 0:25.

6 Summary and Conclusions

In this paper we have investigated numerically a single mode model for PDR lasers.

This model represents a two-dimensional system of autonomous ordinary di�erential

equations (rate equations) depending on two crucial functions K and G describing

the properties of the PDR. Using a characteristic sample of parameters for a PDR

laser we have calculated a typical shape for the functions K and G and have �tted

these functions by the expressions (9) and (10). Numerical investigations of the

bifurcation scenario and of the phase portrait yield the following results:

The detuning n0 which determines the position of the resonance of the function K is

the essential bifurcation parameter. A typical bifurcation scenario is as follows: For

large n0 the on-state is asymptotically stable. With decreasing n0 the decay rate

enhances for small positive n0. Near n0 = 0 the decay rate decreases rapidly. The

on-state loses its stability by a supercritical Hopf bifurcation and a branch of stable

self-pulsations emerges. If n0 further decreases, the on-state regains its stability by

a subcritical Hopf bifurcation and a branch of unstable periodic solutions arises.

With decreasing n0 both branches of periodic solutions merge and disappear in a

saddle-node bifurcation.

From the numerical investigations we can derive the following conclusions: A PDR

in�uences the dynamics of a single-mode laser by a narrow resonance-like enhance-

ment of the RE-function K and a local gain enhancement. The amplitude and the

position of the resonance of the function K control the existence of self-pulsations

and the stability of the on-state. Here, the important question arises how to express

n0 in terms of easily accessible device parameters (see [9] for a �rst approach). There

are parameter constellations where the PDR laser can be used for optical switching.

An increase of the frequency of the SP beyond the relaxation frequency of a single

11



section device can not be obtained by means of the parameters of the function K,

however an increasing of the slope of the local gain enhancement allows to reach

this goal.
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