Books.

  1. V. Lucarini, D. Faranda, A.C. Freitas, J.M. Freitas, M. P. Holland, T. Kuna, M. Nicol, S. Vaienti. Extremes and Recurrence in Dynamical Systems. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs, and Tracts, 2016, pp312.

Articles in ergodic theory and dynamical systems.

  1. M. P. Holland, M. Kirsebom, P. Kunde and T. Persson. Dichotomy results for eventually always hitting time statistics and almost sure growth of extremes. PDF on Arxiv.

  2. M. P. Holland and A. Sterk. On Max-Semistable Laws and Extremes for Dynamical Systems. Entropy. 23, (2021), no. 9. 1192. Available here.

  3. D. Coates, M. P. Holland and D. Terhesiu. Limit theorems for wobbly interval intermittent maps. To appear in Studia Math. PDF on Arxiv.

  4. M. Carney, M. P. Holland, and M. Nicol. Extremes and extremal indices for level set observables on hyperbolic systems. Nonlinearity 34 (2021), no. 2, 1136–1167. PDF on Arxiv.

  5. S. Galatolo, M. Holland, T. Persson, and Y. Zhang. Birkhoff sums of infinite observables and anomalous time-scaling of extreme events in infinite systems. Discrete Contin. Dyn. Syst. 41 (2021), no. 4, 1799–1841. PDF on Arxiv.

  6. M. P. Holland, M. Todd. Weak convergence to extremal processes and record events for non-uniformly hyperbolic dynamical systems. Ergodic Theory Dynam. Systems 39 (2019), no. 4, 980–1001. PDF on Arxiv.

  7. M. P. Holland, P. Rabassa, A. E. Sterk. Quantitative recurrence statistics and convergence to an extreme value distribution for non-uniformly hyperbolic dynamical systems. Nonlinearity, 29, (2016). PDF on Arxiv.

  8. M. P. Holland, M. Nicol and A. Torok. Almost sure convergence of maxima for chaotic dynamical systems.Stochastic Processes and their Applications, 126, (10), (2016), 3145-3170. PDF on Arxiv.

  9. M. Carvalho, A. C. M. Freitas, J. M. Freitas, M. Holland, M. Nicol, Extremal dichotomy for toral automorphisms. Dynamical Systems: An International Journal 30, (4), (2015), 383-403. PDF on Arxiv.

  10. M. Holland, M. Nicol, Speed of convergence to an extreme value distribution for non-uniformly hyperbolic dynamical systems. Stoch. Dyn. 15, (2015), 1550028.

  11. M. P. Holland, Y. Zhang. Dimension results for inhomogeneous Moran set constructions. Dynamical Systems, 28 (2), (2013), 222-250.

  12. N. P.Byott, M. P. Holland, Y. Zhang. On the mixing properties of piecewise expanding maps under composition with permutations. Discrete Contin. Dyn. Syst. 33 (2013), no. 8, 3365–3390.

  13. M. P. Holland, R. Vitolo, P. Rabassa, A. E. Sterk, Henk W. Broer. Extreme value laws in dynamical systems under physical observables. Physica D: Nonlinear Phenomena, 241 (2012), 497-513.

  14. C. Gupta, M. P. Holland, and M. Nicol. Extreme value theory for dispersing billiards, Lozi maps and Lorenz maps. In Ergodic Theory and Dynamical Systems (2011). PDF file here.

  15. M. P. Holland, M. Nicol and A. Torok. Extreme value theory for non-uniformly expanding dynamical systems. In Transactions of the Amercian Mathematics Society (2012). PDF file here.

  16. M. P. Holland and I. Melbourne. Central limit theorems and invariance principles for Lorenz attractors. J. Lond. Math. Soc. (2) 76 (2007), no. 2, 345--364. PDF file here.

  17. K. Diaz-Ordaz, M. P. Holland and S. Luzzatto. Statistical properties of one-dimensional maps with critical points and singularities. Stoch. Dyn. 6 (2006), no. 4, 423--458. PDF file here.

  18. H. Bruin, M. P. Holland, and I. Melbourne. Subexponential Decay of Correlations for Compact Group Extensions of Nonuniformly Expanding Systems. Ergodic Theory and Dynamical Systems, 25 (2006). 1719-1738.

  19. M. P. Holland and S. Luzzatto. Stable manifolds under very weak hyperbolicity conditions. J. Differential Equations 221 (2006), no. 2, 444--469. PDF file here.

  20. M. P. Holland and S. Luzzatto. A new proof of the Stable Manifold Theorem for hyperbolic fixed points on surfaces. Journal of Difference Equations and Applications, Vol 11, No. 6, May 2005, 535-551. PDF file here.

  21. H. Bruin, M. P. Holland and M. Nicol. Livsic regularity for Markov systems. Ergodic Theory and Dynamical Systems. 2005, 25, 1739-1765. PDF file here.

  22. M. P. Holland. Slowly mixing systems and intermittency maps. Ergodic Theory and Dynamical Systems, 2005, 25, 133-159. PDF file here.

  23. Physical measures for chaotic dynamical systems and decay of correlations. PhD thesis, University of Warwick, 2001.

Articles in extremes and weather modelling.

  1. A. E. Sterk and M. P. Holland. Extreme value laws and mean squared error growth in dynamical systems. Accepted for publication in Dynamics and Statistics of the Climate System: An Interdisciplinary Journal. Dyn. Stat. Clim. Syst. 3 (2018), no. 1, dzy007, 25 pp.

  2. A. Hunter, D. B. Stephenson, T. Economou, M. Holland, I. Cook, New perspectives on the aggregated risk of extratropical cyclones, Quart. J. of Royal Met. Soc. 142, (694), (2016).

  3. A. E. Sterk, D. B. Stephenson, M. P. Holland, K. R. Mylne, On the predictability of extremes: does the butterfly effect ever decrease? Quart. J. of Royal Met. Soc. 142, (694), (2016).

  4. A. E. Sterk, M. P. Holland, P. Rabassa, H. W. Broer, R. Vitolo. Predictability of extreme values in geophysical models. Nonlinear Processes in Geophysics, volume 19, pp. 529-539, 2012.

  5. R. Vitolo, M. P. Holland, and C. A. T. Ferro. Robust extremes in chaotic deterministic systems. Chaos. 19, (2009), 043127.

Articles in statistical analysis of long memory processes.

  1. R. J. Bhansali and M. P. Holland. Frequency Analysis of Chaotic Intermittency Maps with Slowly Decaying Correlations. Statist. Sinica 17 (2007), no. 1, 15--41. PDF file here.

  2. R. J. Bhansali, M. P. Holland and P. S. Kokoszka. Intermittency, long-memory and financial returns. Long memory in economics, 39--68, Springer, Berlin, 2007. PDF file here.

  3. R. J. Bhansali, M. P. Holland and P. S. Kokoszka. Chaotic Maps with Slowly Decaying Correlations and Intermittency. In Fields Inst. Comm. 44, 2004, 99-126. PDF file here.