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Abstract

The Riemann’s hypothesis (RH) states that the nontrivial zeros of the
Riemann zeta-function are of the form s = 1/2+iλn. Hilbert-Polya argued
that if a Hermitian operator exists whose eigenvalues are the imaginary
parts of the zeta zeros, λn’s, then the RH is true. In this paper a fractal
supersymmetric quantum mechanical (SUSY-QM) model is proposed to
prove the RH. It is based on a quantum inverse scattering method re-
lated to a fractal potential given by a Weierstrass function (continuous
but nowhere differentiable) that is present in the fractal analog of the
CBC (Comtet, Bandrauk, Campbell) formula in SUSY QM. It requires
using suitable fractal derivatives and integrals of irrational order whose
parameter β is one-half the fractal dimension of the Weierstrass function.
An ordinary SUSY-QM oscillator is constructed whose eigenvalues are of
the form λn = nπ, and which coincide with the imaginary parts of the
zeros of the function sin(iz). This sine function obeys a trivial analog of
the RH. A review of our earlier proof of the RH based on a SUSY QM
model whose potential is related to the Gauss-Jacobi theta series is also
included. The spectrum is given by s(1 − s) which is real in the critical
line (location of the nontrivial zeros) and in the real axis (location of the
trivial zeros).

1 Introduction

Riemann’s outstanding hypothesis (RH) that the non-trivial complex zeros of
the zeta-function ζ(s) must be of the form s′ = 1/2 ± iλn, is one of most
important open problems in pure mathematics. The zeta-function has a relation
with the number of prime numbers less than a given quantity and the zeros of
zeta are deeply connected with the distribution of primes [1]. References [2, 3, 4]
are devoted to the mathematical properties of the zeta-function.

The RH has also been studied from the point of view of physics (e.g., [5, 6, 7,
8, 9]). For example, the spectral properties of the λn’s are associated with the
random statistical fluctuations of the energy levels (quantum chaos) of a classical
chaotic system [8]. Montgomery [10] has shown that the two-level correlation
function of the distribution of the λn’s coincides with the expression obtained
by Dyson with the help of random matrices corresponding to a Gaussian unitary
ensemble. Planat [11] has found a link between RH and the called 1/f noise. Wu
and Sprung [12] have numerically shown that the lower lying non-trivial zeros

1



can be related to the eigenvalues of a Hamiltonian having a fractal structure.
For a recent and nice discussion on several quantum hamiltonians related to
the prime numbers distribution and the zeros of the zeta function see the work
by Rosu [13]. Since the literature on the topic is rather extensive we refer the
reader to a nice review of zeta-related papers which can be found in Ref. [14].

Scattering theory on real and p-adic symmetric spaces produces S-matrices
involving the Riemann zeta function [15]. Scattering on the noncompact finite
area fundamental domain of SL(2, Z) on the real hyperbolic plane was studied
long ago by Fadeev and Pavlov [16], and more recently by Planat and Perrine
[17] within the context of the deep arithmetical properties underlying the physics
of 1/f noise.

Scattering matrix s-wave amplitudes for scattering in the Poincare disk can
be expressed in the form [18]:

S =
c(k)
c(−k)

=
ζ(ik)ζ(1 − ik)
ζ(1 + ik)ζ(−ik)

= ei2δ0(k), (1)

where c(k) are the Harish-Chandra c-functions (Jost functions). The Jost func-
tions are defined whether the space is symmetric or not, and whether a suitable
potential is introduced or not. s-wave scattering by a potential with a cutoff
have been recently studied by [19] where the complex zeros of the Jost functions
yield the complex poles of the S-matrix that are located on a horizontal line
(below the real axis) and which can be mapped into the critical line of zeros
of the Riemann zeta function. They represent resonances. For example, in the
case of s-wave scattering in the hyperbolic plane (Poincare disk) one can show
that the complex-poles of the S-matrix correspond to the nontrivial zeros when,

kn = i(1/2 + iλn). (2)

Hence, a Wick rotation of the Riemann critical line yields the complex momenta
associated with the double poles of the S-matrix above; i.e. the double zeros of
the denominator. If one could find a physical reason why the complex double
poles of the S-matrix should always occur in complex-conjugate pairs:

−ikn = (1 + ikn)∗ = 1 − ik∗n ⇒ kn = i(1/2 + iλn), (3)

one would have found a physical proof of the RH. Pigli has discussed why
scattering theory on real and p-adic systems involving the Riemann zeta function
belong to a wide class of integrable models that can be unified into an Adelic
integrable systems whose S-matrix involves the Dirichlet, Langlands, Shimura,
L-functions.

In this work we will also invoke an integrability property associated with
the quantum inverse scattering problem associated with a (fractal) SUSY QM
model that yields the one-to-one correspondence among the imaginary parts of
the zeta zeros λn with the phases αn of a fractal Weierstrass function. One could
also consider a stochastic process having an underlying hidden Parisi-Sourlas
supersymmetry, as the effective motion of a particle in a potential which can be
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expanded in terms of an infinite collection of p-adic harmonic oscillators (See
in [20]). But in this case we will focus entirely on a fractal SUSY QM model
with a judicious fractal potential.

Wu and Sprung have made a very insightful and key remark pertaining
the conundrum of constructing a one-dimensional integrable and time-reversal
quantum Hamiltonian to model the imaginary parts of the zeros of zeta as an
eigenvalue problem. This riddle of merging chaos with integrability is solved by
choosing a fractal local potential that captures the chaotic dynamics inherent
with the zeta zeros.

By a Fractal SUSY QM model studied here, we do not mean systems with
fractional supersymmetries which are common in the string and M -theory liter-
ature, but a Hamiltonian operator that admits a factorization into two factors
involving fractional derivative operators whose irrational order is one-half of
the fractal dimension of the fractal potential. A model of fractal spin has been
constructed by Wellington da Cruz [21] in connection to the fractional quan-
tum Hall effect based on the filling factors associated with the Farey fractions.
The self-similarity properties of the Farey fractions are widely known to posses
remarkable fractal properties [22]. For further details of the validity of the
RH based on the Farey fractions and the Franel-Landau shifts we refer to the
literature on the zeta function.

In previous work [20, 23, 24] we have already explored some possible strate-
gies which could lead to a solution of the problem. The last one was based on
the relation of the non-trivial zeros of the ζ-function with the orthogonality of
eigenfunctions of the appropriately chosen operator (see also [25, 26, 27]). We
have not assumed any ad-hoc symmetries like conformal invariance, but in fact,
we shown why the t → 1/t symmetry is in direct correlation with the s′ → 1−s′

symmetry of the Riemann’s fundamental identity Z(s′) = Z(1−s′), the function
Z is the Riemann fundamental function defined in (12). This was the clue of
our proposal to proof the RH.

In this work we illustrate the method in [24] by applying it to the study
of the zeros of a very simple function, the sin(is). The proof that the zeros
of sin(is) are given by 0 + iyn = 0 + inπ is trivial. Nevertheless, one can still
furnish another proof following the same steps as the proof of the RH in [24].

The contents of this work are the following. In section 2.1 we review the
proof of the RH [24] and concentrate in section 2.2 on a SUSY QM model
whose potential is related to the Gauss-Jacobi theta series. The inner product
of the eigenfunctions ψs(t), ψs(1/t) of the partner (non-Hermitian) Hamiltonians
HA, HB is given by Z(as + b) while their spectrum is s(1 − s) which happens
to be real only in the critical line (location of the nontrivial zeta zeros) and in
the real axis (location of the trivial zeta zeros). In section 2.3 some important
remarks about the Eisenstein series and our approach are made. In section 3 we
present a proof of the SRH, the sine version of the RH. In section 4 we consider
the ordinary SUSY QM model solution of the SRH and finally we construct
the fractional (fractal) supersymmetric quantum mechanical (SUSY-QM) model
whose spectrum yields the imaginary parts λn of the nontrivial zeros of zeta. It
is based on a quantum inverse scattering method related to a fractal potential
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given by a Weierstrass function (continuous but nowhere differentiable) that
is present in the fractal analog of the CBC (Comtet, Bandrauk, Campbell)
formula in SUSY QM. It requires using suitable fractal derivatives and integrals
of irrational order whose parameter β is one-half the fractal dimension of the
Weierstrass function.

2 Nontrivial ζ’s zeros as an orthogonality rela-
tion

Our proposal is based on finding the appropriate operator D1

D1 = − d

d ln t
+

dV

d ln t
+ k, (4)

such that its eigenvalues s are complex-valued, and its eigenfunctions are given
by

ψs(t) = t−s+keV (t). (5)

D1 is not self-adjoint since its eigenvalues are complex valued numbers s. We
also define the operator dual to D1 as follows,

D2 =
d

d ln t
+

dV

d ln t
+ k, (6)

that is related to D1 by the substitution t → 1/t and by noticing that

dV (1/t)
d ln(1/t)

= −dV (1/t)
d ln t

,

where V (1/t) is not equal to V (t).
Since V (t) can be chosen arbitrarily, we choose it to be related to the

Bernoulli string spectral counting function, given by the Jacobi theta series,

e2V (t) =
∞∑

n=−∞
e−πn2tl

= 2ω(tl) + 1. (7)

This choice is justified in part by the fact that Jacobi’s theta series ω has a deep
connection to the integral representations of the Riemann zeta-function [28].

Latter arguments will rely also on the following related function defined by
Gauss,

G(1/x) =
∞∑

n=−∞
e−πn2/x = 2ω(1/x) + 1, (8)

where ω(x) =
∑∞

n=1 e
−πn2x. Then, our V is such that e2V (t) = G(tl). We

defined x as tl. We call G(x) the Gauss-Jacobi theta series (GJ).
Thus we have to consider a family of D1 operators, each characterized by

two real numbers k and l which can be chosen arbitrarily. The measure of
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integration d ln t is scale invariant. Let us mention that D1 is also invariant
under scale transformations of t and F = eV since dV/(d ln t) = d lnF/(d ln t).
In [25] only one operator D1 is introduced with the number k = 0 and a different
(from ours) definition of F .

We define the inner product as follows,

〈f |g〉 =

∞∫
0

f∗g
dt

t
. (9)

Based on this definition the inner product of two eigenfunctions of D1 is

〈ψs1 |ψs2〉 = α

∞∫
0

e2V t−s12+2k−1dt

=
2α
l
Z

[
2
l
(2k − s12)

]
,

(10)

where we have denoted

s12 = s∗1 + s2 = x1 + x2 + i(y2 − y1),

used the expressions (7) and (31) and noticed that

〈s1|s2〉 = 〈1/2 + i0|s12 − 1/2〉.
Thus, the inner product of ψs1 and ψs2 is equivalent to the inner product

of ψso and ψs, where so = 1/2 + i0 and s = s12 − 1/2. Constant α is to
be appropriately chosen so that the inner product in the critical domain is
semi-positively definite. The integral is evaluated by introducing a change of
variables tl = x (which gives dt/t = (1/l)dx/x) and using the result provided
by the equation (8), given in Karatsuba and Voronin’s book [2]. Function Z in
(31) can be expressed in terms of the Jacobi theta series, ω(x) defined by (7)
(see [3]),

∞∫
0

∞∑
n=1

e−πn2xxs/2−1dx =

=
∫ ∞

0

xs/2−1ω(x)dx

=
1

s(s− 1)
+

∫ ∞

1

[xs/2−1 + x(1−s)/2−1]ω(x)dx

= Z(s) = Z(1 − s).
(11)

where
Z(s) ≡ π−s/2Γ(s/2)ζ(s), (12)
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and obeys the functional relation Z(s) = Z(1 − s).
Since the right-hand side of (11) is defined for all s this expression gives the

analytic continuation of the function Z(s) to the entire complex s-plane [3]. In
this sense the fourth “=” in (11) is not a genuine equality. Such an analytic
continuation transforms this expression into the inner product, defined by (10).

A recently published report by Elizalde, Moretti and Zerbini [27] (contain-
ing comments about the first version of our paper [29]) considers in detail the
consequences of the analytic continuation implied by equation (11). One of the
consequences is that equation (10) loses the meaning of being a scalar product.
Arguments by Elizalde et al. [27] show that the construction of a genuine inner
product is impossible.

Therefore from now on we will loosely speak of a “scalar product” realizing
that we do not have a scalar product as such. The crucial problem is whether
there are zeros outside the critical line (but still inside the critical strip) and
not the interpretation of equation (10) as a genuine inner product. Despite this,
we still rather loosely refer to this mapping as a scalar product. The states still
have a real norm squared, which however need not to be positive-definite.

Here we must emphasize that our arguments do not rely on the validity
of the zeta-function regularization procedure [30], which precludes a rigorous
interpretation of the right hand side of (11) as a scalar product. Instead, we
can simply replace the expression “scalar product of ψs1 and ψs2” by the map
S of complex numbers defined as

S : C ⊗ C → C

(s1, s2) �→ S(s1, s2) = −Z(as + b),
(13)

where s = s∗1 + s2 − 1/2 and a = −2/l; b = (4k − 1)/l. In other words, our
arguments do not rely on an evaluation of the integral 〈ψs1 |ψs2〉, but only on the
mapping S(s1, s2), defined as the finite part of the integral (10). The kernel of
the map S(s1, s2) = −Z(as+b) is given by the values of s such that Z(as+b) = 0,
where 〈s1|s2〉 = 〈so|s〉 and so = 1/2 + i0. Notice that 2b+ a = 4(2k− 1)/l. We
only need to study the “orthogonality” (and symmetry) conditions with respect
to the “vacuum” state so to prove the RH from our theorem 2. By symmetries
of the “orthogonal” states to the “vacuum” we mean always the symmetries of
the kernel of the S map.

The “inner” products are trivially divergent due to the contribution of the
n = 0 term of the GJ theta series in the integral (10). From now on, we
denote for “inner” product in (10) and (13) as the finite part of the integrals
by simply removing the trivial infinity. We shall see in the next section, that
this “additive” regularization is in fact compatible with the symmetries of the
problem.

2.1 Three theorems and a proof of the RH

In our approach, the RH emerges as a consequence of the symmetries of the
orthogonal states to the “vacuum” state ψso . To this end we prove now the first
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theorem:
Th. 1 . If a and b are such that 2b+a = 1, the symmetries of all the states ψs

orthogonal to the “vacuum” state are preserved by any map S, equation (13),
which leads to Z(as + b)

Proof: If the state associated with the complex number s = x+iy is orthogo-
nal to the “vacuum” state and the “scalar product” is given by Z(as+b) = Z(s′),
then the Riemann zeta-function has zeros at s′ = x′ + iy′, s′∗, 1− s′ and 1− s′∗.

If we equate as + b = s′, then as∗ + b = s′∗. Now, 1 − s′ will be equal to
a(1− s) + b, and 1− s′∗ will be equal to a(1− s∗) + b, if, and only if, 2b+ a = 1.
Therefore, all the states ψs orthogonal to the “vacuum” state, parameterized
by the complex number 1/2 + i0, will then have the same symmetry properties
with respect to the critical line as the nontrivial zeros of zeta.

Notice that our choice of a = −2/l and b = (4k − 1)/l is compatible with
this symmetry if k and l are related by l = 4(2k− 1). Conversely, if we assume
that the orthogonal states to the “vacuum” state have the same symmetries of
Z(s), then a and b must be related by 2b+ a = 1. This results in a very specific
relation between k and l, obtained from a + 2b = 1 for a, b real. It is clear that
a map with arbitrary values of a and b does not preserve the above symmetries.

Th. 2 . The s′ → 1 − s′ symmetry of the Riemann nontrivial zeros and the
t → 1/t symmetry of the “inner” products, are concatenated with the s → β−s
symmetry of the “orthogonal” states to a “vacuum” state so = β/2+ i0, for any
real β.

Proof: Gauss has shown that [31],

G(1/x) = x1/2 G(x), (14)

where the Jacobi series G(x) is defined by equation (7). (14) implies that one
can always find a β, such that ψs(1/t) = ψβ−s(t) for all values of s if, and only
if, 2k− β = l/4. Due to (k, l) are real, this forces β be a real. In terms of (a, b)
this relation becomes, 1 = a(2β − 1) + b, that when β = 1 gives the known
relation 1 = a + 2b.

Then, invariance of the “inner” product under the inversion symmetry,
t → 1/t follows by adopting a standard regularization procedure of remov-
ing the infinities, which yields the well defined finite parts: 〈ψ1/2+i0(t)|ψs(t)〉 =
〈ψ1/2+i0(1/t)|ψs(1/t)〉 = 〈ψ1/2+i0(t)|ψ1−s(t)〉 = −Z(s′) = −Z(s′′). If this in-
variance under inversion holds for all values of s and due to the fact that s′ �= s′′

(except for the trivial case when 1−s = s, s = 1/2) the only consistent solution,
for all values of s, has to be s′′ = 1 − s′ due to Riemann’s fundamental identity
Z(s′) = Z(1 − s′).

The origins of the symmetry t → 1/t in the scalar product 〈so|s〉 stem
from the invariance of the integral (10,11) (modulo the infinities) under the
x → 1/x transformation. Such invariance is translated as an invariance under
s′ → 1 − s′, based on the Gauss-Jacobi relation. We have not assumed any ad
hoc symmetries, like conformal invariance, without justifying their origins. We
are basing everything in the fundamental relation Z(s′) = Z(1 − s′), therefore
our symmetry t → 1/t is well justified.
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Th. 3 . From the symmetries of theorem 2, one can easily show that a+2b =
1. Now we will demonstrate how by choosing a continuous family of operators
with l = 8k−4 (i.e. a+ 2b = 1), the RH is a direct consequence of the fact that
the states orthogonal to the “vacuum” state have the same symmetry properties
as the zeros of ζ-function.

The RH is a direct consequence of the assumption that the kernel of the map
Z(as + b) has the same symmetry properties as the zeros of zeta. This means
that the values of s such that Z(as+ b) = 0; i.e. the states “orthogonal” to the
“vacuum” state so = 1/2+ i0, are symmetrically distributed with respect to the
critical line and come in multiplets of four arguments s, 1 − s, s∗, 1 − s∗.

Proof: Due to the analytic properties of the function Z(as + b) = Z(s′) it
follows from theorem 1 that such symmetry conditions are satisfied if and only
if: a(k, l) + 2b(k, l) = 1, implying that l = 8k − 4 from which in turn follows
that: s′ = a(k, l)s + b(k, l) = a(k, l)(s − 1/2) + 1/2, so their real parts satisfy:
x′ = 1/2 + a(k, l)(x− 1/2).

Let us assume that the putative zeros are located on the vertical lines parallel
to the Riemann critical line, which can be written as s′m = x′m + iy′mn where m
labels the particular vertical line, and n labels the height of such zero along the
vertical line. Hence, for a fixed value of xm, the value of the real part x′m can
be continuously changed by continuously changing (k, l), since a = −2/l. And
vice versa, x′m can be held fixed whereas the location of xm can be continuously
changed as one varies a. If we assume that the vertical lines of orthogonal
states and zeros belong to a discrete set of lines, instead of a continuum of lines,
this requires that xm = 1/2 is the only consistent value that the orthogonal
states can have for their real parts. From this follows that x′m = 1/2 is the only
consistent and possible value which the real part of the zeros of zeta can have.
Therefore, RH follows directly from the latter conclusion.

However, since the location of the y′ values of the zeros varies along the
critical Riemann line, these arguments, of course, cannot provide for the location
of the imaginary parts of the zeros. If one has y′ = ay, it is clear that the fixed
points (for all values of a) will be y = y′ = 0, which is clearly incompatible
with the fact that there are no zeros of the function Z(s′) located in the real
horizontal axis and that there are an infinity of nontrivial zeros of zeta (in the
critical line) whose imaginary parts are distinct from zero!.

Concluding, if, and only if, one assumes a discrete set of vertical lines of
zeros, for all values of a, this can be satisfied provided the orthogonal states
have for their real parts the value x = 1/2, which yields x′ = 1/2 as the
only possible solution which is the RH and the orthogonality conditions among
the eigenfunctions ψs(t) have a one-to-one correspondence with the zeta zeros.
However, this argument does not, cannot, yield the correct varying values of
y. A complete argument which determines both the x and the y values follows
next.
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2.2 The zeros from supersymmetric quantum mechanics

A more satisfactory argument to prove the RH can be found following the
Hilbert-Polya proposal. We will see also that this symmetry of the “vacuum”,
in the particular case β = 1, is also compatible with the isospectral property of
the two partner Hamiltonians,

HA = D2D1 =
[

d

d ln t
− dV (1/t)
d ln(1/t)

+ k

] [
− d

d ln t
+
dV (t)
d ln t

+ k

]
, (15)

and

HB = D1D2 =
[
− d

d ln t
+
dV (t)
d ln t

+ k

] [
d

d ln t
− dV (1/t)
d ln(1/t)

+ k

]
. (16)

Notice that V (1/t) �= V (t) and for this reason D2 is not the “adjoint” of D1.
Operators defined on the half line do not admit an adjoint extension, in gen-
eral. Hence, the partner Hamiltonians HA, HB are not (self-adjoint) Hermitian
operators like it occurs in the construction of SUSY QM. Consequently their
eigenvalues are not real in general.

Nevertheless one can show by inspection that if, and only if, ψs(1/t) =
ψ1−s(t) then both partner Hamiltonians are isospectral (like in SUSY QM)
whose spectrum is given by s(1 − s) and the corresponding eigenfunctions are,

HAψs(t) = s(1 − s)ψs(t). HBψs(1/t) = s(1 − s)ψs(1/t). (17)

Firstly by a direct evaluation one can verify,

D1ψs(t) = sψs(t) and D2ψs(1/t) = sψs(1/t), (18)

i.e. ψs(t) and ψs(1/t) are eigenfunctions of the D1 and D2 operators respectively
with complex eigenvalue s. Secondly, if, and only if, the condition ψs(1/t) =
ψ1−s(t) is satisfied, then it follows that:

HBψs(1/t) = D1D2ψs(1/t) = sD1ψs(1/t) =
sD1ψ1−s(t) = s(1 − s)ψ1−s(t) = s(1 − s)ψs(1/t), (19)

meaning that ψs(1/t) is an eigenfunction of HB with s(1 − s) eigenvalue.

HAψs(t) = D2D1ψs(t) = sD2ψs(t) =
sD2ψ1−s(1/t) = s(1 − s)ψ1−s(1/t) = s(1 − s)ψs(t), (20)

meaning that ψs(t) is an eigenfunction of HA with s(1 − s) eigenvalue.
Therefore, under condition ψs(1/t) = ψ1−s(t) the non-Hermitian partner

Hamiltonians are isospectral. The spectrum is s(1 − s). The operators HA and
HB are quadratic in derivatives like the Laplace-Beltrami operator and involve
two generalized dilatation operators D1 and D2. Notice the most important
results of this section:
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1. On the critical Riemann line, because Re(s) = 1/2 → 1 − s = s∗, the
eigenvalues are real since s(1 − s) = ss∗ is real. The function Z(s) is also real
on the critical line as a result of Z(s) = Z(1 − s) = Z(s∗).

2. On the real line, the eigenvalues s(1 − s) are trivially real.
Therefore, the spectrum s(1− s) of the two partner (non-Hermitian) Hamil-

tonians is real-valued when s falls in the critical line (location of nontrivial zeros)
and when s falls in the real line (location of trivial zeros). Hence, the SUSY QM
model yields the precise location of the lines of the trivial and nontrivial zeros of
zeta!. Notice the similarity of these results with the eigenvalues of the Laplace
Beltrami operator in the hyperbolic plane associated with the chaotic billiard
living on a surface of constant negative curvature. In that case the Selberg zeta
function (which obeys the RH) played a crucial role [6].

The states ψs(t) constitute an over-complete basis. An orthonormal discrete
and complete basis can be found, when sn = 1/2 + iλn, by simply recurring
to the orthogonality conditions of the states |sn〉 with respect to the “ground”
or “vacuum” state |so〉 = |1/2 + i0〉. By starting with |0(t)〉 = |so〉 the first
orthonormal state is |1(t)〉 = a11|s1〉. The normalization condition 〈s1|s1〉 =
a11Z[1/2 + i0] = 1 will yield the real value of the coefficient a11. The function
Z(1/2 + iy) is real for all values of y. Iterating this procedure gives:

|n(t)〉 =
n∑

m=1

anm|ψsm(t)〉, (21)

for all sm = 1/2 + iλm such that m = 1, 2, ...n. The real coefficients amn are
determined by imposing the orthogonality and normalization conditions:

〈m′(t)|m(t)〉 = δm′m. (22)

In this fashion the discrete and complete orthonormal basis |1(t)〉, |2(t)〉, ...
|n(t)〉, |n + 1(t)〉, all the way to n = ∞ of states is constructed in terms of the
eigenfunctions ψs(t), ψs(1/t) of the two partner HA, HB Hamiltonians associ-
ated with a SUSY QM model and which is entirely based on the locations of
the nontrivial zeros of zeta in the critical line.

To sum up, the inversion properties under t → 1/t of the eigenfunctions of
the infinite family of differential operators, D(k,l)

1 (t) and D
(k,l)
2 (1/t), compatible

with the existence of an invariant “vacuum”, are responsible for the isospectral
condition of the partner non-Hermitian Hamiltonians, HA and HB, like it occurs
in SUSY QM. The spectrum s(1 − s) is real in the critical line (location of
the nontrivial zeros) and in the real line (location of the trivial zeros). The
quantum inverse scattering problem associated with a fractal SUSY QM model
which yields the imaginary parts of the nontrivial zeros consistent with the
Hilbert-Polya proposal to prove the RH will be studied in the next sections. The
supersymmetric ground state is precisely that associated with so = 1/2 + i0.
Rosu has recast our SUSY QM wave equations into a transparent SUSY QM
form [13].
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2.3 A remark on Eisenstein series

Let’s emphazise the importance of the Eisenstein series E(s, z) being the two-
dimensional analog of what we did in section 2.1.

Using the fundamental function Z(s) = Z(1 − s) one constructs the func-
tion I(s, z) defined as I(s, z) = Z(2s)E(s, z) which obeys the same functional
relation as the Z(s) (See [32]). Notice the crucial 2s argument inside the Z. It
reads:

I(s, z) = I(1 − s, z). (23)

Note that it is the function I(s, z) and not the E(s, z) that obeys the same
functional relation as Z(s).

The function I(s, z) admits also a theta series representation, and the eigen-
functions of the 2-D Laplacian in the hyperbolic plane are given by the E(s, z).
The eigenvalue problem for the two-dimensional Laplacian in the hyperbolic
plane is:

y2

(
∂2

∂x2
+

∂2

∂y2

)
E(s, z) = −s(1 − s)E(s, z), (24)

where z = x + iy (notice the eigenvalues). One has used the Laplace-Beltrami
differential operator in non-Euclidean geometries. The hyperbolic metric is
conformally flat and for this reason the hyperbolic Laplacian must be conformal
to the ordinary Laplacian in flat spaces. This explains the prefactor of y2 in
front of the ordinary Laplacian.

Since the Laplacian is two-dimensional, this means that the Eisenstein series
E(s, z) are the 2-D version (s, z are both complex and independent) of our
eigenfunctions ψ(s, t) of the 1-D Laplacian-like operator obeying:

HAψ(s, t) = s(1 − s)ψ(s, t), (25)

and
HBψ(s, 1/t) = s(1 − s)ψ(s, 1/t). (26)

The HA, HB are the two partner Hamiltonians in our SUSY-QM model,
which is a 1-D model defined on half of the real line: 0 < t < ∞.

Whereas the hyperbolic plane where the 2-D Laplacian acts, is represented
as the upper half of the complex plane given by the coordinates z.

Concluding, the “t” in our ψ(s, t) does correspond to the “z” in E(s, z). Of
course, on the Riemann critical line the spectrum s(1−s) is real (and on the real
line, trivial zeros). The advantage in our approach is that the inner products of
our eigenfunctions ψ(s, t) yield the fundamental function Z(as + b) and there
is a one-to-one correspondence between the zeta zeros and the ortogonality
conditions on the ψ(s, t) eigenfunctions.
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3 The analog of the Riemann hypothesis for the
function sin(iz)

It can be proved in an straightforward way that the function of complex variable
sin(iz) has its zeros in the imaginary axis where the real parts of all the zeros
are zero s = 0 + iπn by simply using the addition law of the sines: sin(iz) =
sin(ix− y) = i sinhx cos y − sin y coshx = 0 ⇒ x = 0, y = πn.

We note that z = 0 + i0 is a trivial zero. In this section we will propose a
different strategy, based on the symmetry properties of this function.

Our proposal is based on finding the appropriate operator D1

D1 = − i

k

d

dx
, (27)

such that its eigenvalues s are complex-valued, and its eigenfunctions are given
by

ψs(x) =
1

21/2
eiksx. (28)

We restrict x to be into the interval [−1, 1]. Notice that D1 is not self-adjoint
and its eigenvalues are complex valued numbers s.

Thus we have to consider a family of D1 operators, each characterized by
the real number k which can be chosen arbitrarily.

We will only suppose that the following symmetries of our test function
sin(iz) are known,

sin(iz) = sin(iz + 2iπn), sin(−iz) = − sin(iz), (29)

n is an interger.
We define the auxiliary function of the complex variable z, See Figure 1.

G(z) =
sin(iz)
iz

= G(−z), (30)

which is analogous to the Z in the Riemann zeta case [2],

Z(z) ≡ π−z/2Γ
(z

2

)
ζ(z). (31)

We define an inner product as follows:

〈f |g〉 =

1∫
−1

f∗gdx. (32)

Based on this definition, the inner product of two eigenfunctions of D1 is,

〈s1|s2〉 ≡ 〈ψs1 |ψs2〉 = α

1∫
−1

1
2
eik(−s∗

1+s2)xdx =
sin[k(−s∗1 + s2)]
k(−s∗1 + s2)

. (33)
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We note that,
〈s1|s2〉 = G[ik(−s2 + s∗1)]. (34)

Also is easily seen that the inner product of ψs1 and ψs2 is equivalent to the
inner product of ψso and ψs12 , where so = 0+ i0 and s12 = −s∗1 +s2. The states
will have well defined positive norm.

The inner product (33), expressed in terms of the sin(iz) function contains
the arbitrary parameter k. Using (30) and (33) we obtain:

G(iks) = G(−iks). (35)

If we replace
k → −k, (36)

then the two sides of equation (35) are exchanged, which shows that (36) is a
symmetry transformation. We note also that

〈s1|s2〉 = 〈s∗2|s∗1〉 = 〈s∗1|s∗2〉∗. (37)

From (33) we obtain the squared norm of any state ψs where s = x + iy is
the point (x, y) in the complex plane,

〈s|s〉 = G(2ky). (38)

It has turned out that the norms of all the states having the arguments s with
the same real part x are equal, and that all the states localed into the critical
line x = 0 have norm equals to 1.

We will choose the domain of definition of s = x+ iy to be inside the critical
domain defined by:

−1 < x < 1.

Here we must to note that the scalar product of ψs1 and ψs2 defines the
following map S of complex numbers,

S : C ⊗ C → C

(s1, s2) �→ S(s1, s2) = G[ik(−s2 + s∗1)] = G[iks] = G[is′].
(39)

Denoting G[iks12] by G[iks] = G[is′] = sin(is′)/(is′). The kernel of the map
S(s1, s2) = G(ks12) is given by such values of s that G(ks12) = 0. We only
need to study the orthogonality (and symmetry) conditions with respect to the
“vacuum” state 0 + i0 to prove the SRH. By symmetries of the “orthogonal”
states to the “vacuum” we mean always the symmetries of the kernel of the S
map. The relationship between s and s′ is simply s′ = ks which implies that
the real and imaginary parts are:

x′ = kx; y′ = ky. (40)

Let us assume that the putative zeros are located on the vertical lines parallel
to the imaginary axis, the critical line for the SRH, which can be written as
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s′m = x′m + iy′mn where m labels the particular vertical line, and n labels the
height of such zero along the vertical line. Hence, for a fixed value of xm,
the value of the real part x′m can be continuously changed by continuously
changing k. And vice versa, x′m can be held fixed whereas the location of xm

can be continuously changed as one varies k. If we assume that the vertical
lines of orthogonal states and zeros belong to a discrete set of lines, instead
of a continuum of lines, this requires that xm = 0 is the only consistent value
that the orthogonal states can have for their real parts. From this follows that
x′m = 0 is the only consistent and possible value which the real part of the zeros
of zeta can have. Therefore, the SRH follows directly from the latter conclusion.

However, since the location of the y′ values of the zeros varies along the
critical line, the imaginary axis, these arguments, of course, cannot provide for
the location of the imaginary parts of the zeros. If one has y′ = ky, it is clear
that the fixed points (for all values of k) will be y = y′ = 0, which is clearly
incompatible with the fact that there are no zeros of the function G(is′) located
in the real horizontal axis and that there are an infinity of zeros of sin(is′)
located in the critical line whose imaginary parts are distinct from zero!. To
locate both the x and y values of the zeros of sin(is) we shall follow the SUSY
QM model next. Of course one can trivially determine the zeros of sin(is), but
we wish to show now how they can be determined via a SUSY QM model.

4 A fractal supersymmetric quantum mechani-

cal model

The Hilbert-Polya proposal to prove the RH is based on the possibility that the
imaginary parts of the nontrivial zeros of zeta are the real eigenvalues of some
unknown Hermitian operator [5]. If the nontrivial zeros of the Riemann zeta
function are given by sn = 1/2 + iλn, and if there exists a suitable Hermitian
operator T̂ , whose real eigenvalues are λn, then the RH is true. Hence, the zeros
sn are consequently given the complex eigenvalues of the operator 1/2 + iT̂ .

Before constructing the fractal SUSY QM model to prove the RH based
on the Hilbert-Polya proposal, let’s consider the analogous problem (almost
trivial) for the SRH described in Section 3. The SUSY QM model involves two
isospectral operators H(+) and H(−) which are defined in terms of the so called
SUSY-QM potential Φ(x). Our ansatz for the SUSY-QM potential associated
to the SRH is given by:

Φ(x) =
πx

2
. (41)

Note that the SUSY potential is real and it is consistent with the SUSY require-
ment that Φ(x) is antisymmetric in x in order to vanish at the origin so that
Φ2(x) is a symmetric function with a minimum at x = 0:

Φ2(x) =
π2x2

4
. (42)
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Using such SUSY potential Φ the following SUSY Schrödinger equation as-
sociated with the Ĥ(+) Hamiltonian [33], is:

(
∂

∂x
+ Φ

) (
− ∂

∂x
+ Φ

)
ψ(+)

n (x) = λ(+)
n ψ(+)

n (x), (43)

where we choose the natural units h̄ = 2m = 1. The isospectral condition of
the SUSY-QM model requires that λ(+)

n = λ
(−)
n = λn.

The eigenfunction ψ
(+)
n (x) associated with the Schrodinger equation for the

harmonic oscillator-like potential is the usual Gaussian times a Hermite polyno-
mial and has for corresponding eigenvalues λn = h̄ω(n+ 1/2) where the natural
frequency is ω = (k/m)1/2.

The potential V (x) of an ordinary QM problem associated with the SUSY-
QM model is given by (41):

V ±(x) =
[
Φ2(x) ± dΦ(x)

dx

]
=

(
π2

4
x2 ± π

2

)
. (44)

The above potentials V ±(x) correspond to a harmonic oscillator, whose nat-
ural frequency is ω = (k/m)1/2 = (π2/2m)1/2 = π. shifted by an additive
postive/negative constant, respectively, and the energy eigenvalues are given by
λn = π(n + 1) and πn respectively. In order to have the isospectral condition
of SUSY QM λ

(+)
n = λ

(−)
n = λn we must have two different values of n, n′ such

that n′ + 1 = n. This immediately determines the corresponding eigenfunctions
of the two harmonic oscillator partner Hamiltonians.

As we have discussed earlier, the non trivial zeros of the function sin(iz)
are located at z = 0 + inπ, for n = 0,±1,±2..... which is consistent with the
equally spaced eigenvalues of the harmonic oscillator QM problem. This means
that it is possible to find an ordinary QM Hamiltonian related to a SUSY-QM
model and such that their eigenvalues coincide with the imaginary part of the
zeros of sin(iz). This is the Hilbert-Polya implementation to prove the SRH in
a nontrivial fashion.

Next, we formulate an inverse eigenvalue problem associated with equation
(43), where the λn’s are to be taken as the imaginary parts of the non trivial ze-
ros of our test function sin(is). The quantization conditions using the fermionic
phase path integral approximation, when aplicable, (the SUSY-QM analog of
WKB formula in QM) are based on the CBC formula, the Comtet, Bandrauk
and Campbell formula [33]) which reads, after using the natural units h̄ = 2m
= 1, so that all quantities are suitably written in dimensionless variables for
simplicity,

In(xn, λn; a) ≡ 4
∫ xn

0

dx
[
λn − Φ2(x)

]1/2
= 4

∫ xn

0

dx
[
λn − π2x2/4

]1/2
= πn,

(45)
where we take the positive values n = 1, 2,... and the λn are the imaginary parts
of the nontrivial zeros of sin(iz). The factor of four in equation (45) orginates
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because one is integrating over a full cycle. The integration between 0, xn rep-
resents a quarter of a cycle. Due to the fact that Φ2(x) is an even function of
x, in order for supersymmetry to be maintained, the left/right turning points
obey are symmetrically located: x

(n)
L = −x(n)

R for all orbits, and for each n =
1, 2,... We define xn = x

(n)
R .

The second set of equations are provided by the location of the turning points
of the bound state orbits and which are defined by:

Φ2(x = xn) = λn = πn; n = 1, 2, ... (46)

The precise location of the turning points is what is needed in order to evaluate
the previous definite integral (the CBC formula) and yield the exact values πn.

The equations (44,45, 46) are the ones we are looking for. The (right) turning
points xn, are defined in terms of all the λn, and the well defined CBC formula
is the one which involves the zeros λn associated with the SUSY potential Φ(x).

Now let us turn to the fractal SUSY QM problem associated to the Riemann
Hypothesis. Armitage [34], considered that the RH can be expressed in terms of
diffusion processes with an imaginary time. In this way the Hamiltonian of some
QM system could be constructed, which in turn implements the Hilbert-Polya’s
original program.

A numerical exploration of the Hilbert-Polya idea was recently done by Wu
and Sprung [12]. The potential found in [12] has random oscillations around an
average value, the average potential allowed them to construct a conventional
Hamiltonian whose density of states coincides with the average distribution of
the imaginary parts of the Riemann’s zeta non trivial zeros. The fluctuations
are necessary in order to make the individual eingenvalues fit a set of such zeros
within a prescribed error bound. They found that the imaginary parts of the 500
lower lying nontrivial Riemann zeros can be reproduced by a one-dimensional
local-potential model, and that a close look at the potential suggests that it has
a fractal structure of dimension D = 1.5. The references [35, 36, 37] deal with
fractal properties of the Riemann zeta function.

One of us [20], was able to consider a p-adic stochastic process having an
underlying hidden Parisi-Sourlas supersymmetry, as the effective motion of a
particle in a potential which can be expanded in terms of an infinite collection
of p-adic harmonic oscillators with fundamental (Wick-rotated imaginary) fre-
quencies ωp = i ln p (p is a prime) and whose harmonics are ωp,n = i ln pn.
Here, inspired in a work by Wu and Sprung [12] the p-adic harmonic oscilla-
tors are substituted by Weierstrass functions. In this way, we propose a way to
construct a Hilbert-Polya operator by using (fractal) SUSY-QM arguments.

In SUSY-QM two isospectral operators H(+) and H(−) are defined in terms
of the so called SUSY-QM potential. A SUSY-QM model was proposed in [20]
based on the pioneering work of B. Julia [38], where the zeta-function and its
fermionic version were related to the partition function of a system of p-adic
oscillators in thermal equilibrium at a temperature T . The fermionic zeta-
function has zeros at the same positions of the ordinary Riemann function plus
a zero at 1/2 + 0i, this zero is associated to the SUSY ground state. See also
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the reference [14]:

Zf =
ζ(s)
ζ(2s)

=
∑

n

|µ(n)|
ns

, (47)

where µ(n) is the Mobius function.
Here we consider a fractal potential, defined by a set unknown phases, to be

determined after using the CBC formula, associated with a Weierstrass func-
tion, continuous but nowhere differentiable. A fractal SUSY-QM Hamiltonian,
using fractional derivatives, can be constructed in principe, whose eigenvalues
coincide with the imaginary parts of the nontrivial zeros of the zeta, λn. The
fractal dimension of the potential is D = 1.5 and the sought-after phases will
be determined by solving the inverse eigenvalue problem via the CBC formula..

Our ansatz for our fractal SUSY-QM potential is based on the Weierstrass
fractal function, continuous and nowhere differentiable functions.

W (x, γ,D, αn) =
∞∑

n=0

1 − eixγn

γn(2−D)
eiαn , (48)

n are integers, the powers γn are the corresponding set of frequencies and the
αn are the sought-after phases. The expansion (48) is convergent if 1 < D < 2
and γ > 1. For these values of the parameters the function W is continuous
but nowhere differentiable and has D for fractal dimension [39, 40]. One could
use for the frequencies suitable powers pn of a given prime p number, however,
we must study the most general case and have powers γn for all real values of
γ > 1.

The aim is to relate the SUSY potential-squared Φ2 to the fractal function
W (x, γ,D, αn) defined before. The choice for the Φ2(x) expression that ap-
pears in the fractal version of the CBC formula will be comprised of a smooth
part given by the Wu-Sprung potential VWS(x) plus an oscillatory fluctuating
Weierstrass part:

Φ2(x) = VWS(x) +
1
2

[W (x,D, γ, αn) + W (−x,D, γ, αn) + c.c] + φo, (49)

where we have symmetrized the function W (x,D, γ, αn) with respect to the x
variables and taken the real part by adding its corresponding complex conjugate
(cc). An additive constant φo has been included also in order to have a vanishing
Φ2 at the origin x = 0. Supersymmetry requires that the Φ2 is symmetric and
vanishes at the origin.

In [12] it was shown that the smooth value of the potential VWS can be
obtained as solution of the Abel integral equation. The Wu-Sprung potential
VWS(x) is given implicitly as:

x = x(V ) =
V

1/2
o

π

[
(y − 1)1/2 ln

Vo

2πe2
+ y1/2 ln

y1/2 + (y − 1)1/2

y1/2 − (y − 1)1/2

]
. (50)

where the rescaled variable is y = V/Vo, and Vo = 3.10073 π.
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With the SUSY potential Φ at hand one may construct the following SUSY
Schrödinger equation associated with the Ĥ(+) Hamiltonian [33],

(
D(β) + Φ

)(
−D(β) + Φ

)
ψ(+)

n (x) = λ(+)
n ψ(+)

n (x), (51)

where we set h̄ = 2m = 1. The isospectral condition of the SUSY-QM model
requires that λ

(+)
n = λ

(−)
n = λn. See in [41] an investigation on fractional

Laplacians, and in [42] on vector calculus in fractal domains.
The fractal character of the SUSY QM model suggests that equation (51) is

actually an stochastic equation. Instead of the usual derivative d/dx we should
use the Riemann-Liouville definition of the fractional derivative, as follows,

D(β)F (t) =
1

Γ(1 − β)
d

dt

t∫
−∞

F (t′)
(t− t′)β

dt′, (52)

where 0 < β < 1. Similarly, the fractional integral of order β is

D(−β)F (t) =
1

Γ(β)

t∫
−∞

F (t′)
(t− t′)1−β

dt′, (53)

where 0 < β < 1. Notice that the lower limits of integration have been chosen
to be −∞. In general these choices may vary.

With these ingredients we are prepared to manage the inverse eigenvalue
problem associated with equation (51), where the λn’s are to be taken as the
imaginary parts of the non trivial Riemann zeta zeros. The SUSY potential
Φ, is related to the ordinary potential through the usual rule V (x) = Φ(x)2 +
D(β)Φ(x), where instead of the usual derivative we should use the fractional
derivative (52).

We proceed with our ansatz by showing why β = d = D/2 and D = 1.5. This
choice is justified based on the fractal dimension of the Wu-Sprung potential of
the order of D = 1.5 using the first 500 zeros. The reason why β = d = D/2 =
3/4 is due to the fact that the two terms which define the fractional (fractal)
operator D(β) + Φ in (51) must have the same fractal dimension. If the fractal
dim(Φ) = d = dim(D(β)) = β, according to the properties of D(β) given in [40],
if the fractal dim(Φ) = d, then dim(D(β)Φ) = β + d = 2β. Similarily, for the
anti-derivative dim(D(−β)Φ) = −β + d. Hence, one finally has that the fractal
dim (Φ2) = 2d = β + d = 2β = D. From which one infers that β = D/2 = 3/4
and it satisfies the required condition for the order β of the fractional derivative,
0 < β < 1.

Therefore, the quantization conditions using the fractal extension of the
fermionic phase path integral approximation (the CBC formula) are:

In(xn, λn) ≡ 4
1

Γ(β)

∫ xn

0

dx′
[
λn − Φ2(x′)

]1/2

(xn − x′)1−β
= πn, (54)
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where β = D/2 = 3/4 and n = 1, 2,... and λn are the imaginary parts of
the nontrivial zeros of zeta. Φ2(x,D) is an even function of x so the left/right
turning points: x

(n)
L = −x(n)

R for all orbits, for each n = 1, 2,... We define
xn = x

(n)
R .

The second set of equations are given by the definition of the turning points
of the bound state orbits:

Φ2(xn) = λn; n = 1, 2, ... (55)

So, from the three sets of equations (49,54,55) we get what we are looking for,
the relationships among the phases, αn, the (right) turning points xn, and the
imaginary parts of the zeta zeros λn.

This is where the determination of the parameter γ > 1 (the frequencies of
the Weierstrass function are γn) will come into play. One still has the freedom to
vary such parameter at will. This parameter can be fixed through an optimiza-
tion procedure. One has a one-parameter family of phases αn which depend on
the values λn as well as the parameter γ > 1. One must go back to the orginal
fractal SUSY QM wave equation to ensure in fact that the SUSY potential Φ
reproduces the orginal λn for eigenvalues. The error terms will depend on the
different choices of γ. The minimization of the error terms should select, in
principle, the optimum choice for γ > 1 compatible with the SUSY QM wave
equation. It would be intriguing to see if γ = 1.618, the Golden Mean, since the
Golden Mean appears in the the theory of Quantum Noise related to the RH
[17].

Since Φ2 is a well defined function, despite that it is not differentiable, it will
not affect the fractal extension of the CBC formula because the integrand does
not involve its derivatives. Consequently, we can use the definition of fractal
anti-derivation (integration) of Rocco-West (53) and write down the fractal-
analog of the CBC formula:

In[x = xn] − In[x = 0] = πn; n = 1, 2, 3, ..., (56)

where by the In’s we mean the Rocco-West formula (53) for the fractal integra-
tion whose upper limits are x = xn and x = 0 and the lower limits of the Rocco-
West formula are −∞. If one wishes one can use the Rocco-West formula with
xn in the upper limit and x = 0 in the lower limit. The well defined integrand to
be used in the Rocco-West formula is precisely [1/(xn−x′)1−β ]×[λn−Φ2(x′)]1/2

where β = D/2 = 3/4. This is nothing but the anti-derivative analog of the
CBC formula. The turning points are defined as usual, Φ2(xn) = λn since
Φ2 is a well defined function involving a generalized Weistrass function (for its
fluctuating part) and the Wu-Sprung potential (for its smooth part).

By “fractal” SUSY QM model one means a factorization of a Hamiltonian
into two products of operators involving fractional derivatives of irrational order.
A model of fractal spin has been studied by da Cruz [21]. Our model must not
be confused also with those involving fractional supersymmetries in the string
literature.
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To conclude, we have a well defined extension of the CBC formula based
on a fractal SUSY QM model, that gives a direct one-to-one correspondence
among the imaginary parts of the zeros λn and the phases αn. This procedure
defines the fractal SUSY QM model which yields the imaginary parts of the
zeros of zeta implementing the Hilbert-Polya proposal to prove the Riemann
Hypothesis. It is warranted to see if the statistical distribution of these phases
αn has any bearing to random matrix theory and the recent studies of quantum
phase-locking, entanglement, Ramanujan sums and cyclotomy studied by [43].

The eigenvalue problem for the H(+) Hamiltonian can be reduced to diag-
onalize an infinite matrix, whose matrix elements can be easily obtained once
a convenient basis is found. This matrix involves an infinite set of unknowns
in order to have the Riemann’s zeros as eigenvalues. A numerical evaluation
for each convenient truncation of the matrix is possible. One concludes that
the phases of the Weierstrass fractal function appearing in the definition of the
Φ2(x), namely the square of the SUSY-QM potential, eq. (49), αn are only
approximately found by this method. However this approach has the advantage
to give us some clues about the nature and the precise expression of the (square
of) SUSY-QM potential. Of course equation (51) could, in principle, be numer-
ically treated following numerical procedures analogous to those used in [12] to
give values of the unknown phases αn within prescribed error bounds.
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Figure 1: Plot of the absolute value of the function G(z) = (1/z) sin(ilz); z =
x + iy.
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Figure 2: The dots represent generic zeros of the ζ. The crosses represent generic
states orthogonal to the reference state 1/2+0i. The numbers 3/4−x/2− iy/2,
etc, are the arguments of Z appearing in the orthogonality relations between
states orthogonal to the reference state. Due to the functional equation of the
Riemann zeta-function, these arguments are just the average values between
1/2 + 0i and those orthogonal states. Here we are referring the particular case
k = 1, l = 4.
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