Motivic L—functions and regularized determinants

by Christopher Deninger

0. Introduction

In the papers [Del] , [De2] we gave an interpretation of local L-factors of pure motives as
regularized characteristic power series on infinite dimensional cohomologies. This lead to
speculation on an “arithmetic site” whose global cohomologies would be deeply connected
with the global L-series of motives. These arguments suggested in particular a formula for

the Riemann {-function as a regularized characteristic power series which was proved in

[De2] §4.

In sections 1 to 6 of this article we extend the above interpretation to the local L-factors
of mixed motives. For the finite primes we give an improved construction of the infinite
dimensional cohomologies using an elementary case of the Riemann—Hilbert correspondence.
This does away with the semisimplicity assumption we had to make in [De2]. This new point
of view was noted independently by S. Bloch. We also understand better than in [Del] the

relation between archimedian and Deligne cohomology.

Apart from this our main objective is to discuss in some detail the following aspects of the

still speculative “arithmetic cohomology™:

What form should a Lefschetz fixed point formula take? We mention the relation with

explicit formulas in analytic number theory.

We give a short “proof” in the spirit of [Se] of the Riemann hypotheses assuming that a

Hodge #—operator with standard properties exists on the prospected cohomologies.

Following a classical pattern we relate the functional equation for motivic L—series to Poin-

caré duality.

We “explain” the well known conjectures on the vanishing and pole order of L—functions at



integers by certain cohomological conjectures.
We point out relations between a Knneth formula and Kurokawa’s multiple zeta functions.

In sections 1 to 6 everything is proved and we think of mixed motives in terms of realizations
[D5], [J2]. In the speculative §7 we are not precise about the meaning of the word motive

in the formal discussions.

While thinking about these questions I was helped by discussions and correspondence with
S. Bloch, N. Kurokawa, Y.I. Manin, J. Nekovar, M. Schrter and Ch. Soulé. T would like to

thank them very much. I am also grateful to the referee for a number of useful comments.

1. Regularized determinants and dimensions

We recall the definition of regularized determinants in the following algebraic setting [Del]

§1:

Let © be an endomorphism of a complex vector space V' of countable dimension. We say

that dete, © (or dime, ©) is defined if the following conditions 1) and 2) hold.

1) V is the direct sum of finite—dimensional @-invariant subspaces. For any a in € there

are at most finitely many of these subspaces on which a occurs as an eigenvalue.
This is equivalent to

1) V= @ V.,  where the V, are ©O—invariant finite dimensional subspaces such that «
ozE(D

is the only eigenvalue of O|V,.
If 17) holds then V,, is uniquely determined as V,, = Ker (0 — a)” for n large enough and we
call m(a) := dimV,, the (algebraic) multiplicity of a. We also write Vo~ for V.
2) Under condition 1) let Sp (0) be the set of eigenvalues of ©® with their (algebraic) mul-
tiplicities. We assume that the Dirichlet series
1 :
> — witha™ = la| e (A8 _p < Arga < w
aESp ©
a#0

converges absolutely for Res > 0 and has an analytic continuation denoted (g(s) to the

2



half plane Re s > —e for some & > 0 which is holomorphic at s = 0.

Under these conditions we set
dime (O|V) = dim Vi 4 (5(0)

where O is the induced endomorphism of V/V, and

exp(—(e(0)) if 0¢Sp(0)

(1.1) det(O|V) = {
0 if 0€Sp(0).

Remark: The choice of the principal branch Arg of arg is compatible with the convention
in [Del] §1 but different from the one in [De2] (2.1). It leads to a more uniform expression

for local L—factors in terms of regularized characteristic power series than the one in [De2].
(1.2) Lemma: Consider a commutative diagram with exact lines
o — VvV — VvV — V" — 0
A O
o — VvV —V — V" — 0

in which det., ©" and det., ©” are defined. Then det., © is defined as well and

det,,® = det, 0O det, O
dim,, ® = dim. ©' + dim., 0" .

Proof: By assumption

Vi=@V, and V"=V, where the

finite dimensional subspaces V., V" are given by
V! =Ker (0 —a)"™ and V" =Ker(0" - a)"
for n/, and n!” large enough.

We claim that for n, = n/, + n! the natural sequence

00—V, — Ker(0 —a)" — V) —0



"

is exact. For v” € V! choose a preimage v in V. Then (0 — a)"v € V'. Hence
(O —a)™v = Z UL for certain UL € Vﬁf .
pFta
Since ©'—a restricted to V] is an isomorphism for 4 # o we find w/, € V] with (@ —a)"w), =

v,. Hence v — ZwL is a preimage of v” in Ker (0 — a)".
n#o

Thus V = @V, with the finite dimensional ©-invariant subspaces V, = Ker (0 — a)"
is the decomposition as in condition 1°) above. Moreover it follows that the (algebraic)
multiplicity of the eigenvalue a on V' is the sum of its multiplicities on V' and V”. The

remaining assertions are now obvious.

Note that for a positive real number § > 0 we have
detoo (60|V) = §9m=OW) et (O|V) .

In connection with functional equations we will also need the case § = —1. This will involve

regularised superdimensions sdim.,© defined as follows:

(1.3) Assume that for a pair (V, ©) satisfying condition 1) above we are given a decompo-
sition

V=vVteVv-
into O©-invariant subspaces. Then (V*,0%) with ©F = ©|V* also satisfy condition 1). We
say that sdim,,© exists with respect to this decomposition, if the Dirichlet series attached
to ©*
Z é with ™% = |a|_se_is(Arga)

aESp [CE=
a#0

converge absolutely for Res > 0 and have analytic continuations (g+(s) to Res > —e for

some ¢ > 0 with at most first order poles at s = 0. Writing:

2E
Cot(s) = — + H*(s) , A\* in @, H* holomorphic at s = 0
s

we sef
sdime,® = (dim Vit + H*(0)) — (dim V" + H(0)) .

The reason why we have to allow for poles at s = 0 of first order will become clear from the

discussion below and from considerations on Hecke L—series (7.19), (7.20).
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Remark: If dim., OF exist, then sdim.,© exists as well and we have:
sdimq,© = dim,, O — dim,, O~ .
In particular if dimV < oo we get:
sdime® = dimV*t —dimV~ .

We call a decomposition V = W+ @& W~ into O@-invariant eigenspaces commensurable with
(VE VD) if VEN Wt (resp. V™ N WT) is of finite codimension in V* and W (resp.

in V™ and W~). Since V decomposes into the generalized eigenspaces V, we see that

commensurability is equivalent to the existence of ®—invariant decompositions:

W+=U+taFt | Vt=U+tgFE*t
W-=U-aF- , V-=U" @ E"~

such that BT, E~, F* F~ are finite—dimensional and F* & F=F*T @ E~. Hence we get:

(1.4) Lemma: The regularized superdimension of © with respect to V = V* & V= exists
if and only if it exists with respect to V = W+ @ W~. In case the superdimensions exist

their difference is an even integer.

(1.5) For any pair (V,0) as above we define a ©-invariant decomposition by:

vVt = @Va wherea =0ora#0and — 7 < Arga <0
V- = @V, wherea#0and 0 < Arga < 7.

A decomposition of V' is called standard, if it 1s commensurable with this one. We say that
the regularized superdimension of © exists if it exists with respect to one (and hence any)

standard decomposition of V. Note the following simple result:

(1.6) Lemma: Given (V,0) assume that det., © and the regularized superdimension of ©

exist. Then deto(—0) exists as well and we have:
deto, (—0) = ¢ m(5dim=®) Jot @ |
where sdim,, 0 is made up with respect to any standard decomposition of V.

Remark: If dim, ©F exist, then sdim.,® can be viewed as the n-invariant of © in the

sense of Atiyah—Patodi-Singer. In this case the lemma is well known e.g. [Wi2].



Proof: According to (1.5) we may assume that sdim.,,© is formed with respect to

decomposition in (1.6).

Since
Arga+m if —1<Arga <0
Arg(—a) =
Arga—m if 0<Arga<m
we have:
1 . 1 : 1
Z — — TS Z — + eims Z —
BESP (—0©) 6 agsSpot a a€Sp ®— a
B#0 a#0 a#0

the

which converges absolutely for Re s large. Hence the Dirichlet series on the left is analytically

continued to Res > —e, ¢ > 0 by the function:
Cols) = €™ Cou () + €™ (o (s) -
On the other hand we have
Co(s) = Co+(s) + Co-(s) -
Writing
)\:I:
Cox(s) = —+ H*(s)

as in (1.4) we find At 4+ A7 = 0 since det, O is defined. Thus

1 . . . .
C—@(S) — _()\+€—z7rs + )\_€Z7T8> + e—zTrsH+(5> + ezTrsH—(S)

S

is holomorphic at s = 0 and hence deto,(—0) is defined as well. The formula for det(—0)

follows from an immediate computation.

2. Regularized determinants and Riemann—Hilbert correspondence on G,

We recall the Riemann—Hilbert correspondence [D1], [H] in the elementary case where the

underlying variety is G,,/C. Consider a regular singular algebraic differential equation

(M,<7) on G, /C. Its sheaf of germs of horizontal sections in the analytic topology defines a

local system on €* and hence a finite dimensional complex representation of m;(C*,1). The

resulting tensor functor between regular singular differential equations and representations

of m(€C*, 1) is an equivalence of tensor categories.
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Let us fix a choice of 7 = v/—1 and hence an orientation of €. We identify Z with = (C*, 1)
by mapping 1 to the loop ™, 0 < ¢ < 1. Set L = (G, 0) = Clz,27'],0 = 2L
and A = IL[O]. By D.E.R.S. (G,,) we denote the category of left A = IL[O]-modules D
regular singular at 0, 00 which are free of finite rank over IL. Since IL is principal we obtain
an equivalence H between D.E.R.S. (G,,) and the category of finite dimensional complex

representations of Z.
By construction we have

Explicitely the functor H is given as follows: Let e : € — @, ¢(7) = exp(2wir) be the

universal covering of €. We will view the composition
L c O() < o)

as an inclusion of (—algebras. If we let © act on O(C) by the derivation 21?;—7 then O(C)

becomes a left A-module. The group Z acts A-linearly on O(C) by translations (v*p)(7) =
99(7' + 1/) for v in Z.

Then we have
(2.2) H(D) = (D @r, O(1))°=°
the kernel of 0=0 ® id +1d ® © on D ®y, O(C) with the induced Z-Operation.

Quite generally the hypercohomology of a regular singular algebraic differential equation
equals the cohomology of the corresponding local system [D1] ch. II 6.2, 6.3. In our case

we deduce the canonical and elementary isomorphisms
(2.3) H"(t,D) — H"“(Z,H(D))

where the one-dimensional real Lie algebra t = R acts on D by mapping ¢ to t0. In other

words
(2.4) D®=" = H(D)? and D/OD -~ H(D)z.

For o in @ let ]L(oz) denote the A—module which as an I.—module is I, itself and on which ©

acts by Or(o) = O, — aid. For A in C* let ¢(X) be the Z-Module whose underlying vector
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space is € and on which v € Z acts by multiplication with A¥. Then there is a natural

[

isomorphism H(IL(«)) 2 C(e(e)). The following remark is now trivial.

(2.5) Remark: Every non-zero object of D.E.R.S. (G,,) is a succesive extension of objects

IL(e).

An object D of D.E.R.S. (G,,) is in particular a ~vector space with an action by 0. Let
Sp (©) denote the set of eigenvalues of © on D. Write F for the (inverse of the monodromy)

automorphism on H(D) given by the action of —1 € ZZ. With these notations we have:

(2.6) Corollary: As a C—vector space D decomposes into a countable direct sum of finite
dimensional O-invariant subspaces. Assigning (algebraic) multiplicities to eigenvalues we

have
Sp (@) =e™'Sp (F)

as sets with multiplicities.

Proof: On IL(a) viewed as a (~vector space © has eigenvalues v — a for v € Z with
multiplicity one. Since the only eigenvalue of F' on €(e(a)) is e(—a) we obtain the assertion

for IL(a). The general case follows by induction using (2.5) and the proof of (1.3).

Remark: For objects D of D.E.R.S. (G,,) and representations H of Z we introduce twists
by
D(a) = D@y L(a) and H(A\) = H®¢C\) foracC,)e.
Clearly:
D(a)®=% = D= and H(N)"=4 = gF=Yd,
Since H is a tensor functor we have natural isomorphisms:
H(D(a)) = H(D)(e(a))

and hence applying (2.4) to D(a) we get D®= = H(D)"=). Tt follows again that o
is an eigenvalue of O if and only if e(e) is an eigenvalue of F. Moreover their geometric

multiplicities are equal.

(2.7) Lemma: For v € €7, z € € consider the regularized product [Del] §1

I (z+v) ;:{ exp(=(}.(0)) if z¢Z

vell 0 if zeZ



where (,.(s) = Y_ [y(z + v)]7* is defined for Res > 1 by taking —7 < Arg(y(z +v)) < .
vel

Then we have
1 —e~2miz jf Im~y>0o0rify>0, Imz<0

orif v<0,Imz<0

I 1=+v)=

vel 1 —e?mz if Imy <Qorify>0,Imz>0

orif v<0,Imz>0

Proof: The assertion is trivial if z is an integer. We use the Hurwitz zeta function ((s, z)
which is defined for Res > 1, 2z #0,—1,—-2,... by the series

ad 1
((s,2) = z_%(eru)s , —m<Arg(z+v)<m

with analytic continuation to s in €\ {1}. Tt is known that:
1 1
((0,2) = 5 % and  05¢(0,2) =logI'(z) — §log 2m
for a suitable branch of log I'(z).

For a complex number v # 0 we introduce the functions

l;) z+1/) , —m<argy(z4+v)<m
and .
C_<S,Z) = , —m< arg7<2_y> <
: . G

_ ¢ w<s ).
If 4 # 0 is not a negative real number, then we have

Arg (v(z 4+ v)) = Argy + Arg(z + v) for almost all v > 0
since lim Arg (z4v)=0and —7 < Argy < 7.

Hence we have

Gols,2) = 77705, 2)
where 5 (s, z) differs from the Hurwitz zeta function only by taking non-principal arguments
in the definition of (z 4+ v)™* for at most finitely many v. Therefore we still have

(0,2) = %— z and  exp(—d,((0,2)) = (\/%F(z))_



and hence

1 -1
(2.7.1) (4(0,2) =1 —z and exp(—08,((0,2)) =277 (#F(Z)) .
If v < 0 we have for almost all v > 0:

Arg(z+v)+7m if Imz<0

Arg(y(z +v)) = ,
Arg(z+v)—m if Imz>0

and hence by the same argument as before:
(2.7.2) (4(0,2) =3 —z and

y[3=e"(372) (LLr(z)) 7 if Imz <0

exp(~9.6,(0,2)) =

o 5k
3 3

s (37 (LT(2)) T i Ime >0,
We have

Cre(s) = G(s,2) + ¢ (5,2) = (29)7°
and hence

(y-(0)=0.

The claim now follows from the equation:

[T (2 + ) = expl =0, (0:2) exp(-0:6oy (0, =2)) ()

using the formula:

. (\/%F(Z)) h (#F(—z)) T

Remark: The case v = 1 of the lemma was pointed out to me by N. Kurokawa in a response

to [De2] (2.3).
From (2.6), (2.7) and (1.7) we draw the following corollary:

(2.8) Corollary: Fix real numbers § > 0 and ¢ > 1. For any D in D.E.R.S (G,,) set

0, = 12” © acting on D. Then we have for complex s:
0gq

(2.9) det oo (5(s £ 0,)|D) = det(1 — ¢=* FFY|H(D)).

A standard decomposition D = DT @ D~ of D with respect to the operator — 0, is also

standard for any operator d(s — ©,) with s in € and we have
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(2.10) deto(—0(s — 0,)|D) = e(s) deto (8(s — O,)| D)

where

e(s) = expin(dime(d(s — 0,)|DT) — dims(6(s — ©,)[D7))
= (=g et (FIH(D))

Proof. For any A # 0 let 7, be a complex number with (7)) = A. According to (2.6) the

eigenvalues of §(s + ©,) are the numbers

2710 i1
ik ((b Og.q:I:T,\)-I—V) for N\eSp(F),veZ
log ¢ 2m

with the appropriate multiplicities. Now the first formula follows from (2.7).

It is clear that a decomposition D = Dt @ D~ is standard for —0, if and only if it is

standard with respect to (s — ©,) for any value of s. Thus (1.7) implies formula (2.10) for
e(s) = expim(dimu(d(s — ©,)|D1) — dimy, (6(s — ©,)|D7))

taking into account that the regularized dimensions exist by the following argument. Let

Dt (resp. D7) be the direct sum of the generalized eigenspaces of the operator —0, for the

eigenvalues %(—TA +v) for v <0 (resp. v > 0) and XA € Sp (F'). Then the decomposition

D = DT @ D~ is standard for all operators 5(5 — @q) and using (2.7.1) and (2.7.2) we have

for all complex s:

1 1
dim. (s~ 0)D7) = ¥ (5+5050 ).

AESP (F) 2m
and
) _ 1 sloggq
dime(0(s = O)|D7) = 3 (—5— Lo +)
AESpP(F)
Hence

exp mi(dime (d(s — O,)|DT) — dimu, (6(s — ©,)|D7))
— H exp i (1 + —“:qu — 27))
AESP (F)
— (g O det(FIH(D))
Remark: The following particular case of formula (2.9)
det (10| D) = det(1 — F~'|H(D))

11



is closely related with lemma 2 in [A]. Note that F'=' is the usual monodromy operator.

(2.11) For ¢ > 0 let D, be the category D.E.R.S. (G,,) but with the following notion of
twist: Any object D of D, is viewed as a representation of the one-dimensional real Lie

algebra t = R by mapping 1 to ©, = 27-0. For a in € the twist D(a) of D in D, is defined

loggq

to be D itself as an IL—module but with t-action given by

alogqid

®D(a),q = G)D,q —aid e G)D(a) = ®D —

2w

We have natural isomorphisms

(2.12) Since H is an equivalence of categories, we can choose a quasi-inverse functor ID. For
the sequel it will not be important which quasi—inverse we take. None the less we mention

the following canonical choice to explain the relation with the construction in [De2].

Let B = C[C] be the group algebra over € with coefficients in €. The typical element will be

OZOZ’

written in the form . roe® with o, r, in € and a symbol €* obeying the rule e = e%¢
We can view B as a subalgebra of O(C) by mapping e to the function 7 — exp(ar). Then
B inherits a Z and a A-action from O(C):

V(Y rae®) =Y roexplav)e” forvin Z
I.=BZ , Op(Xr.e®) = (2mi) rar,e” .

For a finite dimensional complex representation H of Z let F' be the automorphism cor-
responding to the action of —1. Decompose F' into its semisimple and unipotent parts

F = F,F,. Let H, be the representation of Z on H where —1 acts by F,. We set
D(H) = (H, ¢ B)Z .
This is naturally an I.-module and it becomes a A—module by letting © act by

1

2m1
Decomposing H into eigenspaces of F; and noting that the A—eigenspace of (—1)* on B

is isomorphic to IL(7)) for any 7, such that e(7),) = X we see that ID(H) is an object of
D.ER.S. (G).
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To see that ID is a quasi—inverse to IH we proceed as follows. The map:

H — (H,20(0)"

[o.0] v

ho— F7(h) = exp(—rlog F,)(h) = > (~log FL)"(h) © —

v=0
is an isomorphism of C—vector spaces by the theory of ordinary differential equations. It is

also Z—-equivariant:

(=) F77(h) = F7UTO(Fh) = F7(F,F.h)
= F7((=1)*h) for hin H .

Hence we obtain a natural transformation: HID — id defined by the commutative diagram:
HID(H) = ((H, ¢ B)% @1, O(0))°=" = (H, @¢ B @y, O(1))°=°
| |id @ multipl.
H =~ (H, ¢ O(T))9=° .

One checks that it induces isomorphisms HID(C()A)) — €(X) for all A in €* Since H and ID
are exact and since every Z-representation is a successive extension of €'()A)’s we find that

HID — id is an isomorphism of functors. Hence H is a quasi-inverse of ID.

Remark: In [De2] we took the derivation idy, ® ©p on ID(H) which is the right one only
if F'is semisimple. Thus we had to assume certain (conjectured) semi-simplicity properties

of the Frobenius action on /-adic cohomology in §2 of loc. cit. These assumptions can now

be discarded.

3. The non—archimedian local —factors

Using the results of section 2 we rewrite the local non—archimedian L—factors of a motive

in terms of regularized characteristic power series.

Let K be a local non—archimedian field with prime ideal p in Ok inertia group I and
geometric Frobenius automorphism F' in Gal (/) where k = O /p. Fix a prime number

[ different from the residue characteristic of K and an embedding ¢ : @; — €. Now assume
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that charK” = 0. For a finite extension E /@) let MMk (FE) be the category of mixed motives
over K in the sense of [D5] or [J2] with multiplication by E. If M; = H* (M@ K, ©);) denotes

the [-adic realization of M we obtain a functor
(3.1) M — M @q,, € = M/,

from MMk (FE) into the category of (£ ® C)[F]-modules of finite rank over £ ® €. Tt is

expected that these functors for different [ and ¢ are isomorphic [T] (4.2.4). Since £ ®@ € =

CHomED) we may view M/ as an array of complex vector spaces
1

I I I I
My, = (M, ,)setom(a) Where My, - = M}, Qrga, €.

L0

The E @ C—-valued local L-factor of M is defined by

Lic(M,s) = (detg(1 — FNp=* | M/

-1
l,L,U) )o-EHom(F},(D) )
A priori it depends on the choice of [ and ¢ although by the above remark it is expected to

be independent of this choice. In certain cases this independence is known [T] (4.3.1).

For any Q-linear category A let A(F) denote the E-linear category of objects A in A with
multiplication by F:
E—FEndA, 1+—idy4

and with the evident morphismes.

Composing the functor (3.1) with a quasi—inverse ID to the Riemann-Hilbert correspondence

H on G,,/C we obtain an FE-linear functor:
(3.1.1) F=F,: MMg(E)— D.ER.S. (G,)(F) .

Note that via F*(M) := F(H*(M)) the functor F is naturally Z-graded. We equip F(M)
with a Lie-algebra ind-representation of t by sending ¢ to t@y,. We will view F as a functor

to Dnp(F). Up to natural isomorphisms it commutes with twists by integers.

Let MM%?Od(E) denote the full subcategory of motives M with good reduction in the sense
that M/ = M;. The restriction H*(_/IL) of F* to MME°Y(E) is a tensor functor between

Tannakian categories. In particular H*(_/IL) can be viewed as a cohomology theory on

motives in the sense of Grothendieck.
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Let us write H"(X/IL) = H(H"(X)/IL) for smooth projective varieties X over K such
that H"(X) has good reduction (£ = @). For this cohomology theory H"( /IL) we have
Poincaré-duality, a Knneth-formula, Chern-classes etc. The definition of H"(_/IL) via
[~adic cohomology is of course not satisfactory. It just shows that such a theory exists.
An independent construction would be of great interest. It would also be important to
know what the groups H"(_/IL) should be in the bad reduction case. There we have only
constructed the analogue of H" (X7, @Q;)’.

Up to now we have kept Il fixed and chosen ©y, which depends on the field K as our
preferred derivation. However we can also keep the derivation fixed and vary the spaces as

follows:

For g > 1 consider the subring

2m 2m1
IL,=C [exp (1qu£> , exp (—1qu§)] C O(C)

equipped with the derivation © = % and set I, = Ly,. By the change of variable z =
exp ( 2mi 5) we can identify the pair (IL, Onp) with (ILp, ©). As (IL,, ©)-module we write

log Np

(Fp, ©) for the pair (F, Onyp).

Let us write D, for the category with twists Dyy of (2.11) if we make the identification
(IL, Onyp) = (ILy, ©) in its construction. Thus we view F and H*(_/IL) as functors:

(311) .7'—p = qulvt . MMI{(E) — Dp(E)

and
(/) s MME(E) —s D, (F)
Note that there is an isomorphism of categories

Dy(F) = H D, , Dw—(D,)

o€Hom(E,T)

where D, = D Qpgga,. C.

(3.2) Proposition: For M in MMxk(E), sin C, § > 0 we have:
Li(M,s) = detee(8(s — O)|Fp(M)s); epom(z.0)
and in particular for a smooth projective variety X/K with H"(X) of good reduction:
Lic(H"(X), 5) = detoo(3(s — O) H" (X/Wp)s)Zetom(p.) -
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Here it is understood that the same pair [, ¢ is used for the definition of the local factor and

for the definition of F, = Fy;,. The proposition is then an immediate consequence of the

definitions and (2.8).

(3.3) If K is a local field of characteristic p > 0 we do not yet have a useful category
of motives available. However for any local field we can still define a functor F* from the

category of smooth projective varieties X/K to D.E.R.S. (G,,) by setting

F(X) = D(H(Xz, Q) @q,. C) -

We equip F*(X) with a Lie-algebra action of t by sending ¢ to tOy, and view F*(X) as a
graded object of Dyy. If char(K) = 0 we have F*(X) = F(H*(X)) in our earlier notation.

4. Interlude: Varieties over finite fields

In this short section we look at the Weil conjectures from the point of view of a D.E.R.S. (G, )

valued cohomology theory.
For a variety X over IFF, we set
HY(X/IL) = D(H*(X.Q) Gq,, @), X = X & TF,

where [-adic cohomology is equipped with the geometric Frobenius F' = Frx = (id x (1 )?)*!
and H*(X/IL) is viewed as an object of D,. Since ID is an exact tensor functor the theory

H*(_/IL) inherits all the usual properties of a cohomology theory. Let
HY(X/1) = H*(X/)" @ H*(X/T.)~

be a standard decomposition of H*(X/IL) with respect to the operator —0,. Corollary (2.8)

implies:
(4.1) Proposition: For any variety X/IF,, w > 0 and s in € we have
wdetq, (1 — ¢ Fri|H"(X,Q)) = deto (s — ©,|H" (X/IL))

and

detoo(—s + O, H"(X/IL)) = ,(s)det (s — O, H"(X/IL))
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where
culs) = expin(dimac((s — O, HU(X/L)*) — dimaa((s — ©)| H(X/1.)"))

= (—qs)b‘”L det(Fr;|Hw(7,(Ql))_1 where b,, = dimg, H"(X,Q,) .

If the variety X/IF, is smooth and proper, Poincaré duality gives a perfect pairing of objects
in Dy:
Tr
HY(X/TL) x H*"(X/IL) — H*(X/IL) =5 L(—d) (note (2.11))
where d = dim X. In particular ©, on HY(X/IL) has the same eigenvalues with the same
(algebraic) multiplicities as d - id — ©, on H**="(X/IL). Hence:
detoo (s — O, HY(X/IL)) = eu(s) ' deto(—s+ O, |H"(X/IL))
= cyu(s) " deto((d — 5) — O, H*(X/IL)) .

This implies the functional equation for (x(s) in the form

(x(s) = e%’w(xﬂs)—x‘(s))gX(d —5)
2d
where y*(s) = —1)" dimso (s — O,|H"(X/IL)*). Note that by Deligne’s theorem the
g

w=0

eigenvalues of ©, on H"(X/IL) have weight w i.e. real part = .

5. Logarithmic connections and filtered vector spaces

In this section we relate certain algebraic vector bundles on (i, ¢ together with a logarithmic
connection to filtered vector spaces. This will be used in section 6 to construct the analogs

for archimedian p of the functors F, introduced in section 3.

Let D.E.L.S. (G, ¢) be the category of algebraic vector bundles V on G, ¢ together with a

connection

ViV—V® Q}Bw/@mm(m

having at most a logarithmic pole at zero.
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Set It = I'(Go ¢, O) = C[z] and AT = ILT[O] where © = z%. The category D.E.L.S. (G, ¢)

is canonically equivalent to the category of At-modules D% which are free of finite rank

over II.T.

For K =Cor Rset ex = [C: K] and O = —egO. Let D be the category D.E.L.S. (G,¢)
equipped with the following notion of twist: Any object of Dk is viewed as a representation
of £ by mapping 1 to Ox. For a in € the twist D™ (a) of Dt in Dk is defined to be DF

itself as an I.¥—module but with t-action given by

Op+(a),x = Opt x —aid ie Op+) = Op+ + g id .
K

We need the following categories Filg:

Filg is the additive category of finite dimensional complex vector spaces V' with a decreasing
filtration Fil"V such that Fil"V =0, Fil?V =V for some ry,r;. Morphisms are supposed

to respect the filtrations.

Filg is the additive category of finite dimensional complex vector spaces with a filtration
as above and with an involution F,, which respects the filtration and induces multiplication
by (—1)* on the associated graded vector space Gr*V. Morphisms are supposed to respect

the filtration and to commute with F.,.

The categories Filg are obviously pseudo abelian i.e. additive and such that kernels and

images of projectors exist.

In Fulg the twist V(n) of an object V' by an integer n is defined to be V itself as a vector
space but with filtration
Fil'V(n) = FiI't"V

and in case K = R with F|V(n) = (—=1)"F.|V. Write €(0) for the object in Filx whose

underlying vector space is  with filtration given by:
FiI'C(0) = €(0) for r<0 and FiI'C0)=0 forr>0.
In case K = R we set F., =id on €(0). Note that
C form <n, m=nmod ek

Homg, (C(n), C(m)) =

0 otherwise
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On I = T(G,, ¢, O) consider the filtration and involution given by:
Fil'll = 2"ILY | Fo(z) = —=.
For V in Filg set
DT (V) = Fil’(V @¢ L)
an I+ = Fil’lL-module with action by O¢ = id ® O¢.

For V in Filg set
DT (V) = Fil°’(V @¢ IL)F>=1.
2

Let sq be the injection I. — IL induced by sq(z) = z°. Note that it corresponds to the

squaring map on G,, . We view ID*(V) as an IL.T-module via sq and let O operate via

id @ Og.
For K = R,( there are natural isomorphisms DT(C(n)) 2 L.t (n) in Dg.
Similarly as in [Del] §6 we have the following easy proposition:

(5.1) Proposition: In Filx any object is isomorphic to a finite direct sum of objects €(n)

for n in Z. The DT as constructed above induces an additive functor
1])+ N F'L.l[/( — D[\"

which commutes with ®-products and internal Homs. For any integer there are natural

isomorphisms

DTV (n)) = DF(V)(n) .

For all V we have
thp+DT(V) =dimV .

D induces an equivalence of categories between Filx and D3¢, the full subcategory of Dx

generated by objects which are isomorphic to finite direct sums of I.¥(n) for n in Z.

Remarks: 1) The subcategory D of Dk is closed under twists by integers.
2) Using the real structure R[z,27'] C IL on IL the functor DT maps real structures on

objects of Filg to real structures on objects of Dg.
As in [Del] we set T'r(s) = 271/2x=/2T (%) and T'g(s) = (27)~°T'(s).
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(5.2) Proposition: For V in Filg set d, = dim Gr”V. Then we have for all complex s:

) 1 1 1
dims (706 = ORIDV)) = (5 = =) dimV 4 =S,
and
1
det o, <2W(5—®A |]D ) H k(s —v) —dv

UEZ

Proof: Since any object in Filg is isomorphic to a direct sum of €(r)’s and since both
sides of the equations are additive resp. multiplicative we are reduced to €(n). Since an
n-twist changes s to s + n in all expressions we are reduced to €(0). Since DT (C(0)) = L.t
and since O acts on It with eigenvalues —egv for v = 0,1,... of multiplicity one we have

to consider the Dirichlet series

> 1 E
S R AL R
v=0 [ﬁ(g + (EKV)} 2m €K

in the notation of the proof of (2.7). Now the assertion follows from (2.7.1).

Remark: One may wonder about the factor (27)~! in the above formulas. For the first it
is irrelevant but for the second it seems to be the best choice. Namely let § be in €* and

set:
Tos(s) =87 5v2r T(s) and Tgg(s) = (26)Fv2r T (%) _

Then we have for all complex s:

1 1
dim .o (8(s — O ) DF(V)) = (- - —> dimV + — Y vd,
2 €K €K
and in case ¢ is not a negative real number:
det.(6(s — Ox)|DT(V H I'rs(s —v) v
UEZ
This follows as above from (2.7.1) and (2.7.2). For § < 0 the formula for det,, depends on
Ims. Using the factor I'g s(s) to complete the Riemann zeta function at infinity introduces

the e—factor (2#5)5_% in its functional equation.
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6. The archimedian local factors

In the first part of this section we express the archimedian local L—factors of a motive as

regularized characteristic power series.

Let MHg (resp. MHR) denote the category of mixed Hodge structures with coefficients in
R (equipped with the action of an infinite Frobenius F, which respects the weight filtration
and maps F to F') [D2], [Be] §7. Fix a finite extension £/Q as a field of multiplication.
We refer to [F-PR], [De3] or the proof of (6.3) below for the definition of the £ ® C-valued
L—factor L(H,s) of a mixed Hodge structure H in MHg(FE).

Let us define an additive functor
(6.1) V: MHg — Filg

by
V((H,W,H, F*Hg)) = (Hg, Fil Hy = F'Hy 0 F'Hg)

in case K = (C and by
. . ) e ) £
V((H,W.H, F*Hy, F..)) = ( Ho, Fil Ho = (F'Ho 0 FHg) & (F* Hy 0 FF Hg) P
in case K = IR. Here the exponent +1 denotes the +1-eigenspace of F,.
Note that V(H) carries the real structure
VR(H) = (H,Fil'H = F'Hg N H) in case K =
and
VR(H) = (H,Fil'H = (F'Hg 0 H)™Y' @ (Fi* " Hg 0 H) Y™ FL) incase K = R .

The functor ¥V commutes with twists and sends R(n) in MHx to C(n) in Filg. For K =C
it commutes with @-products but not so for K = IR. In both cases V does not commute

with duals.

Composing V with the functor DT : Filx — D3 we obtain a functor

(6.2) D}, : MHi(E) — DI(E).

21



Using the second remark after (5.1) we see that any object IDF,(H) in the image of IDF;

carries a canonical £ ® IR-structure, which we denote by ]D;__{’]R(H').

Note that there is a natural isomorphism of categories
D]’{(E) = H ,D]'{ 5 D+— (Do-)
oc€Hom(E,C)

where D, = D Qpgga,, C.

Remark: The construction of the functor ID in [Del] §3 uses only the Hodge filtration
and not the weight filtration of a Hodge structure. Hence it makes sense for mixed Hodge

structures as well and it turns out to be equal to ID;:’]R above (after the substitution z =

T-r),

(6.3) Proposition. For H in MHg(FE) and all complex s we have:

-1

L(H,s) = det.. (%(s — Ox) DY ().

c€Hom(E,C)

Proof: Let e, be the idempotent in £ @ ¢ = CT™FL) corresponding to the embedding
o: K — €. Then

D3 (H)s = ;D5 (H) = e,DT(V(H)) = D¥ (e, V(H)) .

Note that Dt is ' @ C-linear and that Filg(F) is pseudo-abelian. We view ¢,V (H) as an
object of Filg. Proposition (5.2) implies:
1 -1
et (505 = 0) DY), ) = TT T =)
2m
UEZ
where d, , = dimg Gr¥(e,V(H)) = dimg(e,Gr*V(H)).
Consider the filtration v on Hg:
Y He = F'He N F Hy

where I is the Hodge filtration.

For K = € we have Gr*V(H) = GrY Hg and since by definition
L(H,s), = [[Te(s —v)™"
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where n, , = dim@(eaGr;H@) the claim follows.

For K = R set

nig = dimg ea(GT:H@)i _
Then by definition:
L(H,s), = H Ir(s+¢, — 1/)”:?r Tr(s+1—¢, —v)™

= H F]]:{(S — V)di”a

where ¢, € {0,1} , &, = v mod 2 and
(-1)~ 4+ =D

! —
du,o- - nu+1,a’ v,o

Clearly

7yH® (_l)y
,}/1/+2 H(D )

and thus there is an K ® (—equivariant exact sequence

Gr'V(H) = (

0 — (Gri™ He) ™Y — Gr*V(H) — (Gr2 He) ™" — 0.

This implies that
d,, = dime,Gr'V(H) = d,,

and hence the assertion.

Up to now we have kept IL.* fixed and chosen Ok depending on the ground field K. As in

section 3 and in [Del] we can also keep the derivation fixed and vary the spaces:

Let 7 : K < (€ be any embedding and denote by p = {7, 7} the unique place of K. Consider

the subring:

]L;' = Clexp(—exf)] C O(CT)
equipped with the derivation © = %. The change of variables z = exp(—ex¢) identifies the
pair (IL*,0f) with (IL},0). We write D, for the category with twists Dx of section 5 if

we make the identification (IL*,0) = (II;,©) in its construction. We can view D}, as a

functor

D}, : MHy(E) — D(E) .
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For K = € or IR the real Betti realization

Mg = H;

sing

(M @k K,R)
of a motive M over K induces a functor
MMk (E) — MHK(E), M — Mg .
Its composition with IDJ; is denoted by
Fo: MMk (E) — DY(E) .

It will turn out to be the archimedian analogue of (3.1.1). Note that for any M in MMk (F)
there is a canonical F & IR-structure flljR(M) on Fy(M). For E = (@) the archimedian
cohomology H;:.(M) of the motive M introduced in [Del] is just flLR(M).

The functor F, is naturally Z-graded via
Fo(M) = Fp(H*(M))

and up to natural isomorphisms it commutes with twists. We view F,(M) as a Lie algebra

representation of t by sending 1 to ©.

(6.4) Since Fp does not commute with duals and for K = IR not with @-products as well
we cannot view F, as a geometric cohomology theory on motives. This is in accordance
with the philosophy of Arakelov theory [Ma] that the “reduction” of the infinite fibres of an
arithmetic variety should be viewed as totally degenerate. So F,(M) would be something
like the “fixed module under inertia” of the “true cohomology” of M over K. This point
of view is compatible with the fact that F, is left exact but not exact and with a later

argument about weights (7.14).
As a trivial consequence of (6.3) we get:

(6.5) Corollary: For M in MMg(FE) and all complex s we have:

-1

Lx(M,s) = detu (i(‘; —0)|Fp(M

27 >O>UEH0m(E,(D) .

We now discuss a canonical pairing between the kernel of ©x on ID;__{’]R and certain Ext—

groups in the category of real mixed Hodge structures over K. For H in MHg we have if
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K=C
H);-{,R(H)@:O — FilO(V]R(H) ®r R]z, 2_1])920
0=0
= | ¥ FirVY(H)or R[]
v+p>0
= Fil'VR(H) = F°Hy N H
and if K =R

ID;'(,R(H)@:O — (FﬂOV]R(H))F"":id _ (FOH@ A H)F"":id
— (FOH@mH>F"°=id'

For any Hodge structure H define 7, : Hy — Hg by m.(h) = %(h + (—1)”%) where — =
idg @ ¢. Thus 7,(Hg) = (27i)"H. The canonical pairing:

H(D X H*(l)@ ﬂ} ]R(l)([j l) R

induces an R-linear pairing:

7 (1)e
(1) + FOr(1)g

since (H, H*(1)) C R(1) € Kerm; and (F°Hg, F°H*(1)¢) C F°RR(1)¢ = 0. There are

(6.6) (FOHg N H) x — R

canonical isomorphisms:

H*(l)@ _ H*(l)@/H*(l) 7& H*
H*(1) 4+ FOH*(1)g ~ FOH*(1)g/(FOH*(1)g N H*(1)) — m (FOH*(1)g)
J— H*
-~ mo(FHy)

and (6.6) translates into the pairing

H*
. FHyNH) X ——— —
(6.7) ( N )XWO(FIH(E) R
induced by the canonical pairing H x H* — IR.

We claim that (6.7) and hence (6.6) is non—degenerate:

(%) — Ker (H — (ro( F'Hg))")
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consists of all A in H such that Re(¢(h)) = 0 for all C-linear maps ¢ : Hg — € with
Y(F°(Hg)) = 0. Replacing ¢ by it) we find that in fact (k) = 0 for all such ¢ and hence
that h is in F°Hg. Thus we have
7 A
N R H
() =71

as claimed.

In case K = R the de Rham conjugation F, is selfadjoint with respect to the pairing in

(6.6). Hence the pairing of fixed modules

H*(1)q Foo
() + FOH*(l)@) — R

(FOHg N H)F> x (
is non—degenerate as well.

Now recall [Be] (1.4), (1.6) that there are canonical isomorphisms

N WoHe
Extie (RO = g g,
EXt}MH]R GR(O)’ H) - (I/VOH +0F0W0H(D>

Thus we have proved:

(6.8) Proposition: For any H in MHg and M in MM there are canonical pairings of
finite dimensional R-vector spaces:

DI ()= x Extlyy, (R(0), H*(1)) — R

FR(M)®=0" x Extjy, (R(0), M5(1)) — R

which are non—degenerate if the weights of H resp. M are > —2.

Now let us use the proposition to clarify the relation between archimedian and Deligne
cohomology. Let X/K be a smooth projective variety of dimension d. Then we have

canonical isomorphisms

Hpt' (X, R(n)) = Extyy, (R(0), H5(X)(n)) ifw+1<2n

1

(Fp (H"(X)"(1 =n)°7")".
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The induced isomorphism for w 4+ 1 < 2n
(6.9) a: HyPY (X, R(n)) — (]:F(HQd‘w(X)(d—l— 1 —n))®=9)"
will play a role in section 7. If we compose with the inverse of a strong Lefschetz isomorphism
H"(X) = H*(X)(d — w) we get the first part of
(6.10) Proposition: For m = w + 1 —n < ¥ there is a natural perfect pairing
Hpt (X, R(n)) x FyH(H"(X))*=" — R.

For m > % the groups Fy(H"(X))®=" vanish. In particular the weights of © on FJ*{(H" (X))

are < w.

By (6.5) it is clear that

(6.11) ords—m Lk (H"(X),s) = —dimp fF(Hw(X))GZm for m in Z.

Since Lx(H"(X),s) has no poles for s > Z the second assertion of the proposition follows.

Note that the duality in (6.10) gives a satisfactory algebraic explanation for Beilinson’s

observation that
(6.12) ordsey Lic(H(X), 5) = — dimp Hg*' (X, R(n)) if m <.

The present explanation of (6.12) is to be preferred to the one in [Del] §5.

7. Arithmetic cohomology?

In this section we extensively discuss aspects of the still speculative site & of [De2] §3
(called 7 in loc. cit.). The discussion is meant as an approximation, so on occasion we will
deliberately be somewhat vague. The motives attached to algebraic Hecke characters will
serve us to test consequences of our considerations. In some cases we are suggested new
formulas in analytic number theory which can be proved by classical methods (7.16), (7.18),
(7.20).

S should be a site ringed by a sheaf of C—algebras C. The objects in the underlying category
of § should be equipped with functorial actions of the group 7' = (IR,+). Schemes and
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Arakelov varieties should give rise to objects of cat § which we denote by the same symbol.
There should be a morphism of ringed sites from varieties over € with the analytic topology
and ringed by € into S. For any embedding o : @, — € a Q)y—sheaf on a variety over a field

of characteristic zero should give rise to a C-sheaf on the corresponding object of cat S.

Because of the T—actions the cohomology groups H*(X,C) of any object in cat S would be
(C—vector spaces with an action of T'. We expect them to decompose into the direct sum of
finite dimensional T—spaces. Thus they would carry an action by the Lie-algebra t of T and

hence an action by the endomorphism @ corresponding to 1 € t = R.

If X 5 Y is a morphism, cup product would turn H*(X,C) into an H°(Y,C)-module.
For a non-archimedian local field K of characteristic zero we expect H°(Spec K,C) = I, in

D,. If X is a smooth projective variety over K with good reduction, we now expect:
H"(X,C) = H"(X/IL,) inD,.

There is a similarity to the situation for crystalline cohomology: coefficients vary with the
ground field and the action of T" which corresponds to Z = (F'r) is o-linear with respect to

the coefficient module structure on cohomology. In our situation the action of T on Iy is

given by o : T'— Aut¢ll, , (o(t)0)(§) = (€ +1).

A very optimistic suggestion to explain the T—action would be the following: There should be
a “ground point” P in § (which is not a scheme) and an extension P — P with Autp(]s) o
T. What was written H*(X,C) above should in fact be H*(X xp ﬁ,C) with the T-action
coming from transport of structure. This guess may be too naive: For reasons which
become clear later when we discuss zeta—functions we would have Ho(ﬁ,C) >~ @ with trivial

T-action. If Spec K — P were geometrically connected (with respect to — xp ﬁ) I would

expect

H°(Spec K xp p,C) = Ho(p,C) >~ (

a contradiction. Hence Spec K xp P should not be connected. But then
H°(Spec K xp IS,C) = I, would not be an integral domain which is also a contradic-
tion. So the crystalline picture may be more appropriate than this analogy with the étale

site over a finite field.

For any local field K, we expect to have a model Vi of Spec K in § with closed point p. For
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non-archimedian K, Yk would be Spec O. For any motive M in MM (F) we expect to
have a canonical T-sheaf F(M) with E-action on the S-site of Yk such that its stalk at p
is given by

F(M)p = H'(p, F(M)) = Fyp(M)

in Dp(FE) with the objects F,(M) of §§3, 6.

If k£ is a number field, let ) be the object in S corresponding to the Arakelov compactification
Spec O U {p|oc} of Spec Ok. As in the local case we expect for any M in MM(E) a
canonical T-sheaf F(M) with endomorphisms in £ on the S-site of Y such that

for all places p of k. The formation of F should commute with twists and duals.

If for example M = H"(X) where m : X — Speck is a smooth and projective variety over

k we expect
(7.1.1) F(M) = j.R"m.Cx

where j : Speck < Y is the inclusion. For the motive Q(0) = H°(Speck) in My we expect
(7.1.2) F(Q(0)) = jxCspeck = Cy-

For suitable analytic functions ® a functional calculus in the algebra of correspondences
should allow one to construct ®(0) as a correspondence on Y. Let S be a finite set of places
of k and set Vs = Y\ 5. If @ is such that ®(0) is of trace class on all stalks F(M), and
on the cohomologies H'(Ys, F(M)) of Vs with compact support, we are lead to expect the

following Lefschetz trace formula:

(7.2) > Trp(®(0)|F(M)y) = 3 (—1)Trn(2(O) | H(Ys, F(M))) .

PE|yS| =0

Here |Vs| are the finite and infinite places of k that are not contained in S. For an endo-

morphism ¢ of an £ @ C-module V' we set:
Try(elV) = (TT(99|Vcr))aeHom(E,@) celbol
if the traces of p on all V, =V Q@gge,, C exist.

Now let us fix z,s with real parts sufficiently large and consider ®(7) = (s — 7)7%. Let
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(po(2) Tesp. (i »(2) denote the zeta functions of the operator 5-(s — ©) on Fy(M), resp. on

H(Ys, F(M)),. Then (7.2) combined with (7.1) implies that:

2

(7.3) D Gol2) =2 (1) Go(2)

pe|ys| 1=0

If the convergence on the left is locally uniform in Rez > —¢, ¢ > 0 we obtain:

2

> Go(0) =2 (=1)C,(0)

pE|Ys| i=0
and hence by definition of regularized determinants:
1 -1 2 1 ) (—1)’."'1
T detee (505 = @AM, ) = [T detec (505 — O)H(Ys, F(M)). ) |
2m - 27
pE|Vs| 1=0
According to (3.2) and (6.5) the left hand side equals
Ls(M,s), = [[ Ls(M,s),
pE|Vs|
where Lp(M,s) = Ly, (M @} kp, s) in earlier notation and where we have put the hat on L

to indicate the possible presence of archimedian factors. Thus we finally get:

(-1)i*!

. 2 1 ,
(7.4) Ls(M, s) = ] detoe <§(s - @)|H;(y5,f(M))>
=0
for Re s large enough.

I expect that the expressions

1

det <§(9 — @)|Hz(y57‘7:(M)>)

extend to entire functions. If det,, were defined via Weierstra products this would be clear.
For regularized determinants I do not know whether this property is automatic without

further regularity conditions as in [C-V].

The zeros of Ls(M,s) would be eigenvalues of © on H!(Ys, F(M)) and
detee (5 (s — ©)H! (s, F(M))

should have order one as an entire function.

(7.5) If M is a pure motive of weight w in M (F) then by analogy with [D4] Th. (3.2.3)
and taking (7.1.1) into account we expect that H*(Y, F(M)) is pure of weight w+7 i.e. that

w;”. From the expression

the eigenvalues of © have real part
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(-1)i*

(7.6) E(M,5) = [T detus (%(s —o)H(Y, ]—'(M)))

we would then get: The poles of j)(M ,s) are exactly the eigenvalues of © on the finite
dimensional spaces H*(Y, F(M)) for i = 0 and 2; they have real part % or £+ 1. The zeros
of j)(M, s) are exactly the eigenvalues of © on the infinite dimensional space H'(Y, F(M))

and hence should have real part wT’H That the zeros of [A/(M,S) should lie on the line

of symmetry Res = wT-I-l for the (expected) functional equation of f/(M, s) is of course a
generalization of Riemann’s conjecture to pure motives. It is compatible with the Riemann
conjecture for Dirichlet L—series which is commonly considered in analytic number theory

and with the investigations about non—trival zeros of automorphic L—functions in [Mo].

(7.7) Example: Let y be an algebraic Hecke character over the number field k& with values

in the number field F see e.g. [Sch]. For any embedding o of £ into € let

L(x7,s) = H (1-— X(p)Np_s)_l where f, is the conductor of y
plix
be the L—series of x7 = ox. We set
L(x7,s) = L) T Lo(x72 )

pleo

where the local factors at infinity L,(x?, s) are defined as follows: Let x” have infinity type
Yrn.(0) -7 € Z[Hom(k,C)] i.e.

X7 ((a)) = H(aT)”T(”) for totally positive @ € k*, @ =1 mod f, .

Let w = n;(0) 4+ n=(0) denote the weight of y.
If p is a real place of k (whose existence implies that all n,(o) = %), put

w

L) = T (s +25 - 2

where &, € {0,1} is such that the p-component xj : k; — € of the idele class character

attached to y“ satisfies Xg(—l) — (_1)534—%.

If p is a complex place corresponding to the pair 7,7 : k — € we put
Ly(x7,s) =Ta(s — min(n.(0),n=(0))) .
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Let M(x) in My(FE) denote the motive of y in the sense of [D3] §8 and [Sch] Ch. I Th. 4.1.
See also [De-Mu] (3.4). Then we have:

L(M<X)a‘5) = (L(Xaa5)>cr€Hom(E,(D) and lA;(M(X%‘s) = (z(XUaS»JEHom(E,(D) .

If x # Nig for all n € Z then each L-series j)(x”, s) is an entire function and according to

the discussion in (7.5) we are lead to expect that
(7.8) H(Y,F(M(x))) =0 for i=0,2.

and hence that

A

(7.8.1) L(M(x),s) = det. <%(3 —O)H' (Y, F(M)))
As regards the trival character we have
L(Q(0),s) = (k(s) and [A/((Q(O),s) = (k(s)Tr(s) Te(s)™ .

Thus z((])(()), s) has first order poles at s = 0,1 and is holomorphic in € \ {0,1}. Because
of (7.1.2) and (7.5) we therefore expect

HY(Y,C) = H(Y,F(Q(0)))

(0)
(7.9) N
H*(Y,C) = H*(Y,F(@0)) = C(-1)

as C[O]-modules, where C(a) is € with © acting by —a id i.e. Og) = Og() — « id.

For the ¢-function of k:

{:k(s) _ % ‘;2—Tr] Ck(S>F]R<5>T1F(D(S>m

formula (7.6) now implies:
1

(7.10) £4(s) = det., (2—(5 - ®)|H1(y,(3)>.
™

The case where y = Nig follows by twisting with —n.

(7.11) Assuming the existence of suitable Hodge x—operators the conjectures on weights
in (7.5) would ensue by adapting Serre’s argument in [Se] as follows: Assume F = () for
simplicity. For a pure motive M in M, of weight w let M* denote the dual motive. Cup

product and the trace map (7.9) would give a T—equivariant pairing:

Tr

HY(Y, F(M)) x H=(Y, F(M)*(1 —i —w))) = H} Y, FQ(1 —i —w)) = C(—i —w).
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Hence © would behave as a derivation with respect to U. For fi in H*(Y, F(M)) and f; in
H*= (Y, F(M)*(1 —i — w))) we would get:

Now assume the existence of a C—antilinear isomorphism
«: H'(Y, F(M)) = H* (Y, F(M)*(1 —i — w))

which is T — and hence also t-equivariant such that the hermitian bilinear form on H'(Y, F(M))
defined by

(f, [y =Te(fUxf)

is positive definite, c.f. [Well] V.2.
Because of ©o% = %00 relation (7.12) implies
(7.13) (w4 ) ([, [)=(Of, )+ ([.0f)

for all f, f"in H(Y,F(M)). If ©f = pf for some f # 0 setting f' = f implies

w + 1
5

(w+D)ISI* =Pl I+ IS i Rep=

Note that (7.13) is equivalent to the relation © = wT-I-z + 15 where S i1s symmetric. The
completion of H'(Y, F(M)) with respect to (,) would be a Hilbert space with a T-action

and an unbounded operator O satisfying (7.13) on its domain of definition.

(7.14) We leave the discussion of weights with one more remark: The weight of © on
H°(SpecQ,,C) = I, is zero for p < oo. For p = oo the weights of © on

Lo 2 Foo (HO(Spec (R)) = H'(00,C) < “H°(Spec (R), €)'~

are 0, —4,—8,.... Thus Spec@), should be “smooth, proper” in the geometry of cat & for
p < oo whereas Spec R would have totally degenerate reduction co. This argument extends

to arbitrary motives and it is compatible with Manin’s point of view in [Ma].

(7.15) Let us turn to some evidence in favour of the above formalism for the motives
M(x) attached to algebraic Hecke characters as in (7.7). We first discuss the Lefschetz
trace formula (7.2): According to (3.2) and (6.5) the eigenvalues of © on Fy(M(x)), with
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their algebraic multiplicities equal the poles with their order of

i.e. the numbers

o (log Np)~'(log x7(p) + 2miv) for v € Z if pJf, is finite,
w e
o 5—63—21/ for v > 0 if p is real,
o min(n.(o),nz(0)) —v forv > 0if p = {7, 7} is complex,

in the notation of (7.7). Hence Tr(®(0)|F,(M(x)),) is equal to

o Z ®((log Np)~*(log x“(p) + 2miv)) for finite p/fFy,
UEZ
. zero  for plfy,
. Y9 (55 —2v) for real
— —¢e? —2u or Tea
ot 2 p p’

. Z ®(min(n,(o),n=(c)) —v) for complex p = {7, 7}
v=0
if the sums converge.

According to (7.2), (7.8), (7.8.1) and (7.9), (7.10) we expect that

> (-1 THB(O) . FM(),) eauals
. =3 0(p) it x# Npg forallneZ,
. ®(0) — > d(p)+d(1) if x=1

P

if the sums over the non—trivial zeros p of L(x7,s) converge. The following theorem which

is proved in [Ded] Cor. (1.8) is therefore compatible with (7.2).

(7.16) Theorem: Fix some ¥ +1 < a and consider a holomorphic function ®(z) in an open
subset of € containing Rez < a. Assume that there exist constants ¢; > 0,¢o > 0, > 1
such that

|0z +1y)| < ea(ly| +e2)™™ forz<aandyeR.

Then the above sums for the local traces Tr(®(0)|F,(M(x)),) are absolutely convergent
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and we have an identity of absolutely convergent series:

Zp: Te(@(0)[Fp(M(x))s) = 6(R(0) + &(1)) — > _ 2(p)

p
where p runs over the non—trivial zeros of L(x?,s) and 6 = 0 if x # Nl?/(lg for all n € Z and
d=1if y =1.

A more general result is given in [Ded] Thm. (1.7).
Note that the function (I)(T) = (s — T>_Z is included for Rez > 1 and Res > % + 1.

For ® as in the theorem we also have explicit formulas a la Weil [B], [W] expressing
5(®(0) + ®(1)) — 3=, ®(p) as a sum over local contributions Wy(F; x?) defined using the

inverse Mellin transform F' of ®. For functions ® as in (7.16) we have in fact:
Tr(®(0)[Fp(M(x))s) = Wp(F; x7) -

Weil’s way to write explicit formulas has the advantage to apply to more general ® than
those covered by (7.16). Our way to write them makes the interpretation as a Lefschetz
trace formula plausible. Perhaps the W,(F, x7) could be interpreted as regularized traces if
®(0) is not of trace class on Fo(M(x)),.

As mentioned above we expect that det,, (2%(3 - Q)| HY (Y, f(M(X))) defines an entire
function. Thus we are lead to consider the series
1 -z
(7.17) =9 =3 (505 0)
s
where p runs over the non-trivial zeros of L(x7,s). The following theorem which generalizes

the result of [De2] §4 was proved by Ch. Soulé [So2] for the Riemann zeta function using

the work of Cramér [Cr]. The extension to Hecke characters is due to G. Illies [I]:

(7.18) Theorem [So2], [I]: Let Q be the set of complex numbers which are not of the
form p— A, A > 0.

i) For any s in © the series for the function £(z,s) converges absolutely if Rez > 1. Tt
extends to a meromorphic function of s in Q and z in € which is regular for z = 0.

ii) For s in 2 we have:

0 ()= (5 ) i

p
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with § as in (7.16).

Remark: The method of proof in [De2] §4 extends easily to Hecke characters but gives
(7.18) only for Res > 2 + 1.

(7.19) We now wish to discuss the functional equation. Assume that for a motive M in
MM(E) its lA)g—series is given by (7.4) and that the regularized determinants make sense
for all complex s in a set  as above. Poincaré duality should provide a T—equivariant

isomorphism between the (smooth) dual:

HY(Ys,F(M)): := direct sum of the duals of the (finite dimensional)

irreducible T—subspaces in a T—-invariant decom-
position of HY(Ys, F(M)),
and H*7"(Ys, F(M)*(1)),. We get:

(-

Ls(M,s) = Hdet (
- Hdetoo<
_ Hdet (5
- Hdet( (1 =) = 0)| (3. 71

— )| (s, F(M)))

(—1)r1
s+ )| (s, FON)Y')
(7.19.1)

sf|~ 5= §|~

(-1)rt!
(s + ®)|H2—“(ys,F(M)*(1>>>

_1)u+1

Now let S be empty, Vs = V. A standard decomposition (1.6)
H'(Y, F(M)) = H"(Y,F(M))" & H"(Y, F(M))~

with respect to —@ would also be standard with respect to 1 —s — © for any s. We expect

that the regularized superdimension of 1 —s — 0
D,(s) i= sdim (1 = 5 — O] H(Y, F(M"))
exists with respect to such a decomposition c.f. (1.4), (1.6). Using (1.7) we would get:
L(M,s) =e(M,s)L(M*,1 =)
where

e(M,s) = exp (mi(_mvﬂpy(s)) .

v=0

36



If one could show e.g. from (7.6) that L(M,s) and L(M*,1 — s) had genus one it would

follow from the definition of the genus that
e(M,s) = ae’  for some a € (EaC)",bec EC.

For algebraic Hecke characters there is the following result which was suggested by our

considerations of regularized superdimensions:

(7.20) Theorem [I]: For s in £ set

) = 2% (52— 0)

P

where in Zpi the sum is over the non trivial zeros of L(x7,s) with Imp E 0. Then the sum
for £%(z, s) converges absolutely if Rez > 1. It extends to a meromorphic function of s in

0 and z in €. For fixed s in € it has at most a first order pole at z = 0.
That (7.20) follows for x = 1 from results of Cramér [Cr] is evident from [So2].

(7.21) We now turn to a discussion of the order of L-functions at integral values of s. For

M in MM (FE) and S any finite set of places of k formula (7.19.1) gives
. 2 1 (—1)”+1
fs(M,s) = T deto (%(s + ®)|H”(y5,]-“(M*(1))>

v=0

and hence
2

ord,—oLs(M, s) = 3" (=1)"*" dimg H*(Ys, F(M*(1)))*°

v=0

in the notation of (1.1).

Now assume for the moment that & = Q, S = {oo} and £ = Q) such that in particular
iS(M, s) = L(M,s). According to conjecture B of [Scho] for motives M over Vs = Spec Z
we should have:
1
ord—gL(M,s) = Z(—l)”‘“ dimg ExtjwMZ((Q(O),M*(l)) .

v=0

This identity would be explained by canonical isomorphisms:
(7.22) Fxtiyon (Q(0), M) 8 € =5 HY(Spec Z, F(M))°~

for M in MMz . Replacing M by M(n) gives
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(7.23) Bty (Q(0), M (1) @q €~ HY (Spec Z, F(M))°*™".

The expected vanishing of EXtiAMZ fits in with the idea that H?*(SpecZ,F(M)) should

vanish since Spec Z is “non—compact” and 1-dimensional.

The following consideration is compatible with (7.22). Let § be the connecting morphism

in the relative exact sequence for the pair (Spec Z, Spec Z) where Spec Z = Spec Z U {co}:
H'(Spec Z, F(M)) - H2 (Spec Z, F(M)) .
By Poincaré duality we expect an isomorphism

HZ2 (SpecZ, F(M)) = H%co, F(M*(1)))*
(7.24)
= FL(M()
In (6.8) we have shown that there is a natural map

(7.25) Ext gz, (R(0), Mp) @r € — (Foo (M*(1))°=0)"

which is an isomorphism if the weights of M are < 0. It should fit into a commutative

diagram
H(Spec Z, F(M))~0 =5 HZ,(SpecZ, F(M))*™ = (Fuo( M*(1))°=0)"
Exthiniy (Q(0), M) ©q € E—y Extlygg (R(0), Mp) O €

It was this argument by the way which lead to the map (7.25) in (6.8) and thus helped to

understand the relation between F2=™ and Deligne cohomology in (6.10).

The fact that the regulator map should be viewed as a boundary map using Arakelov
compactification is due to Beilinson e.g. [Be] 0.3. However the relation between his exact
sequence of topological groups with volume forms and the above exact sequence is not at

all obvious to me.

Note that we cannot have a Gysin isomorphism
HZ,(Spec Z, F(M)) = H®(00, F(M)(—1)) = Foo(M)(—1)

because in connection with (7.24) it would imply that F,, commutes with duals which it

does not: e.g. © has weights ... —8,—4,0 on F(Q(0)) = L., whereas the weights on
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Foo(@(0))* are 0,4,8,.... Again this supports the philosophy that oo is a singular point of
Spec Z in the geometry of cat 8. However we expect Spec Z to be “smooth compact” since
its cohomologies should be pure and satisfy Poincaré duality. Classically regular curves can
not have singular points of course. One could also imagine that Spec Z is singular such that
the H'(SpecZ, j.F(M)) would be intersection cohomology groups. In this case we would
not expect that j,F(Q(0)) = Cm.

Let X be smooth and proper over Q) and consider the motive M = H'(X)(n) in MMz.
Conjecturally the Ext—groups ExtleMZ (Q(0), H(X)(n)) can then be expressed in terms of
Chow-— and algebraic K-groups [Scho] III. In conjunction with (7.22) we are thus lead to

expect the following isomorphisms:

H(SpecZ, F(H'(X)))®~"

(CH™(X)/CH(X)) @ if i=2n
0 if ©#2n

(7.26)
CHMX)P T  if i+1=2n

H'(SpecZ, F(H'(X)))®™ = '
H}dt'](X,(Q(n))Z QC if 141#2n.

Here CH™(X)° is the subgroup of classes of cycles in C'H"(X) which are homologically
equivalent to zero and Hi(X,Q(n))z is the image of the K-theory of a regular model
proper and flat over Z for X in H{,(X,Q(n)) := Gri Ky (X)q = TX’Q(:)_,C(X)Q.

Extrapolating (7.26) we are lead to think of the groups H'(Spec Z, F(H!(X)))®~* for arbit-
rary o in (' as something like Hi' (X, C(a))z i.e. “K-theory indexed by complex numbers”

an idea proposed by N. Kurokawa.

Let us return to the general case and assume that M is a mixed motive over Vs with

coefficients in F. For S O {p|oc} we expect isomorphisms of E @ C~modules

(7.27) Xty () (F(0), M) @q © =5 HY(Vs, F(M))O°

and in particular taking the limit over all finite S O {p|oo}:
Exth g, (my(F(0), M) @q € — H"(Speck, F(M))*~" .

For &k = F = @) the left hand side is again expressed in terms of Chow— and K-groups in
[Scho] TTT: just replace Hii' (X, Q(n))z by HiE' (X, Q(n)) in (7.26).

(7.28) Having discussed L-series of motives in some detail let us quickly consider Hasse
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Weil zeta functions of quasi—projective schemes X/Z

(x(s) = H (1—Nz=*)~".

z€|X|
Similarly as in (7.2) - (7.4) a Lefschetz trace formula of the form
(7.29) > Te(®(0)[C.) = D (~1) Te(@(O)| HL(X,C))
z€|X]| i
and the relation C, = Ly, imply at least formally that

S

1 .
Cx(s) = T] dets (5(5 - @)|H;(X,C)>
Now assume that X is regular connected of dimension d. Then Poincaré duality should give
Hi(X,C(n))" = H*7(X,C(d — n))

and we would get
2d 1 . (=1)i+?
x(s) = [Tdetes (5-(s = d 4+ ©)|H'(X,0))
=0
In particular we would have:
2d _ _
ordsza—n(x(s) = > (1) dimg H'(X,C(n))*™° .
=0

We expect formal analogues of Tate’s conjecture:
Hy (X,C(n)) i= Gr2Kyni(X) @ € 5 H'(X,C(n))®™°
and in particular that
HY (X,C(n))?° =0 fori>2n.

This would give:

2n
ords_g—n(x(s) = Z(—])H'l dimg Gr:([\‘}n_i(X) ® Q)
=0

a conjecture due to Soulé [Sol]. Assume that there exists a compactification X of X over

Spec Z with smooth projective infinite fibre X, = X \ X and satisfying Poincaré duality

HL(X,C(n)) = H* ™71 (Xoo, C(d — n))" = Foo (™71 (Xoo)(d = m))" .
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The natural map « of (6.9) which is an isomorphism for ¢ < 2n should fit into a commutative

diagram

Hi(X,C(n))®~ -y HF (X,C(n)® = (Foo == (X,,)(d — n))®=0)

L d
Hu(X,Q(n)) @@ ¢ ———— Hp(Xoo, R(n)) @ €
where rp is the regulator map.

(7.30) Tt is not clear to me how the Lefschetz trace formula should look like if we replace X
by X in (7.29). What are the “fixed points under ©” at infinity? The connection between the
values of L—functions at integral points and volumes conjectured by Beilinson, Bloch-Kato
et al. still remains mysterious even at our formal level. Note however that in theoretical
physics integrals over path spaces are often defined formally by regularized determinants of
certain operators [Wil] §3. Hence there should be a relation between measure theory on
infinite dimensional spaces and such determinants. T expect such a theory to be necessary

for a proof of the conjectures on special values of L-series.

(7.31) Let CHY(SpecZ) denote the first Arakelov Chow group of Spec Z. T expect a cycle
class map such that composition with the trace map:
Tr
CH'(SpecZ) —s H?*(SpecZ,C(1))°= = €
equals the Arakelov degree. Since the latter surjects onto IR we are somewhat confirmed
in our basic assumption that arithmetic cohomology should have coefficients in a field C' at
least containing R. The local constructions in section 3 render C' = IR improbable, ' = €

seems to be the minimal choice.

Of course higher dimensional Arakelov Chow groups should have cycle maps into arithmetic
cohomology but we will not discuss this here. No doubt the ideas of Gillet and Soulé in
[Gi—So] will fit into the picture.

(7.32) We close this section with some remarks about a Knneth formula for arithmetic
cohomology. The category cat S should have a product x such that if X and Y are schemes

XxY # X Xg,e.z Y is no longer a scheme in general. Since © comes from a Lie algebra
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representation a Knneth formula
HC'(XKY,C) = HC'(X,C) Xc HC'(Y,C)

would imply that © on the left corresponds to © ® id 4+ id ® O on the right. In particular

we would have:

1 , s —1\?
det (5(5 — O)|H*(Spec Z xSpec Z,C)) = < o ) H

o'

(s~ (p+4)

where p and p’ run over the non-trivial zeros of ((s). Of course the regularized product on the
right does not make sense. However similar products but with the restriction Imp,Imp’ > 0
or Tmp,Tmp’ < 0 have been proposed by N. Kurokawa [K] as zeta—functions of Spec Z x
Spec Z. His functions are of order two and there is hope that they have similar arithmetic
properties as classical L—functions. Let us illustrate this by an example where no convergence
problems arise: Let K be R or € with unique place p set e, = [€ : K] and let X be an
algebraic scheme over Z. Then the zeta—function of X xp should be given by the infinite

product

(7.33) (xxp(8) == f[oé“x(s + vep)

which converges absolutely to an analytic function in the region where (x is analytic: note

that the Dirichlet series 37, 22 for (x(s) has a; = 1 as its first coefficient and hence that

n=1 ps

(x(s) — 1 strongly for Re s — oco. The following formal computation justifies the definition
(7.33):

1 , (=)
Grep(s) = TTdetec (5-(s = )Y x5,0))

(-1 *!

1 .
— [ldet.. <§(5 _ 0)|HI(X.C) ®¢ le)

., ' (=1)it1
= TTIT dete (s - O HX.C) v )

1 v=0

(-1t

= II ﬁ det oy (%(s +ve, — ®)|H§(X,C)>

t v=0

o0

~ T ixts+ven.

v=0
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Clearly (x x p(s) has the Euler product ], (x, x p(s) where

(xoxp(s) = [[Cx(s+ve) , X, =X0zTF,
v=0

and it can be written as a Dirichlet series. The case where X = Spec O with k a finite
extension of () is considered in detail by Cohen and Lenstra [C-L] in their heuristic study
of class groups of number fields as was kindly pointed out to me by Manin. They prove a
functional equation for (x x p(s) in loc. cit. Theorem 7.1 which would also be explained by
Poincaré duality on X. If K = ¢ and X = SpecZ their corollary (3.7) specializes to the

formula:

CSpecZép(S> = UG(S_I'V)

_ A1
B %:|Aut./4| |Al*

, Res > 1.

Here A runs over all finite abelian groups (i.e. coherent torsion sheaves on Spec Z) up to

isomorphism.

(7.34) In order to carry out the program of §7 the most important step is of course to find
the objects and morphisms of the category cat S and to study the new geometry that they

give rise to. Foundations again!
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