A new possible Theory of Mathematical Connections between some Ramanujan's equations and Approximations to π, the equations of Inflationary Cosmology concerning the scalar field ϕ, the Inflaton mass, the Higgs boson mass and the Pion meson $\pi^{ \pm}$mass

Michele Nardelii ${ }^{1}$, Antonio Nardelli

Abstract

In this research thesis, we have described a new possible Theory of Mathematical Connections between some Ramanujan's equations and Approximations to π, the equations of Inflationary Cosmology concerning the scalar field ϕ, the Inflaton mass, the Higgs boson mass and the Pion meson $\pi^{ \pm}$mass

[^0]
https://www.britannica.com/biography/Srinivasa-Ramanujan https://biografieonline.it/foto-enrico-fermi

In this research thesis, we have analyzed further Ramanujan formulas and described new mathematical connections with some sectors of Particle Physics. In the course of the discussion we describe and highlight the connections between some developments of Ramanujan equations utilizing the Lucas and/or Fibonacci numbers and particles type solutions such as the mass of the Higgs boson, those in the range of the mass of candidates" glueball ", the scalar meson $f_{0}(1710)$ and some others baryons/mesons. Principally the solutions of Ramanujan equations, connected with the masses of the π mesons (139.576 and 134.9766 MeV) have been described and highlighted. Furthermore, we have obtained also the values of some black hole entropies.

Is our opinion, that the possible connections between the mathematical developments of some Rogers-Ramanujan continued fractions, the value of the dilaton and that of "the dilaton mass calculated as a type of Higgs boson that is equal about to $125 \mathrm{GeV}^{\prime}$, the Higgs boson mass itself and the like-particle solutions (masses of Pion mesons), are fundamental.

All the results of the most important connections are highlighted in blue throughout the drafting of the paper

Proposal and discussion

We calculate the $4096^{\text {th }}\left(4096=64^{2}\right)$ root of the value of scalar field and from it, we obtain 64

Inflationary Cosmology: Exploring the Universe from the Smallest to the Largest Scales

where ϕ is the scalar field.
Thence, we obtain:

$$
\sqrt[4096]{\frac{1}{\phi}}=0.98877237 ; \sqrt{\log _{0.98877237}\left(\frac{1}{\phi}\right)}=64 ; 64^{2}=4096
$$

Now, we calculate the $4096^{\text {th }}$ root of the value of inflaton mass and from it we obtain, also here, 64

Generalized dilaton-axion models of inflation, de Sitter vacua and spontaneous SLSY breaking in supergravity

Table 2 The masses of inflaton, axion and gravitino, and the VEVs of F - and D-fields derived from our models by fixing the amplitude A_{s} according to PLANCK data - see Eq. (57). The value of $\left\langle F_{T}\right\rangle$ for a positive ω_{1} is not fixed by A_{s}

α	3	4		5		6		7
$\operatorname{sgn}\left(\omega_{1}\right)$	-	+	-	+	-	+	-	-
m_{φ}	2.83	2.95	2.73	2.71	2.71	2.53	2.58	1.86
$m_{t^{\prime}}$	0	0.93	1.73	2.02	2.02	4.97	2.01	1.56
$m_{3 / 2}$	≥ 1.41	2.80	0.86	2.56	0.64	3.91	0.49	0.29
$\left\langle F_{T}\right\rangle$	any	$\neq 0$	0	$\neq 0$	0	$\neq 0$	0	0
$\langle D\rangle$	8.31	4.48	5.08	3.76	3.76	3.25	2.87	1.73

$m_{0}=2.542-2.33 * 10^{13} \mathrm{GeV}$ with an average of $2.636 * 10^{13} \mathrm{GeV}$

$$
\begin{gathered}
\sqrt[4096]{\frac{1}{2.83 \times 10^{13}}}=0.992466536725379764 \ldots \\
\sqrt{\log _{0.99246653}\left(\frac{1}{2.83 \times 10^{13}}\right)}=64.0000 \ldots \\
64^{2}=4096
\end{gathered}
$$

where m_{φ} is the inflaton mass.
Thence we obtain:

$$
\sqrt[4096]{\frac{1}{m_{\varphi}}}=0.99246653 ; \sqrt{\log _{0.99246653}\left(\frac{1}{m_{\varphi}}\right)}=64 ; \quad 64^{2}=4096
$$

We have the following mathematical connections:

$$
\begin{gathered}
\sqrt{\log _{0.98877237}\left(\frac{1}{1.2175 \times 10^{20}}\right)}=64 ; \quad \sqrt{\log _{0.99246653}\left(\frac{1}{2.83 \times 10^{13}}\right)}=64 \\
\sqrt{\log _{0.98877237}\left(\frac{1}{1.2175 \times 10^{20}}\right)}=\sqrt{\log _{0.99246653}\left(\frac{1}{2.83 \times 10^{13}}\right)}=64
\end{gathered}
$$

From Ramanujan collected papers

Modular equations and approximations to π

$$
g_{22}=\sqrt{(1+\sqrt{2})} .
$$

Hence

$$
\begin{array}{rlr}
64 g_{22}^{24} & = & e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}-\cdots \\
64 g_{22}^{-24} & = & 4096 e^{-\pi \sqrt{22}}+\cdots,
\end{array}
$$

so that

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots=64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
$$

Hence

$$
e^{\pi \sqrt{22}}=2508951.9982 \ldots
$$

Again

$$
\begin{array}{cc}
G_{37}=(6+\sqrt{37})^{\frac{1}{4}} \\
64 G_{37}^{24}= & e^{\pi \sqrt{37}}+24+276 e^{-\pi \sqrt{37}}+\cdots, \\
64 G_{37}^{-24}= & 4096 e^{-\pi \sqrt{37}}-\cdots,
\end{array}
$$

so that

$$
64\left(G_{37}^{24}+G_{37}^{-24}\right)=e^{\pi \sqrt{37}}+24+4372 e^{-\pi \sqrt{37}}-\cdots=64\left\{(6+\sqrt{37})^{6}+(6-\sqrt{37})^{6}\right\}
$$

Hence

$$
e^{\pi \sqrt{37}}=199148647.999978 \ldots
$$

Similarly, from

$$
g_{58}=\sqrt{\left(\frac{5+\sqrt{29}}{2}\right)}
$$

we obtain
$64\left(g_{58}^{24}+g_{58}^{-24}\right)=e^{\pi \sqrt{58}}-24+4372 e^{-\pi \sqrt{58}}+\cdots=64\left\{\left(\frac{5+\sqrt{29}}{2}\right)^{12}+\left(\frac{5-\sqrt{29}}{2}\right)^{12}\right\}$.
Hence

$$
e^{\pi \sqrt{58}}=24591257751.99999982 \ldots
$$

From the following expression (see above part of paper), we obtain:

$$
e^{\pi \sqrt{37}}+24+4372 e^{-\pi \sqrt{37}}-\cdots=64\left\{(6+\sqrt{37})^{6}+(6-\sqrt{37})^{6}\right\}
$$

$\left(\left(\left(\exp \left(\mathrm{Pi}^{*}\right.\right.\right.\right.$ sqrt37 $)+24+(4096+276) \exp -(\mathrm{Pi} *$ sqrt37 $\left.\left.\left.)\right)\right) /\left(\left(\left((6+\text { sqrt37 })^{\wedge} 6+(6-\text { sqrt37 })^{\wedge} 6\right)\right)\right)\right)$

$$
\begin{aligned}
& \frac{\exp (\pi \sqrt{37})+24+(4096+276) \exp (-(\pi \sqrt{37}))}{(6+\sqrt{37})^{6}+(6-\sqrt{37})^{6}}=\frac{24+4372 e^{-\sqrt{37} \pi}+e^{\sqrt{37} \pi}}{(6-\sqrt{37})^{6}+(6+\sqrt{37})^{6}}= \\
& =\frac{24+4372 e^{-\sqrt{37} \pi}+e^{\sqrt{37} \pi}}{(6-\sqrt{37})^{6}+(6+\sqrt{37})^{6}} \text { is a transcendental number }=
\end{aligned}
$$

$$
=64.00000000000000000077996590154140877656204274015527898430 \ldots
$$

From which:

$$
\begin{aligned}
& \left(((\exp (\mathbf{P i} * \mathbf{s q r t} \mathbf{3 7})+\mathbf{2 4}+(\mathbf{x}+\mathbf{2 7 6}) \exp -(\mathbf{P i} * \mathbf{s q r t 3 7}))) /\left(\left(\left((\mathbf{6}+\mathbf{s q r t 3} \mathbf{3})^{\wedge} \mathbf{6}+(\mathbf{6}-\mathbf{s q r t 3 7})^{\wedge} \mathbf{6}\right)\right)\right)\right. \\
& =\mathbf{6 4} \\
& \\
& \frac{\exp (\pi \sqrt{37})+24+(x+276) \exp (-(\pi \sqrt{37}))}{(6+\sqrt{37})^{6}+(6-\sqrt{37})^{6}}=64
\end{aligned}
$$

Exact result:

$$
\frac{e^{-\sqrt{37} \pi}(x+276)+e^{\sqrt{37} \pi}+24}{(6-\sqrt{37})^{6}+(6+\sqrt{37})^{6}}=64
$$

Alternate forms:

$$
\begin{aligned}
& \frac{e^{-\sqrt{37} \pi}(x+276)}{3111698}+\frac{e^{\sqrt{37} \pi}}{3111698}+\frac{12}{1555849}=64 \\
& \frac{e^{-\sqrt{37} \pi\left(x+e^{2 \sqrt{37} \pi}+24 e^{\sqrt{37} \pi}+276\right)}}{3111698}=64 \\
& \frac{e^{-\sqrt{37} \pi} x}{(6-\sqrt{37})^{6}+(6+\sqrt{37})^{6}}+\frac{e^{\sqrt{37} \pi}}{(6-\sqrt{37})^{6}+(6+\sqrt{37})^{6}}+ \\
& \frac{276 e^{-\sqrt{37} \pi}}{(6-\sqrt{37})^{6}+(6+\sqrt{37})^{6}}+\frac{24}{(6-\sqrt{37})^{6}+(6+\sqrt{37})^{6}}-64=0 \\
& x=-276+199148648 e^{\sqrt{37} \pi}-e^{2 \sqrt{37} \pi} \\
& x \approx 4096.0
\end{aligned}
$$

Higgs Boson

$\underline{\text { http://therealmrscience.net/exactly-what-does-the-higgs-boson-do.html }}$

From the above values of scalar field ϕ, and of the inflaton mass m_{φ}, we obtain results that are in the range of the Higgs boson mass:

$$
2 \sqrt{\log _{0.98877237}\left(\frac{1}{1.2175 \times 10^{20}}\right)}-\pi+\frac{1}{\phi}
$$

125.476...
and

$$
2 \sqrt{\log _{0.99246653}\left(\frac{1}{2.83 \times 10^{13}}\right)}-\pi+\frac{1}{\phi}
$$

125.476...

Pion mesons

https://www.sciencephoto.com/media/476068/view/meson-octet-diagram

Meson octet. Diagram organising mesons into an octet according to their charge and strangeness. Particles along the same diagonal line share the same charge; positive $(+1)$, neutral (0), or negative (-1). Particles along the same horizontal line share the same strangeness. Strangeness is a quantum property that is conserved in strong and
electromagnetic interactions, between particles, but not in weak interactions. Mesons are made up of one quark and one antiquark. Particles with a strangeness of +1 , such as the kaons (blue and red) in the top line, contain one strange antiquark. Particles with a strangeness of 0 , such as the pion mesons (green) and eta meson (yellow) in the middle line, contain no strange quarks. Particles with a strangeness of -1 , such as the antiparticle kaons (pink) in the bottom line, contain one strange quark

The $\pi^{ \pm}$mesons have a mass of $139.6 \mathrm{MeV} / \mathrm{c}^{2}$ and a mean lifetime of $2.6033 \times 10^{-8} \mathrm{~s}$. They decay due to the weak interaction. The primary decay mode of a pion, with a branching fraction of 0.999877 , is a leptonic decay into a muon and a muon neutrino:

$$
\begin{aligned}
& \pi^{+}-\mu^{+}+v_{\mu} \\
& \pi^{-} \rightarrow \mu^{-}+\bar{v}_{\mu}
\end{aligned}
$$

The second most common decay mode of a pion, with a branching fraction of 0.000123 , is also a leptonic decay into an electron and the corresponding electron antineutrino. This "electronic mode" was discovered at CERN in 1958: ${ }^{[6]}$

$$
\begin{aligned}
& \pi^{+}-\mathrm{e}^{+}+\mathrm{v}_{\mathrm{e}} \\
& \pi^{-}-\mathrm{e}^{-+}+\bar{v}_{\mathrm{e}}
\end{aligned}
$$

Pion

Types	3
Mass	$\pi^{ \pm}:$
	$139.57018(35) \mathrm{MeV} / \mathrm{c}^{2}$
	$\pi^{0}:$
	$134.9766(6) \mathrm{MeV} / \mathrm{c}^{2}$

Composition	$\pi^{+}: u \bar{d}$				
	$\pi^{0}: \bar{u}$ or d \bar{d}				
	$\pi^{-}: d \bar{u}$	$	$	Statistics	Bosonic
:---	:---				
Interactions	Strong, Weak, Electromagnetic and Gravity				
	π^{+}, π^{0}, and π^{-}				
Symbol	Hideki Yukawa (1935)				
Theorized	César Lattes,				
Discovered	Giuseppə Occhialini				
	(1947) and Cecil Powell				

From the above values of scalar field ϕ, and the inflaton mass m_{φ}, we obtain also the value of Pion meson $\pi^{ \pm}=139.57018 \mathrm{MeV} / \mathrm{c}^{2}$

$$
2 \sqrt{\log _{0.98877237}\left(\frac{1}{1.2175 \times 10^{20}}\right)}+11+\frac{1}{\phi}
$$

139.618...
and

$$
2 \sqrt{\log _{0.99246653}\left(\frac{1}{2.83 \times 10^{13}}\right)}+11+\frac{1}{\phi}
$$

139.618...

The $\pi^{ \pm}$mesons have a mass of $139.6 \mathrm{MeV} / \mathrm{c} 2$ and a mean lifetime of $2.6033 \times 10^{-8} \underline{\mathrm{~s}}$. They decay due to the weak interaction. The primary decay mode of a pion, with a branching fraction of 0.999877 , is a leptonic decay into a muon and a muon neutrino.

Note that the value 0.999877 is very closed to the following Rogers-Ramanujan continued fraction (http://www.bitman.name/math/article/102/109)):

$$
\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684
$$

We observe that also the results of $4096^{\text {th }}$ root of the values of scalar field ϕ, and the inflaton mass m_{φ} :

$$
\sqrt[4096]{\frac{1}{\phi}}=0.98877237 ; \quad \sqrt[4096]{\frac{1}{m_{\varphi}}}=0.99246653
$$

are very closed to the above continued fraction.

Furthermore, from the results concerning the scalar field ϕ (0.98877237, $1.2175 \mathrm{e}+20)$, and the inflaton $\operatorname{mass} m_{\varphi}(0.99246653,2.83 \mathrm{e}+13)$, we obtain, performing the $10^{\text {th }}$ root:
$((((2 \operatorname{sqrt}(((\log \text { base } 0.98877237((1 / 1.2175 \mathrm{e}+20)))))-\mathrm{Pi}))))^{\wedge} 1 / 10$

Input interpretation:

$\sqrt[10]{2 \sqrt{\log _{0.98877237}\left(\frac{1}{1.2175 \times 10^{20}}\right)}-\pi}$

Result:

1.620472942364990195996419034511458317811826267744760835367...
1.620472942...

And:
$1 / 10^{\wedge} 27\left[(47+4) / 10^{\wedge} 3+((((2 s q r t(((\log\right.$ base $0.98877237((1 / 1.2175 \mathrm{e}+20))))))-$ Pi)))) $\left.{ }^{\wedge} 1 / 10\right]$
where 47 and 4 are Lucas numbers

$$
\frac{1}{10^{27}}\left(\frac{47+4}{10^{3}}+\sqrt[10]{2 \sqrt{\log _{0.98877237}\left(\frac{1}{1.2175 \times 10^{20}}\right)}-\pi}\right)
$$

Result:

$1.671473 \ldots \times 10^{-27}$
$1.671473 \ldots * 10^{-27}$ result practically equal to the proton mass

We have also:
$((((2$ sqrt $(((\log$ base $0.99246653((1 / 2.83 \mathrm{e}+13))))))-\mathrm{Pi}))))^{\wedge} 1 / 10$
$\sqrt[10]{2 \sqrt{\log _{0.09246653}\left(\frac{1}{2.83 \times 10^{13}}\right)}-\pi}$

Result:

1.620472850161415439289586204886587162444405282709701447326...
1.62047285...

And:
$1 / 10^{\wedge} 27\left[(47+4) / 10^{\wedge} 3+((((2 \operatorname{sqrt}(((\log\right.$ base $0.99246653((1 / 2.83 \mathrm{e}+13)))))-$ Pi)))) $\left.)^{\wedge} 1 / 10\right]$
$\frac{1}{10^{27}}\left(\frac{47+4}{10^{3}}+\sqrt[10]{2 \sqrt{\log _{0.09246653}\left(\frac{1}{2.83 \times 10^{13}}\right)}-\pi}\right)$

Result:

$1.671473 \ldots \times 10^{-27}$
$1.671473 \ldots * 10^{-27}$ result that is practically equal to the proton mass as the previous

Trascendental numbers

From the paper of S. Ramanujan "Modular equations and approximations to π "

We have the following expression:

$$
\frac{3}{\pi}=1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}+\cdots\right)
$$

$1-24\left[\left(1 /\left(\mathrm{e}^{\wedge}(2 \mathrm{Pi})-1\right)\right)+\left(2 /\left(\mathrm{e}^{\wedge}(4 \mathrm{Pi})-1\right)\right)+\left(3 /\left(\mathrm{e}^{\wedge}(6 \mathrm{Pi})-1\right)\right)\right]$
$1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)$

Decimal approximation:

$0.954929659721612900604724361833045671977574376370221277342 \ldots$
$0.954929659 \ldots$

Property:

$1-24\left(\frac{1}{-1+e^{2 \pi}}+\frac{2}{-1+e^{4 \pi}}+\frac{3}{-1+e^{6 \pi}}\right)$ is a transcendental number

Series representations:

$$
\begin{aligned}
& 1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)= \\
& 1-\frac{24}{-1+e^{8} \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}-\frac{48}{-1+e^{16 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}}-\frac{72}{-1+e^{24 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}} \\
& 1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)=1-\frac{24}{-1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}}- \\
& \frac{48}{-1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{16 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}-\frac{-1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{24} \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}{-1}}
\end{aligned}
$$

$$
\begin{aligned}
& 1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)=1-\frac{24}{-1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{8} \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)} \\
&-1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{16 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}-\frac{-1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{24} \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}{}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& 1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)= \\
& 1-\frac{48}{-1+e^{4} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}-\frac{72}{-1+e^{8} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}-\frac{72}{-1+e^{12} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t} \\
& 1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)= \\
& 1-\frac{48}{-1+e^{4} \int_{0}^{\infty} \sin (t) / t d t}-\frac{-1+e^{8} \int_{0}^{\infty} \sin (t) / t d t}{-\frac{1}{2}}-\frac{72}{-1+e^{12} \int_{0}^{\infty} \sin (t) / t d t} \\
& 1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)= \\
& 1-\frac{48}{-1+e^{8} \int_{0}^{1} \sqrt{1-t^{2}} d t}-\frac{-1+e^{16} \int_{0}^{1} \sqrt{1-t^{2}} d t}{-1+e^{24} \int_{0}^{1} \sqrt{1-t^{2}} d t}
\end{aligned}
$$

Note that the value of the following Rogers-Ramanujan continued fraction is practically equal to the result of the previous expression. Indeed:

$$
\left(\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373\right)
$$

$\cong\left(1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)\right)=0.954929659 \ldots$

We know that:

$$
\begin{array}{r|c|c}
\omega|6| m_{u / d}=0-60 & 0.910-0.918 \\
\omega / \omega_{3}|5+3| m_{u / d}=255-390 & 0.988-1.18 \\
\omega / \omega_{3}|5+3| m_{u / d}=240-345 & 0.937-1.000
\end{array}
$$

that are the various Regge slope of Omega mesons

From the paper:

Generalized dilaton-axion models of inflation, de Sitter vacua and spontaneous SUSY breaking in supergravity

Table 1 The predictions for the inflationary parameters (n_{s}, r), and the values of φ at the horizon crossing $\left(\varphi_{i}\right)$ and at the end of inflation $\left(\varphi_{f}\right)$, in the case $3 \leq \alpha \leq \alpha_{*}$ with both signs of ω_{1}. The α parameter is taken to be integer, except of the upper limit $\alpha_{*} \equiv(7+\sqrt{33}) / 2$

α	3	4		5	6	α_{*}	
$\operatorname{sgn}\left(\omega_{1}\right)$	-	+	-	$+/-$	+	-	-
n_{s}	0.9650	0.9649	0.9640	0.9639	0.9634	0.9637	0.9632
r	0.0035	0.0010	0.0013	0.0007	0.0005	0.0004	0.0003
$-\kappa \varphi_{i}$	5.3529	3.5542	3.9899	3.2657	3.0215	2.7427	2.5674
$-\kappa \varphi_{f}$	0.9402	0.7426	0.8067	0.7163	0.6935	0.6488	0.6276

We note that the value of inflationary parameter n_{s} (spectral index) for $\alpha=3$ is equal to 0.9650 and that the range of Regge slope of the following Omega meson is:
$\omega / \omega_{3}|5+3| m_{u / d}=240-345 \mid 0.937-1.000$
the values $0.954929659 \ldots$ and 0.9568666373 are very near to the above Regge slope, to the spectral index n_{s} and to the dilaton value $0.989117352243=\phi$

We observe that 0.954929659 has the following property:
$1-24\left(\frac{1}{-1+e^{2 \pi}}+\frac{2}{-1+e^{4 \pi}}+\frac{3}{-1+e^{6 \pi}}\right)$ is a transcendental number
$=0.9549296597216129$ the result is a transcendental number

We have also that, performing the $128^{\text {th }}$ root, we obtain:
$\left(\left(\left(\left(1-24\left[\left(1 /\left(\mathrm{e}^{\wedge}(2 \mathrm{Pi})-1\right)\right)+\left(2 /\left(\mathrm{e}^{\wedge}(4 \mathrm{Pi})-1\right)\right)+\left(3 /\left(\mathrm{e}^{\wedge}(6 \mathrm{Pi})-1\right)\right)\right]\right)\right)\right)\right)^{\wedge} 1 / 128$

Input:

$\sqrt[128]{1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)}$

Decimal approximation:

$0.999639771179582593534832998563472389939029398477483191618 \ldots$
$0.9996397711 \ldots$ is also a transcendental number
This result is connected to the primary decay mode of a pion, with a branching fraction of 0.999877 , that is a leptonic decay into a muon and a muon neutrino.

Property:

$\sqrt[128]{1-24\left(\frac{1}{-1+e^{2 \pi}}+\frac{2}{-1+e^{4 \pi}}+\frac{3}{-1+e^{6 \pi}}\right)}$ is a transcendental number

Series representations:

$$
\begin{aligned}
& \sqrt[128]{1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)}= \\
& \left(1-24\left(\frac{1}{-1+e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+\frac{3}{-1+e^{16 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}}+} \begin{array}{c}
\left.\frac{3}{\left.-1+e^{24 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)}\right) \wedge(1 / 128)
\end{array}\right.\right.
\end{aligned}
$$

$\sqrt[128]{1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)}=$

$$
\sqrt[128]{1-24\left(\frac{1}{-1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}}+\frac{2}{-1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{4 \pi}}+\frac{3}{-1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{6 \pi}}\right)}
$$

$\sqrt[128]{1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)}=$

$$
\sqrt[128]{1-24\left(\frac{1}{-1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}}+\frac{2}{-1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{4 \pi}}+\frac{3}{-1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{6 \pi}}\right)}
$$

Integral representations:

$$
\begin{aligned}
& \sqrt[128]{1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)}= \\
& \sqrt[128]{1-24\left(\frac{1}{-1+e^{4} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}+\frac{2}{-1+e^{8} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}+\frac{3}{-1+e^{12} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}\right)} \\
& \sqrt[128]{1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)}= \\
& \sqrt\left[1-24\left(\frac{1}{-1+e^{4} \int_{0}^{\infty \sin (t) / t d t}}+\frac{2}{-1+e^{8} \int_{0}^{\infty \sin (t) / t d t}}+\frac{3}{\left.-1+e^{12} \int_{0}^{\infty \sin (t) / t d t}\right)}\right]{ }\right.
\end{aligned}
$$

$\sqrt[128]{1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)}=$

$$
\sqrt[128]{1-24\left(\frac{1}{-1+e^{8} \int_{0}^{1} \sqrt{1-t^{2}} d t}+\frac{2}{-1+e^{16} \int_{0}^{1 \sqrt{1-t^{2}} d t}}+\frac{3}{-1+e^{24} \int_{0}^{1} \sqrt{1-t^{2}} d t}\right)}
$$

Performing:
\log base $0.999639771179\left(\left(\left(\left(1-24\left[\left(1 /\left(\mathrm{e}^{\wedge}(2 \mathrm{Pi})-1\right)\right)+\left(2 /\left(\mathrm{e}^{\wedge}(4 \mathrm{Pi})-1\right)\right)+\left(3 /\left(\mathrm{e}^{\wedge}(6 \mathrm{Pi})-\right.\right.\right.\right.\right.\right.\right.$ 1))])))) $-\mathrm{Pi}+1 /$ golden ratio
we obtain:

Input interpretation:

$\log _{0.099639771170}\left(1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)\right)-\pi+\frac{1}{\phi}$
$\log _{b}(x)$ is the base- b logarithm

Result:

125.476441...
125.476441.... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18

Series representations:

$\log _{0.0996397711700000}\left(1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)\right)-\pi+\frac{1}{\phi}=$
$\frac{1}{\phi}-\pi-\frac{\sum_{k=1}^{\infty} \frac{\left(-24 k^{k}\left(\frac{1}{1-e^{2 \pi}}-\frac{2}{-1+e^{4 \pi}}-\frac{3}{\left.-1+e^{6 \pi}\right)^{k}}\right.\right.}{k}}{\log (0.9996397711790000)}$
$\log _{0.0996397711790000}\left(1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)\right)-\pi+\frac{1}{\phi}=$

$$
\begin{aligned}
& \frac{1.000000000000}{\phi}-1.000000000000 \pi+ \\
& \log \left(1-24\left(\frac{1}{-1+e^{2 \pi}}+\frac{2}{-1+e^{4 \pi}}+\frac{3}{-1+e^{6 \pi}}\right)\right) \\
& \quad\left(-2775.513305165-1.000000000000 \sum_{k=0}^{\infty}(-0.0003602288210000)^{k} G(k)\right) \\
& \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
$$

And:
\log base $0.999639771179\left(\left(\left(\left(1-24\left[\left(1 /\left(\mathrm{e}^{\wedge}(2 \mathrm{Pi})-1\right)\right)+\left(2 /\left(\mathrm{e}^{\wedge}(4 \mathrm{Pi})-1\right)\right)+\left(3 /\left(\mathrm{e}^{\wedge}(6 \mathrm{Pi})-\right.\right.\right.\right.\right.\right.\right.$ 1)) $])$))) $+11+1 /$ golden ratio
where 11 is a Lucas number

Input interpretation:

$$
\log _{0.099639771179}\left(1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)\right)+11+\frac{1}{\phi}
$$

Result:

139.618034...
139.618034.... result practically equal to the rest mass of Pion meson 139.57

Series representations:

$\log _{0.0996397711790000}\left(1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)\right)+11+\frac{1}{\phi}=$

$$
11+\frac{1}{\phi}-\frac{\sum_{k=1}^{\infty} \frac{(-24)^{k}\left(\frac{1}{1-e^{2 \pi}}-\frac{2}{-1+e^{4 \pi}}-\frac{3}{-1+e^{6 \pi}}\right)^{k}}{k}}{\log (0.9996397711790000)}
$$

$$
\begin{aligned}
& \log _{0.0996397711790000}\left(1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)\right)+11+\frac{1}{\phi}= \\
& 11.00000000000+\frac{1.000000000000}{\phi}+ \\
& \log \left(1-24\left(\frac{1}{-1+e^{2 \pi}}+\frac{2}{-1+e^{4 \pi}}+\frac{3}{-1+e^{6 \pi}}\right)\right) \\
& \quad\left(-2775.513305165-1.000000000000 \sum_{k=0}^{\infty}(-0.0003602288210000)^{k} G(k)\right) \\
& \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
$$

In conclusion, we have shown in this proposal a possible theoretical connection between some parameters of inflationary cosmology, of particle masses (Higgs boson and Pion meson $\pi \pm$) and some fundamental equations of Ramanujan's mathematics.

Further, we note that $\pi, \phi, 1 / \phi$ and 11 , that is a Lucas number (often in developing Ramanujan's equations we use Fibonacci and Lucas numbers), play a fundamental role in the development, and therefore, in the final results of Ramanujan's equations. This fact can be explained by admitting that $\pi, \phi, 1 / \phi$ and 11 , and other numbers connected with Fibonacci and Lucas sequences, are not only mathematical constants and / or simple numbers, but "data", which inserted in the right place, and in the most various possible and always logical combinations, lead precisely to the solutions discussed so far: masses of particles, as described in the following paper and other physical and cosmological parameters.

From:

MANUSCRIPT BOOK 2 OF SRINIVASA RAMANUJAN

Pages 185-186

For $\mathrm{x}=2$, we obtain:

$$
\mathrm{e}^{\wedge}(-2) / 1+\mathrm{e}^{\wedge}(-8) / 4+\mathrm{e}^{\wedge}(-18) / 9+\mathrm{e}^{\wedge}(-32) / 16
$$

Input:

$$
\frac{1}{e^{2}}+\frac{1}{e^{8} \times 4}+\frac{1}{e^{18} \times 9}+\frac{1}{e^{32} \times 16}
$$

Decimal approximation:

0.135419150585809082998788153543982228554239225669845771435.
$0.1354191505858090829987 \ldots$

Property:

$\frac{1}{16 e^{32}}+\frac{1}{9 e^{18}}+\frac{1}{4 e^{8}}+\frac{1}{e^{2}}$ is a transcendental number

Alternate form:

$\frac{144 e^{30}+36 e^{24}+16 e^{14}+9}{144 e^{32}}$

Alternative representation:

$\frac{1}{e^{2}}+\frac{1}{e^{8} 4}+\frac{1}{e^{18} 9}+\frac{1}{e^{32} 16}=\frac{1}{\exp ^{2}(z)}+\frac{1}{\exp ^{8}(z) 4}+\frac{1}{\exp ^{18}(z) 9}+\frac{1}{\exp ^{32}(z) 16}$ for $z=1$
$\mathrm{Pi}^{\wedge} 2 / 6-\operatorname{sqrt}(2 \mathrm{Pi})+2 / 2$

Input:

$\frac{\pi^{2}}{6}-\sqrt{2 \pi}+\frac{2}{2}$

Exact result:

$1+\frac{\pi^{2}}{6}-\sqrt{2 \pi}$

Decimal approximation:

$0.138305792217225934056649881834979936211963160596860121105 \ldots$
$0.1383057922172 \ldots$

Alternate form:

$$
\frac{1}{6}\left(6+\pi^{2}-6 \sqrt{2 \pi}\right)
$$

Series representations:

$$
\begin{aligned}
& \frac{\pi^{2}}{6}-\sqrt{2 \pi}+\frac{2}{2}=1+\frac{\pi^{2}}{6}-\sqrt{-1+2 \pi} \sum_{k=0}^{\infty}(-1+2 \pi)^{-k}\binom{\frac{1}{2}}{k} \\
& \frac{\pi^{2}}{6}-\sqrt{2 \pi}+\frac{2}{2}=1+\frac{\pi^{2}}{6}-\sqrt{-1+2 \pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}(-1+2 \pi)^{-k}\left(-\frac{1}{2}\right)_{k}}{k!} \\
& \frac{\pi^{2}}{6}-\sqrt{2 \pi}+\frac{2}{2}=1+\frac{\pi^{2}}{6}-\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2 \pi-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

We have that:

$1 /\left(\operatorname{sqrt}\left(1+2^{\wedge} 8\right)\right)+2 /\left(\operatorname{sqrt}\left(1+4^{\wedge} 8\right)\right)+3 /\left(\operatorname{sqrt}\left(1+6^{\wedge} 8\right)\right)$

Input:

$$
\frac{1}{\sqrt{1+2^{8}}}+\frac{2}{\sqrt{1+4^{8}}}+\frac{3}{\sqrt{1+6^{8}}}
$$

Result:

$\frac{1}{\sqrt{257}}+\frac{2}{\sqrt{65537}}+\frac{3}{\sqrt{1679617}}$

Decimal approximation:

0.072505540676942506973866178749879082975111535970391876876 .
0.0725055406769425....

Alternate forms:

$\frac{\sqrt{257}}{257}+\frac{2 \sqrt{65537}}{65537}+\frac{3 \sqrt{1679617}}{1679617}$
$\underline{110077059329 \sqrt{257}+863323138 \sqrt{65537}+50529027 \sqrt{1679617}}$ 28289804247553
$\frac{3}{\sqrt{1679617}}+\frac{65537 \sqrt{257}+514 \sqrt{65537}}{16843009}$
$\left.-\left(\left(\left(\mathrm{Pi} / 16 * \operatorname{sqrt}(\mathrm{Pi}) /(((0.602439 i)))^{\wedge} 2\right)\right)-1 / 12+2^{\wedge} 8 / 264\right)\right)$
Input interpretation:
$-\left(\frac{\pi}{16} \times \frac{\sqrt{\pi}}{(0.602439 i)^{2}}-\frac{1}{12}+\frac{2^{8}}{264}\right)$

Result:

0.0725482 ..
$0.0725482 \ldots$

Series representations:

$$
\begin{aligned}
& -\left(\frac{\sqrt{\pi} \pi}{(0.602439 i)^{2} 16}-\frac{1}{12}+\frac{2^{8}}{264}\right)= \\
& -0.886364-\frac{0.172208 \pi \sqrt{-1+\pi} \sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}}{i^{2}}
\end{aligned}
$$

$$
-\left(\frac{\sqrt{\pi} \pi}{(0.602439 i)^{2} 16}-\frac{1}{12}+\frac{2^{8}}{264}\right)=
$$

$$
-0.886364-\frac{0.172208 \pi \sqrt{-1+\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}(-1+\pi)^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}{i^{2}}
$$

$-\left(\frac{\sqrt{\pi} \pi}{(0.602439 i)^{2} 16}-\frac{1}{12}+\frac{2^{8}}{264}\right)=$
$-0.886364-\frac{0.172208 \pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\pi-z_{0}\right)^{k} z_{0}^{-k}}{k!}}{i^{2}}$
for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$

We have that:

For $\mathrm{x}=2, \mathrm{~m}=3, \mathrm{n}=5$, we obtain:
$1^{\wedge} 2 /\left(\mathrm{e}^{\wedge} 2-1\right)+2^{\wedge} 2 /\left(\left(\mathrm{e}^{\wedge}\left(2^{\wedge} 5^{*} 2\right)-1\right)\right)+3^{\wedge} 2 /\left(\mathrm{e}^{\wedge} 10-1\right)$

Input:
$\frac{1^{2}}{e^{2}-1}+\frac{2^{2}}{e^{2^{5} \times 2}-1}+\frac{3^{2}}{e^{10}-1}$

Exact result:

$\frac{1}{e^{2}-1}+\frac{9}{e^{10}-1}+\frac{4}{e^{64}-1}$

Decimal approximation:

$0.156926260668752841733041266454542489912925580659169535248 \ldots$
0.156926260668....

Property:

$\frac{1}{-1+e^{2}}+\frac{9}{-1+e^{10}}+\frac{4}{-1+e^{64}}$ is a transcendental number

Alternate forms:

$$
\begin{aligned}
& \frac{117}{80(e-1)}-\frac{117}{80(1+e)}-\frac{1}{8\left(1+e^{2}\right)}-\frac{1}{4\left(1+e^{4}\right)}+\frac{9\left(-4+3 e-2 e^{2}+e^{3}\right)}{10\left(1-e+e^{2}-e^{3}+e^{4}\right)}- \\
& \frac{9\left(4+3 e+2 e^{2}+e^{3}\right)}{10\left(1+e+e^{2}+e^{3}+e^{4}\right)}-\frac{1}{2\left(1+e^{8}\right)}-\frac{1}{1+e^{16}}-\frac{2}{1+e^{32}} \\
& \left(14+15 e^{2}+16 e^{4}+17 e^{6}+18 e^{8}+14 e^{10}+14 e^{12}+14 e^{14}+14 e^{16}+14 e^{18}+14 e^{20}+\right. \\
& 14 e^{22}+14 e^{24}+14 e^{26}+14 e^{28}+14 e^{30}+14 e^{32}+14 e^{34}+14 e^{36}+ \\
& 14 e^{38}+14 e^{40}+14 e^{42}+14 e^{44}+14 e^{46}+14 e^{48}+14 e^{50}+14 e^{52}+ \\
& \left.14 e^{54}+14 e^{56}+14 e^{58}+14 e^{60}+14 e^{62}+4 e^{64}+3 e^{66}+2 e^{68}+e^{70}\right) / \\
& \left((e-1)(1+e)\left(1+e^{2}\right)\left(1+e^{4}\right)\left(1-e+e^{2}-e^{3}+e^{4}\right)\right. \\
& \left.\left(1+e+e^{2}+e^{3}+e^{4}\right)\left(1+e^{8}\right)\left(1+e^{16}\right)\left(1+e^{32}\right)\right)
\end{aligned}
$$

Alternative representation:

$$
\frac{1^{2}}{e^{2}-1}+\frac{2^{2}}{e^{2^{5} \times 2}-1}+\frac{3^{2}}{e^{10}-1}=\frac{1^{2}}{\exp ^{2}(z)-1}+\frac{2^{2}}{\exp ^{2^{5} \times 2}(z)-1}+\frac{3^{2}}{\exp ^{10}(z)-1} \text { for } z=1
$$

Series representations:

$$
\begin{aligned}
& \frac{1^{2}}{e^{2}-1}+\frac{2^{2}}{e^{2^{5} \times 2}-1}+\frac{3^{2}}{e^{10}-1}=\frac{1}{-1+\sum_{k=0}^{\infty} \frac{2^{k}}{k!}}+\frac{9}{-1+\sum_{k=0}^{\infty} \frac{10^{k} k!}{k!}}+\frac{4}{-1+\sum_{k=0}^{\infty} \frac{64^{k}}{k!}} \\
& \frac{1^{2}}{e^{2}-1}+\frac{2^{2}}{e^{2^{5} \times 2}-1}+\frac{3^{2}}{e^{10}-1}=\frac{1}{-1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2}}+\frac{9}{-1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{10}}+\frac{4}{-1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{64}} \\
& \frac{1^{2}}{e^{2}-1}+\frac{2^{2}}{e^{2^{5} \times 2}-1}+\frac{3^{2}}{e^{10}-1}= \\
& \frac{4}{-1+\frac{1}{\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}\right)^{64}}}+\frac{9}{-1+\frac{1}{\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}\right)^{10}}}+\frac{1}{-1+\frac{1}{\left(\sum_{k=0}^{\infty} \frac{\left.(-1)^{k}\right)^{2}}{k!}\right)^{2}}}
\end{aligned}
$$

From the sum of the three results
$0.156926260668+0.0725055406769425+0.1354191505858090829987$
We obtain:
$288 /(0.156926260668+0.0725055406769425+0.1354191505858090829987)-7$
Input interpretation:
\qquad

Result:

782.3634331387524190523973713994298037877662032186301443004...
$782.363433 \ldots$... result practically equal to the rest mass of Omega meson 782.65
$((((288 /(0.156926260668+0.07250554067+0.135419150585809)-7))))^{*} 1 /(2 \mathrm{e})-4$
Input interpretation:
$\left(\frac{288}{0.156926260668+0.07250554067+0.135419150585809}-7\right) \times \frac{1}{2 e}-4$

Result:

139.90771129...
$139.90771129 \ldots$ result practically equal to the rest mass of Pion meson 139.57

Alternative representation:

Series representations:

$$
\begin{aligned}
& \frac{288}{\frac{0.1569262606680000+0.0725055+0.1354191505858090000}{2 e}-7}-4=-4+391.182 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \\
& \frac{\frac{288}{0.1569262606680000+0.0725055+0.1354191505858090000}-7}{2 e}-4=-4+\frac{391.182}{\sum_{k=0}^{\infty} \frac{1}{k!}} \\
& \frac{288}{\frac{0.1569262606680000+0.0725055+0.1354191505858090000}{2 e}-7}-4=-4+\frac{782.363}{\sum_{k=0}^{\infty} \frac{1+k}{k!}}
\end{aligned}
$$

Page 188

For $\mathrm{a}=\sqrt{ } \pi$, we obtain:
$(((1 /(1+\mathrm{Pi})+4 /(16+\mathrm{Pi})+9 /(81+\mathrm{Pi})+16 /(256+\mathrm{Pi}))))$

Input:

$\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}$

Decimal approximation:

0.619126900492848208398758436404174065679752793032442804606...
0.6191269...

Property:

$\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}$ is a transcendental number

Alternate forms:

$$
\begin{aligned}
& \frac{30\left(15744+5734 \pi+191 \pi^{2}+\pi^{3}\right)}{(1+\pi)(16+\pi)(81+\pi)(256+\pi)} \\
& \frac{472320+172020 \pi+5730 \pi^{2}+30 \pi^{3}}{(1+\pi)(16+\pi)(81+\pi)(256+\pi)}
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}= \\
& \frac{1}{1+\cos ^{-1}(-1)}+\frac{4}{16+\cos ^{-1}(-1)}+\frac{9}{81+\cos ^{-1}(-1)}+\frac{16}{256+\cos ^{-1}(-1)} \\
& \frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}=\frac{1}{1+180^{\circ}}+\frac{4}{16+180^{\circ}}+\frac{9}{81+180^{\circ}}+\frac{16}{256+180^{\circ}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}= \\
& \frac{1}{1+2 E(0)}+\frac{4}{16+2 E(0)}+\frac{9}{81+2 E(0)}+\frac{16}{256+2 E(0)}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}= \\
& \frac{15\left(1968+2867 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}+382\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{2}+8\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{3}\right)}{\left(4+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)\left(64+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)\left(1+4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)\left(81+4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)} \\
& \frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}= \\
& \left(3 0 \left(15744+5734 \sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)+\right.\right. \\
& 191\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{2}+ \\
& \left.\left(\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{3}\right)\right) / \\
& \left(1+\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right) \\
& \left(16+\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right) \\
& \left(81+\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right) \\
& \left.\left(256+\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)\right)
\end{aligned}
$$

$$
\left.\begin{array}{l}
\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}= \\
\left(3 0 \left(15744+5734 \sum_{k=0}^{\infty}-\frac{4(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}+\right.\right. \\
191\left(\sum_{k=0}^{\infty}-\frac{4(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}\right)^{2}+ \\
\left.\left.\left(\sum_{k=0}^{\infty}-\frac{4(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}\right)\right)\right) / \\
\left(\left(1+\sum_{k=0}^{\infty}-\frac{4(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}\right)\right. \\
\left(16+\sum_{k=0}^{\infty}-\frac{4(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}\right) \\
\left(81+\sum_{k=0}^{\infty}-\frac{4(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}\right) \\
1+2 k
\end{array}\right) .
$$

$(((1 /(1+\mathrm{Pi})+4 /(16+\mathrm{Pi})+9 /(81+\mathrm{Pi})+16 /(256+\mathrm{Pi}))))^{\wedge} 1 / 64$

Input:

$\sqrt[64]{ } \frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}$

Decimal approximation:

$0.992536661649782822496434982320685367245676261428474266747 \ldots$
$0.9925366616 \ldots$. result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

Property:

$\sqrt[64]{\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}}$ is a transcendental number

Alternate forms:
$\sqrt[64]{\frac{30\left(15744+5734 \pi+191 \pi^{2}+\pi^{3}\right)}{331776+357904 \pi+26481 \pi^{2}+354 \pi^{3}+\pi^{4}}}$
$\sqrt[64]{\frac{472320+172020 \pi+5730 \pi^{2}+30 \pi^{3}}{(1+\pi)(16+\pi)(81+\pi)(256+\pi)}}$

Series representations:

$$
\begin{aligned}
& \sqrt[64]{\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}}= \\
& \sqrt[64]{15}\left(\left(1968+2867 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}+382\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{2}+8\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{3}\right) /\right. \\
& \left(20736+89476 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}+26481\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{2}+\right. \\
& \left.\left.1416\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{3}+16\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{4}\right)\right) \wedge(1 / 64)
\end{aligned}
$$

$\sqrt[64]{\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}}=$
$\sqrt[64]{30}\left(\left(15744+5734 \sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)+\right.\right.$
$191\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{2}+$
$\left.\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{3}\right) /$
$\left(331776+357904 \sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)+\right.$
$26481\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{2}+$
$354\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{3}+$
$\left.\left.\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{4}\right)\right) \wedge(1 / 64)$
$\sqrt[64]{\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}}=$
$\sqrt[64]{30}\left(\left(15744+5734 \sum_{k=0}^{\infty}-\frac{4(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}+\right.\right.$

$$
\begin{aligned}
& 191\left(\sum_{k=0}^{\infty}-\frac{4(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}\right)^{2}+ \\
& \left(\sum_{k=0}^{\infty}-\frac{\left.\left.4(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)\right)^{3}\right)}{1+2 k}\right) \\
& \left(331776+357904 \sum_{k=0}^{\infty}-\frac{4(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}+\right. \\
& 26481\left(\sum_{k=0}^{\infty}-\frac{4(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}\right)^{2}+ \\
& 354\left(\sum_{k=0}^{\infty}-\frac{4(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}\right)^{3}+ \\
& \left.\left(\sum_{k=0}^{\infty}-\frac{4(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}\right)\right){ }^{4}(1 / 64)
\end{aligned}
$$

$2 \log$ base $0.9925366616(((1 /(1+\mathrm{Pi})+4 /(16+\mathrm{Pi})+9 /(81+\mathrm{Pi})+16 /(256+\mathrm{Pi}))))-$ $\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$2 \log _{0.9925366616}\left(\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}\right)-\pi+\frac{1}{\phi}$

Result:

125.47644..
125.47644... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18

Alternative representation:

$$
\begin{aligned}
& 2 \log _{0.992537}\left(\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}\right)-\pi+\frac{1}{\phi}= \\
& -\pi+\frac{1}{\phi}+\frac{2 \log \left(\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}\right)}{\log (0.992537)}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 2 \log _{0.992537}\left(\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}\right)-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\pi-\frac{2 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}\right)^{k}}{k}}{\log (0.992537)} \\
& 2 \log _{0.992537}\left(\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}\right)-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\pi-266.977 \log \left(\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}\right)- \\
& \quad 2 \log \left(\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}\right) \sum_{k=0}^{\infty}(-0.00746334)^{k} G(k) \\
& \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
$$

$2 \log$ base $0.9925366616(((1 /(1+\mathrm{Pi})+4 /(16+\mathrm{Pi})+9 /(81+\mathrm{Pi})+$ $16 /(256+\mathrm{Pi}))))+11+1 /$ golden ratio

Where 11 is a Lucas number

Input interpretation:

$2 \log _{0.9925366616}\left(\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}\right)+11+\frac{1}{\phi}$

Result:

139.61803..
139.61803... result practically equal to the rest mass of Pion meson 139.57

Alternative representation:

$2 \log _{0.992537}\left(\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}\right)+11+\frac{1}{\phi}=$

$$
11+\frac{1}{\phi}+\frac{2 \log \left(\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}\right)}{\log (0.992537)}
$$

Series representations:

$$
\begin{aligned}
& 2 \log _{0.092537}\left(\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}\right)+11+\frac{1}{\phi}= \\
& 11+\frac{1}{\phi}-\frac{2 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}\right)^{k}}{k}}{\log (0.992537)} \\
& 2 \log _{0.992537}\left(\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}\right)+11+\frac{1}{\phi}= \\
& \quad 11+\frac{1}{\phi}-266.977 \log \left(\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}\right)- \\
& \quad 2 \log \left(\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}\right) \sum_{k=0}^{\infty}(-0.00746334)^{k} G(k) \\
& \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
$$

$1 /(((1 /(1+\mathrm{Pi})+4 /(16+\mathrm{Pi})+9 /(81+\mathrm{Pi})+16 /(256+\mathrm{Pi}))))+\mathrm{Pi} / 10^{\wedge} 3$

Input:

$\frac{1}{\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}}+\frac{\pi}{10^{3}}$

Decimal approximation:

1.618319352179080504387245251256552543281800196823481937823...
$1.618319352179 \ldots$ result that is a very good approximation to the value of the golden ratio 1,618033988749...

Property:

$\frac{\pi}{1000}+\frac{1}{\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}}$ is a transcendental number

Alternate forms:

$$
\begin{aligned}
& \frac{33177600+35837632 \pi+2665302 \pi^{2}+35973 \pi^{3}+103 \pi^{4}}{3000\left(15744+5734 \pi+191 \pi^{2}+\pi^{3}\right)} \\
& \frac{163}{30}+\frac{103 \pi}{3000}+\frac{-372416-98747 \pi-1731 \pi^{2}}{5\left(15744+5734 \pi+191 \pi^{2}+\pi^{3}\right)} \\
& \frac{163}{30}+\frac{103 \pi}{3000}-\frac{372416+98747 \pi+1731 \pi^{2}}{5\left(15744+5734 \pi+191 \pi^{2}+\pi^{3}\right)}
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}}+\frac{\pi}{10^{3}}= \\
& \frac{\cos ^{-1}(-1)}{10^{3}}+\frac{1}{\frac{1}{1+\cos ^{-1}(-1)}+\frac{4}{16+\cos ^{-1}(-1)}+\frac{9}{81+\cos ^{-1}(-1)}+\frac{16}{256+\cos ^{-1}(-1)}} \\
& \frac{1}{\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}}+\frac{\pi}{10^{3}}=\frac{180^{\circ}}{10^{3}}+\frac{1}{\frac{1}{1+180^{\circ}}+\frac{4}{16+180^{\circ}}+\frac{9}{81+180^{\circ}}+\frac{16}{256+180^{\circ}}}
\end{aligned}
$$

$$
\frac{1}{\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}}+\frac{\pi}{10^{3}}=\frac{2 E(0)}{10^{3}}+\frac{1}{\frac{1}{1+2 E(0)}+\frac{4}{16+2 E(0)}+\frac{9}{81+2 E(0)}+\frac{16}{256+2 E(0)}}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}}+\frac{\pi}{10^{3}}= \\
& \left(1036800+4479704 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}+1332651\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{2}+\right. \\
& \left.\quad 71946\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{3}+824\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{4}\right) / \\
& \quad\left(750\left(1968+2867 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}+382\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{2}+8\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{3}\right)\right)
\end{aligned}
$$

$$
\frac{1}{\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}}+\frac{\pi}{10^{3}}=
$$

$$
\left(33177600+35837632 \sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)+\right.
$$

$$
2665302\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{2}+
$$

$$
35973\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{3}+
$$

$$
\left.103\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{4}\right) /
$$

$$
\left(3 0 0 0 \left(15744+5734 \sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)+\right.\right.
$$

$$
191\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{2}+
$$

$$
\left.\left.\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{3}\right)\right)
$$

$$
\begin{aligned}
& \frac{1}{\frac{1}{1+\pi}+\frac{4}{16+\pi}+\frac{9}{81+\pi}+\frac{16}{256+\pi}}+\frac{\pi}{10^{3}}= \\
& \left(33177600+35837632 \times \sum_{k=0}^{\infty} 16^{-k}\left(\frac{1}{-5-8 k}-\frac{1}{2+4 k}+\frac{4}{1+8 k}-\frac{1}{6+8 k}\right)+\right. \\
& 2665302\left(\sum_{k=0}^{\infty} 16^{-k}\left(\frac{1}{-5-8 k}-\frac{1}{2+4 k}+\frac{4}{1+8 k}-\frac{1}{6+8 k}\right)\right)^{2}+ \\
& 35973\left(\sum_{k=0}^{\infty} 16^{-k}\left(\frac{1}{-5-8 k}-\frac{1}{2+4 k}+\frac{4}{1+8 k}-\frac{1}{6+8 k}\right)\right)^{3}+ \\
& \left.103\left(\sum_{k=0}^{\infty} 16^{-k}\left(\frac{1}{-5-8 k}-\frac{1}{2+4 k}+\frac{4}{1+8 k}-\frac{1}{6+8 k}\right)\right)^{4}\right) / \\
& \left(3 0 0 0 \left(15744+5734 \times \sum_{k=0}^{\infty} 16^{-k}\left(\frac{1}{-5-8 k}-\frac{1}{2+4 k}+\frac{4}{1+8 k}-\frac{1}{6+8 k}\right)+\right.\right. \\
& 191\left(\sum_{k=0}^{\infty} 16^{-k}\left(\frac{1}{-5-8 k}-\frac{1}{2+4 k}+\frac{4}{1+8 k}-\frac{1}{6+8 k}\right)\right)^{2}+ \\
& \left.\left.\left(\sum_{k=0}^{\infty} 16^{-k}\left(\frac{1}{-5-8 k}-\frac{1}{2+4 k}+\frac{4}{1+8 k}-\frac{1}{6+8 k}\right)\right)^{3}\right)\right)
\end{aligned}
$$

Page 189

For $\mathrm{x}=2$, we obtain:

$$
1-24(((2 /(1-2)+2 * 4 /(1-4)+3 * 8 /(1-8)+4 * 16 /(1-16)))
$$

Input:

$1-24\left(\frac{2}{1-2}+2 \times \frac{4}{1-4}+3 \times \frac{8}{1-8}+4 \times \frac{16}{1-16}\right)$

Exact result:

$\frac{10419}{35}$

Decimal approximation:

$297.6857142857142857142857142857142857142857142857142857142 \ldots$
297.68571428...
$1+240(((2 /(1-2)+8 * 4 /(1-4)+27 * 8 /(1-8)+64 * 16 /(1-16)))$
Input:
$1+240\left(\frac{2}{1-2}+8 \times \frac{4}{1-4}+27 \times \frac{8}{1-8}+64 \times \frac{16}{1-16}\right)$

Exact result:
 $-\frac{187801}{7}$

Decimal approximation:

-26828.7142857142857142857142857142857142857142857142857142...
-26828.7142857...
$1-504(((2 /(1-2)+32 * 4 /(1-4)+243 * 8 /(1-8)+1024 * 16 /(1-16)))$

Input:

$1-504\left(\frac{2}{1-2}+32 \times \frac{4}{1-4}+243 \times \frac{8}{1-8}+1024 \times \frac{16}{1-16}\right)$

Exact result:

$\frac{3564917}{5}$
Decimal form:
712983.4
712983.4
12. 1. $m^{3}-N^{2}=1728^{1} x(1-x)^{24}\left(1-x^{2}\right)^{24}\left(1-x^{3}\right)^{24}\left(1-x^{8}\right)^{24} 8 x e$ ii. $1+480\left(\frac{\Gamma^{7} x}{1-x}+\frac{2^{7} x^{2}}{1-x^{2}}+\frac{37 x^{2}}{1-x^{2}}+2 c\right)=M^{2}$, iii. $1-264\left(\frac{11 x}{1-x}+\frac{27 x^{2}}{1-x+1}+\frac{39 x^{3}}{1-x^{2}+8 c}+8 c\right)=M N$.
.f. $1-24\left(\frac{1^{3} x}{1-x}+\frac{2^{13} x^{2}}{1-x^{2}}+\frac{2^{13} x^{3}}{1-x^{3}}+8 x\right)=M^{2} \mathcal{N}$.
V. $\frac{1^{2} x}{(1-x)}+\frac{2^{2} x-2}{\left(1-x^{2}\right)^{2}}+\frac{3^{2} x^{2}}{\left(1-x^{3}\right)^{2}}+8 c=\frac{M-L^{2}}{288^{2}}$.
id. $\frac{1^{4} x}{(1-x)^{2}}+\frac{2^{6} x^{2}}{\left(1-x^{2}\right) 2}+\frac{3^{4} x^{3}}{\left(1-x^{3}\right)^{2}}+80 c=\frac{2 m-N}{7.20}$.
Vii. $\frac{1^{6} x}{(1-x)^{2}}+\frac{2^{6} x^{2}}{\left(-x^{2}\right)^{2}}+\frac{3^{6} x^{3}}{\left(1-x^{3}\right)^{2}}+8 c=\frac{M^{2} L N}{1008} \cdots$

ix. $L=\frac{t^{3}-3^{3} x+5^{-3} x^{3}-2^{3} x^{6}+2^{2} x^{10} \& x}{1-3 x+5 x^{3}-7 x^{6}+8 x^{10}-8 x}$
x. M $M=\left\{\frac{5}{1-x}+\frac{3^{5} x^{2}}{1-x^{3}}+\frac{5^{5} x^{3}}{1-x^{5}}+\frac{7^{5} x^{3}}{1-x^{7}}+\&<c\right\}$

$$
\div\left\{\frac{x}{1-x}+\frac{2 x^{2}}{1} \frac{x}{x}+\frac{5 x^{3}}{1-x^{2}}+\frac{7-4}{1-\frac{x}{x}}+8<\right\}
$$

$1728 * 2 *(1-2)^{\wedge} 24^{*}(1-4)^{\wedge} 24^{*}(1-8)^{\wedge} 24 *(1-16)^{\wedge} 24$

Input:

$1728 \times 2(1-2)^{24}(1-4)^{24}(1-8)^{24}(1-16)^{24}$

Result:

3147944194510707795152038178692525175032558799743652343750000 :
000
Decimal approximation:
$3.1479441945107077951520381786925251750325587997436523 \ldots \times 10^{63}$
$3.147944194510 \ldots{ }^{*} 10^{63}$

$$
\text { ii. } 1+480\left(\frac{1^{7} x}{1-x}+\frac{2^{7} x^{2}}{1-x^{2}}+\frac{3^{7} x^{3}}{1-x^{3}}+8 c\right)=M^{2}
$$

Input:

$1+480\left(1^{7} \times \frac{2}{1-2}+2^{7} \times \frac{2^{2}}{1-2^{2}}+3^{7} \times \frac{2^{3}}{1-2^{3}}\right)$

Exact result:

$-\frac{8978233}{7}$

Decimal approximation:

$-1.2826047142857142857142857142857142857142857142857142 \ldots \times 10^{6}$
$-1.2826047142857 \ldots . . * 10^{6}$

iii. $1-264\left(\frac{1^{9} x}{1-x}+\frac{29 x^{2}}{1-x^{2}}+\frac{39 x^{3}}{1-x^{2}}+\& c\right)=n N$.

$1-264\left(1^{\wedge} 9 * 2 /(1-2)+2^{\wedge} 9^{*} 2^{\wedge} 2 /\left(1-2^{\wedge} 2\right)+3^{\wedge} 9^{*} 2^{\wedge} 3 /\left(1-2^{\wedge} 3\right)\right)$

Input:

$$
1-264\left(1^{\rho} \times \frac{2}{1-2}+2^{\rho} \times \frac{2^{2}}{1-2^{2}}+3^{\varrho} \times \frac{2^{3}}{1-2^{3}}\right)
$$

Exact result:

42835767

Decimal approximation:

$6.11939528571428571428571428571428571428571428571428571 \ldots \times 10^{6}$
6.1193952857....*10 ${ }^{6}$

$1-24\left(1^{\wedge} 13^{*} 2 /(1-2)+2^{\wedge} 13^{*} 2^{\wedge} 2 /\left(1-2^{\wedge} 2\right)+3^{\wedge} 13^{*} 2^{\wedge} 3 /\left(1-2^{\wedge} 3\right)\right)$

Input:

$1-24\left(1^{13} \times \frac{2}{1-2}+2^{13} \times \frac{2^{2}}{1-2^{2}}+3^{13} \times \frac{2^{3}}{1-2^{3}}\right)$

Exact result:

Decimal approximation:
$4.39921952857142857142857142857142857142857142857142857 \ldots \times 10^{7}$
$4.3992195285714285 \ldots * 10^{7}$

From the sum of the three above results, we obtain:

$$
(-1.2826047142857 \mathrm{e}+6+6.1193952857 \mathrm{e}+6+4.3992195285714285 \mathrm{e}+7)
$$

Input interpretation:

$-1.2826047142857 \times 10^{6}+6.1193952857 \times 10^{6}+4.3992195285714285 \times 10^{7}$

Result:
 $4.8828985857128585 \times 10^{7}$
 $4.88289858571 . . . * 10^{7}$

And:
$\ln (-1.2826047142857 \mathrm{e}+6+6.1193952857 \mathrm{e}+6+4.3992195285714285 \mathrm{e}+7)$

Input interpretation:

$\log \left(-1.2826047142857 \times 10^{6}+6.1193952857 \times 10^{6}+4.3992195285714285 \times 10^{7}\right)$
$\log (x)$ is the natural logarithm

Result:

17.70383466697...
$17.70383466697 \ldots$. result very near to the black hole entropy 17.7715
We have also:
$\ln (-1.2826047142857 \mathrm{e}+6+6.1193952857 \mathrm{e}+6+4.3992195285714285 \mathrm{e}+7) * 8-2$
where 8 and 2 are Fibonacci numbers

Input interpretation:

```
log(-1.2826047142857 }\times1\mp@subsup{0}{}{6}+6.1193952857 \10 6 + 4.3992195285714285 10 10 7 )\times
    8-2
```


Result:

139.6306773358...
$139.6306773358 \ldots$ result practically equal to the rest mass of Pion meson 139.57

We have also, dividing by 248 (the dimension of Lie Group E8) and subtracting 7, that is a Lucas number:

$$
1 / 248(-1.2826047142857 \mathrm{e}+6+6.1193952857 \mathrm{e}+6+4.3992195285714 \mathrm{e}+7)-7
$$

Input interpretation:

$$
\frac{1}{248}\left(-1.2826047142857 \times 10^{6}+6.1193952857 \times 10^{6}+4.3992195285714 \times 10^{7}\right)-7
$$

Result:

196884.0720045495967741935483870967741935483870967741935483...
196884.0720045....

196884 is a fundamental number of the following j-invariant

$$
j(\tau)=q^{-1}+744+196884 q+21493760 q^{2}+864299970 q^{3}+20245856256 q^{4}+\cdots
$$

(In mathematics, Felix Klein's j-invariant or j function, regarded as a function of a complex variable τ, is a modular function of weight zero for $\operatorname{SL}(2, \mathrm{Z})$ defined on the upper half plane of complex numbers. Several remarkable properties of j have to do with its q expansion (Fourier series expansion), written as a Laurent series in terms of $q=e^{2 \pi i t}$ (the square of the nome), which begins:

$$
j(\tau)=q^{-1}+744+196884 q+21493760 q^{2}+864299970 q^{3}+20245856256 q^{4}+\cdots
$$

Note that j has a simple pole at the cusp, so its q-expansion has no terms below q^{-1}. All the Fourier coefficients are integers, which results in several almost integers, notably Ramanujan's constant:

$$
e^{\pi \sqrt{163}} \approx 640320^{3}+744
$$

The asymptotic formula for the coefficient of q^{n} is given by

$$
\frac{e^{4 \pi \sqrt{ } n}}{\sqrt{2} \pi^{3 / 4}}
$$

as can be proved by the Hardy-Littlewood circle method)
and we obtain also:
$\operatorname{sqrt}(((1 / 248(-1.2826047 \mathrm{e}+6+6.1193952 \mathrm{e}+6+4.3992195 \mathrm{e}+7)-7))) * 1 / 3-8-$
$1 /$ golden ratio

Input interpretation:

$\sqrt{\frac{1}{248}\left(-1.2826047 \times 10^{6}+6.1193952 \times 10^{6}+4.3992195 \times 10^{7}\right)-7} \times \frac{1}{3}-8-\frac{1}{\phi}$

Result:

139.28737...
$139.28737 \ldots$ result practically equal to the rest mass of Pion meson 139.57

Page 193

$$
\text { ex.i. } \begin{aligned}
& 1^{5}\left(1^{4} x+2^{4} x^{2}+x^{4} x^{3}+4^{4} x^{4}+8 c\right) \\
+ & 2^{6}\left(1^{4} x^{2}+2^{4} x^{x}+3^{4} x^{6}+4^{4} x^{8}+8 c\right) \\
& +3^{5}\left(1^{4} x^{3}+2^{4} x^{6}+3^{4} x^{7}+4^{4} x^{12}+2 c\right) \\
+ & 4^{5}\left(1^{4} x^{4}+2^{4} x^{8}+3^{6} x^{12}+4^{4} x^{16}+\alpha c\right) \\
& +8 c \quad \& c \quad 8 c \quad \&< \\
= & \left(15 L M^{2}+10 L^{3} M-2 L^{2} N-4 M N-L^{5}\right) / 12^{4}
\end{aligned}
$$

For $297.68571428=\mathrm{L} ; \quad 712983.4=\mathrm{N} ;-26828.7142857=\mathrm{M}$
We obtain:
$\left(\left(\left(15 * 297.68571428^{*}(-26828.7142857)^{\wedge} 2+10^{*} 297.68571428^{\wedge} 3 *(-26828.7142857)-\right.\right.\right.$ $20^{*} 297.68571428^{\wedge} 2^{*} 712983.4-4 *(-26828.7142857) * 712983.4-$ $\left.\left.297.68571428^{\wedge} 5\right)\right)$)/12^4

Input interpretation:

```
124
    10 < 297.685714283 }\times(-26828.7142857) +20\times297.685714282 < (-712 983.4) 
    4\times(-26828.7142857) }\times(-712983.4)-297.685714285)
```


Result:

$-3.5629905974215259284305364738611155043135877830151604 \ldots \times 10^{8}$
$-3.5629905974215 \ldots * 10^{8}$

$$
\text { ii. } \begin{aligned}
& 1^{2}\left(1^{7} x+2^{7} x^{2}+3^{7} x^{7}+4^{7} x^{4}+\& c\right) \\
&+ 2^{2}\left(1^{7} x^{2}+2^{7} x^{4}+3^{7} x^{6}+4^{7} x^{4}+k c\right) \\
&+ 3^{2}\left(1^{7} x^{3}+2^{7} x^{6}+3^{7} x^{7}+4^{7} x^{12}+\& x\right) \\
&+4^{2}\left(1^{7} x^{4}+2^{7} x^{8}+1^{7} x^{12}+4^{7} x^{16}+\& c\right) \\
&+\& c \quad \& c c \& c \\
&= \& L C \\
&= 2 L M^{2}-M N-L^{2} N \\
& 12^{3}
\end{aligned}
$$

$297.68571428=\mathrm{L} ;-1.2826047142857 \mathrm{e}+6=\mathrm{M}^{2}$;
$712983.4=\mathrm{N} ;-26828.7142857=\mathrm{M}$
We have that:

```
((((2*297.68571428*-26828.7142857^2) - (712983.4* -26828.7142857) -
(297.68571428^2*712983.4)))) / 12^3
```


Input interpretation:

$$
\begin{aligned}
& \frac{1}{12^{3}}\left(2 \times 26828.7142857^{2} \times(-297.68571428)-\right. \\
& \left.\quad 712983.4 \times(-26828.7142857)-297.68571428^{2} \times 712983.4\right)
\end{aligned}
$$

Result:

$-2.7348973482049537743641991939666342592592592592592592 \ldots \times 10^{8}$
$-2.7348973482 \ldots * 10^{8}$
Or:
$6.1193952857 \ldots . . * 10^{6}=\mathrm{MN} ;-1.2826047142857 \mathrm{e}+6=\mathrm{M}^{2}$
$\left(\left(\left(2^{*} 297.68571428^{*}-1.2826047142857 \mathrm{e}+6\right)-(6.1193952857 \mathrm{e}+6)-\right.\right.$ (297.68571428^2*712983.4)))) / 12^3

Input interpretation:

$$
\begin{aligned}
& \frac{1}{12^{3}}\left(2 \times 297.68571428\left(-1.2826047142857 \times 10^{6}\right)-\right. \\
& \left.6.1193952857 \times 10^{6}-297.68571428^{2} \times 712983.4\right)
\end{aligned}
$$

Result:

$-3.7009283504909762848256103333333333333333333333333333 \ldots \times 10^{7}$
$-3.700928350490976 \ldots . . * 10^{7}$

For $297.68571428=\mathrm{L} ; \quad 712983.4=\mathrm{N} ;-26828.7142857=\mathrm{M}$

We obtain:
(((297.68571428^3* $(-26828.7142857)-$
3*297.68571428^2*712983.4+3*297.68571428*(-26828.7142857^2)-(26828.7142857)*712983.4)))/3456

Input interpretation:

$\frac{1}{3456}\left(297.68571428^{3} \times(-26828.7142857)+3 \times 297.68571428^{2} \times(-712983.4)+\right.$ $\left.3 \times 297.68571428\left(-26828.7142857^{2}\right)-26828.7142857 \times(-712983.4)\right)$

Result:

$-4.4009352245530635708169327344378921158815 \times 10^{8}$
$-4.40093522455306 \ldots * 10^{8}$

For the sum of the three results
-356299059.74215259284305364738611155043135877830151604
-273489734.82049537743641991939666342592592592592592592
-440093522.45530635708169327344378921158815
We obtain:
(-356299059.742152592-273489734.820495377-440093522.455306357)

Input interpretation:

```
-3.56299059742152592\times108 -
    2.73489734820495377\times1\mp@subsup{0}{}{8}-4.40093522455306357\times108
```


Result:

$-1.069882317017954326 \times 10^{9}$
-1069882317.017954326

And:
$\ln -(-356299059.742152592-273489734.820495377-440093522.455306357)$
Input interpretation:

```
\(\log \left(-\left(-3.56299059742152592 \times 10^{8}-\right.\right.\)
    \(\left.\left.2.73489734820495377 \times 10^{8}-4.40093522455306357 \times 10^{8}\right)\right)\)
```


Result:

20.79081449527616204...
$20.790814495 \ldots$...result very near to the black hole entropy 20.5520

Alternative representations:

```
log(-(-3.562990597421525920000\times108 -
    2.734897348204953770000\times1\mp@subsup{0}{}{8}-4.400935224553063570000\times1\mp@subsup{0}{}{8}))=
    log}e(1.069882317017954326000 < 10 %
log(-(-3.562990597421525920000 < 108 -
    2.734897348204953770000\times1\mp@subsup{0}{}{8}-4.400935224553063570000\times1\mp@subsup{0}{}{8}))=
```



```
log(-(-3.562990597421525920000\times108 -
    2.734897348204953770000\times1\mp@subsup{0}{}{8}-4.400935224553063570000\times10 8}))
    -Li 1 (-1.069882316017954326000 < 10 %)
```


Series representations:

$$
\begin{aligned}
& \log \left(-\left(-3.562990597421525920000 \times 10^{8}-\right.\right. \\
& \left.\left.\quad 2.734897348204953770000 \times 10^{8}-4.400935224553063570000 \times 10^{8}\right)\right)= \\
& \log \left(1.069882316017954326000 \times 10^{9}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k} e^{-20.790814494341479804787 k}}{k}
\end{aligned}
$$

$$
\begin{aligned}
& \log \left(-\left(-3.562990597421525920000 \times 10^{8}-2.734897348204953770000 \times 10^{8}-\right.\right. \\
& 2 i \pi\left[\frac{\left.\arg \left(1.069882317017954326000 \times 10^{8}\right)\right)=}{2 \pi}\right]+\log (x)- \\
& \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(1.069882317017954326000 \times 10^{\circ}-x\right)^{k} x^{-k}}{k} \text { for } x<0
\end{aligned}
$$

$$
\begin{aligned}
& \log \left(-\left(-3.562990597421525920000 \times 10^{8}-\right.\right. \\
& \left.\left.2.734897348204953770000 \times 10^{8}-4.400935224553063570000 \times 10^{8}\right)\right)= \\
& {\left[\left.\frac{\arg \left(1.069882317017954326000 \times 10^{9}-z_{0}\right)}{2 \pi} \right\rvert\, \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\right.} \\
& \quad\left[\left.\frac{\arg \left(1.069882317017954326000 \times 10^{9}-z_{0}\right)}{2 \pi} \right\rvert\, \log \left(z_{0}\right)-\right. \\
& \quad \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(1.069882317017954326000 \times 10^{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}
\end{aligned}
$$

Integral representations:

$\log \left(-\left(-3.562990597421525920000 \times 10^{8}-2.734897348204953770000 \times 10^{8}-\right.\right.$
$\left.\left.4.400935224553063570000 \times 10^{8}\right)\right)=\int_{1}^{1.069882317017954326000 \times 10^{9}} \frac{1}{t} d t$
$\log \left(-\left(-3.562990597421525920000 \times 10^{8}-2.734897348204953770000 \times 10^{8}-\right.\right.$
$\left.\left.4.400935224553063570000 \times 10^{8}\right)\right)=$
$\frac{1}{2 i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-20.790814494341479804787 s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s$ for $-1<\gamma<0$
We have also:
$\ln -(-356299059.742152592$-273489734.820495377 -
440093522.455306357)*2Pi+11-2
where 11 and 2 are Lucas numbers

Input interpretation:

$$
\begin{gathered}
\log \left(-\left(-3.56299059742152592 \times 10^{8}-2.73489734820495377 \times 10^{8}-\right.\right. \\
\left.\left.4.40093522455306357 \times 10^{8}\right)\right) \times 2 \pi+11-2
\end{gathered}
$$

$\log (x)$ is the natural logarithm

Result:

139.6325401610155514...
$139.632540 \ldots$ result practically equal to the rest mass of Pion meson 139.57

Alternative representations:

$\log \left(-\left(-3.562990597421525920000 \times 10^{8}-2.734897348204953770000 \times 10^{8}-\right.\right.$
$\left.\left.4.400935224553063570000 \times 10^{8}\right)\right) 2 \pi+$
$11-2=9+2 \pi \log _{e}\left(1.069882317017954326000 \times 10^{9}\right)$

$$
\begin{gathered}
\log \left(-\left(-3.562990597421525920000 \times 10^{8}-2.734897348204953770000 \times 10^{8}-\right.\right. \\
\left.\left.4.400935224553063570000 \times 10^{8}\right)\right) 2 \pi+11-2= \\
9+2 \pi \log (a) \log _{a}\left(1.069882317017954326000 \times 10^{9}\right)
\end{gathered} \begin{array}{r}
\log \left(-\left(-3.562990597421525920000 \times 10^{8}-2.734897348204953770000 \times 10^{8}-\right.\right. \\
\left.\left.4.400935224553063570000 \times 10^{8}\right)\right) 2 \pi+ \\
11-2=9-2 \pi \operatorname{Li}_{1}\left(-1.069882316017954326000 \times 10^{9}\right)
\end{array}
$$

Series representations:

```
\(\log \left(-\left(-3.562990597421525920000 \times 10^{8}-2.734897348204953770000 \times 10^{8}-\right.\right.\)
            \(\left.\left.4.400935224553063570000 \times 10^{8}\right)\right) 2 \pi+11-2=\)
    \(9+2 \pi \log \left(1.069882316017954326000 \times 10^{9}\right)-\)
        \(2 \pi \sum_{k=1}^{\infty} \frac{(-1)^{k} e^{-20.790814494341479804787 k}}{k}\)
```

$\log \left(-\left(-3.562990597421525920000 \times 10^{8}-2.734897348204953770000 \times 10^{8}-\right.\right.$
$\left.\left.4.400935224553063570000 \times 10^{8}\right)\right) 2 \pi+11-2=$
$9+4 i \pi^{2}\left\lfloor\frac{\arg \left(1.069882317017954326000 \times 10^{9}-x\right)}{2 \pi}\right\rfloor+2 \pi \log (x)-$
$2 \pi \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(1.069882317017954326000 \times 10^{9}-x\right)^{k} x^{-k}}{k}$ for $x<0$
$\log \left(-\left(-3.562990597421525920000 \times 10^{8}-2.734897348204953770000 \times 10^{8}-\right.\right.$

$$
\begin{gathered}
\left.\left.4.400935224553063570000 \times 10^{8}\right)\right) 2 \pi+11-2= \\
9+4 i \pi^{2}\left[-\frac{-\pi+\arg \left(\frac{1.069882317017954326000 \times 10^{9}}{z_{0}}\right)+\arg \left(z_{0}\right)}{2 \pi}\right]^{-\frac{4}{2}}+2 \pi \log \left(z_{0}\right)- \\
2 \pi \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(1.069882317017954326000 \times 10^{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}
\end{gathered}
$$

Integral representations:

$\log \left(-\left(-3.562990597421525920000 \times 10^{8}-2.734897348204953770000 \times 10^{8}-\right.\right.$ $\left.\left.4.400935224553063570000 \times 10^{8}\right)\right) 2 \pi+$

$$
11-2=9+2 \pi \int_{1}^{1.069882317017954326000 \times 10^{9}} \frac{1}{t} d t
$$

$$
\begin{aligned}
& \log \left(-\left(-3.562990597421525920000 \times 10^{8}-2.734897348204953770000 \times 10^{8}-\right.\right. \\
& 9+\frac{1}{i} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\left.\left.4.400935224553063570000 \times 10^{8}\right)\right) 2 \pi+11-2=}{e^{-20.790814494341479804787 s} \Gamma(-s)^{2} \Gamma(1+s)} d s \text { for } \\
& -1<\gamma(1-s)
\end{aligned}
$$

From the formula of the coefficients of the " 5 th order" mock theta function $\psi_{1}(q)$
$\mathrm{a}(\mathrm{n}) \sim \operatorname{sqrt}(\mathrm{phi}) * \exp \left(\mathrm{Pi}^{*} \operatorname{sqrt(n/15)}\right) /\left(2^{*} 5^{\wedge}(1 / 4) * \operatorname{sqrt}(\mathrm{n})\right)$
$\sqrt{\phi} \times \frac{\exp \left(\pi \sqrt{\frac{n}{15}}\right)}{2 \sqrt[4]{5} \sqrt{n}}$
we obtain, for $\mathrm{n}=109.3$ the following result:
sqrt(golden ratio) * $\exp \left(\mathrm{Pi}^{*} \operatorname{sqrt}(109.3 / 15)\right) /\left(2^{*} 5^{\wedge}(1 / 4) * \operatorname{sqrt}(109.3)\right)$

Input:

$\sqrt{\phi} \times \frac{\exp \left(\pi \sqrt{\frac{100.3}{15}}\right)}{2 \sqrt[4]{5} \sqrt{109.3}}$

Result:

196.058.
196.058...

Series representations:

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{109.3}{15}}\right)}{2 \sqrt[4]{5} \sqrt{109.3}}= \\
& \quad \frac{\exp \left(\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(7.28667-z_{0}\right)^{k} z_{0}^{k}}{k!}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}}{2 \sqrt[4]{5} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(109.3-z_{0}\right)^{k} z_{0}^{-k}}{k!}} \\
& \text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

$$
\frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{109.3}{15}}\right)}{2 \sqrt[4]{5} \sqrt{109.3}}=\left(\exp \left(i \pi\left[\frac{\arg (\phi-x)}{2 \pi}\right]\right)\right.
$$

$$
\exp \left(\pi \exp \left(i \pi\left[\frac{\arg (7.28667-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(7.28667-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
$$

$$
\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}(\phi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) /
$$

$$
\left(2 \sqrt[4]{5} \exp \left(i \pi\left[\frac{\arg (109.3-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(109.3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
$$

for $(x \in \mathbb{R}$ and $x<0)$

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{109.3}{15}}\right.}{2 \sqrt[4]{5} \sqrt{109.3}}=\left(\operatorname { e x p } \left(\pi\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(7.28667-z_{0}\right) /(2 \pi)\right\rfloor}\right.\right. \\
& \left.z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(7.28667-z_{0}\right) /(2 \pi)\right\rfloor\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(7.28667-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \\
& \left.\quad\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(109.3-z_{0}\right) /(2 \pi)\right\rfloor+1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor}\right) \\
& \left.z_{0}^{-1 / 2\left\lfloor\arg \left(109.3-z_{0}\right) /(2 \pi)\right\rfloor+1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) / \\
& \left(2 \sqrt[4]{5} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(109.3-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)
\end{aligned}
$$

and, with the previous expression, we obtain the following interesting equation:
-1/(1728Pi) (-356299059.742152592-273489734.820495377-
440093522.455306357) - (((sqrt(golden ratio) * $\exp \left(\mathrm{Pi}^{*} \operatorname{sqrt}(109.3 / 15)\right) /$
$\left(2 * 5^{\wedge}(1 / 4) * \operatorname{sqrt}(109.3)\right)$

Input interpretation:

$$
\begin{gathered}
-\frac{1}{1728 \pi}\left(-3.56299059742152592 \times 10^{8}-2.73489734820495377 \times 10^{8}-\right. \\
\left.4.40093522455306357 \times 10^{8}\right)-\sqrt{\phi} \times \frac{\exp \left(\pi \sqrt{\frac{109.3}{15}}\right)}{2 \sqrt[4]{5} \sqrt{109.3}}
\end{gathered}
$$

Result:

196883.87...
196883.87....

196884 is a fundamental number of the following j-invariant

$$
j(\tau)=q^{-1}+744+196884 q+21493760 q^{2}+864299970 q^{3}+20245856256 q^{4}+\cdots
$$

(In mathematics, Felix Klein's j-invariant or j function, regarded as a function of a complex variable τ, is a modular function of weight zero for $\operatorname{SL}(2, Z)$ defined on the upper half plane of complex numbers. Several remarkable properties of j have to do with its q expansion (Fourier series expansion), written as a Laurent series in terms of $q=e^{2 \pi i \tau}$ (the square of the nome), which begins:

$$
j(\tau)=q^{-1}+744+196884 q+21493760 q^{2}+864299970 q^{3}+20245856256 q^{4}+\cdots
$$

Note that j has a simple pole at the cusp, so its q-expansion has no terms below q^{-1}.
All the Fourier coefficients are integers, which results in several almost integers, notably Ramanujan's constant:

$$
e^{\pi \sqrt{163}} \approx 640320^{3}+744
$$

The asymptotic formula for the coefficient of q^{n} is given by

$$
\frac{e^{4 \pi \sqrt{n}}}{\sqrt{2} n^{3 / 4}}
$$

as can be proved by the Hardy-Littlewood circle method)

Series representations:

$$
\left.\left.\left.\begin{array}{l}
\frac{1}{1728 \pi}\left(-3.562990597421525920000 \times 10^{8}-2.734897348204953770000 \times 10^{8}-\right. \\
\left.4.400935224553063570000 \times 10^{8}\right)(-1)-\frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{109.3}{15}}\right)}{2 \sqrt[4]{5} \sqrt{109.3}}= \\
-\left(\left(0 . 1 0 \left(-6.19144859385390234954 \times 10^{6}\right.\right.\right. \\
\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(109.3-z_{0}\right)^{k} z_{0}^{-k}}{k!}+3.34370152488211012002 \\
\pi \exp \left(\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(7.28667-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \\
\left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right) / \\
\text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{array} \sum_{k!}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(109.3-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right)\right)
$$

$$
\frac{1}{1728 \pi}\left(-3.562990597421525920000 \times 10^{8}-2.734897348204953770000 \times 10^{8}-\right.
$$

$$
\left.4.400935224553063570000 \times 10^{8}\right)(-1)-
$$

$$
\frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{109.3}{15}}\right)}{2 \sqrt[4]{5} \sqrt{109.3}}=-((0.100000000000000000000
$$

$$
\left(-6.19144859385390234954 \times 10^{6} \exp \left(i \pi\left\lfloor\frac{\arg (109.3-x)}{2 \pi}\right\rfloor\right)\right.
$$

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}(109.3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+3.34370152488211012002
$$

$$
\pi \exp \left(i \pi\left\lfloor\frac{\arg (\phi-x)}{2 \pi}\right\rfloor\right) \exp \left(\pi \exp \left(i \pi\left\lfloor\frac{\arg (7.28667-x)}{2 \pi}\right\rfloor\right)\right.
$$

$$
\left.\sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(7.28667-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
$$

$$
\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}(\phi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) /
$$

$$
\left.\left(\pi \exp \left(i \pi\left[\frac{\arg (109.3-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(109.3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) \text { for }(x \in
$$

\mathbb{R} and $x<0$)

$$
\begin{aligned}
& \frac{1}{1728 \pi}\left(-3.562990597421525920000 \times 10^{8}-2.734897348204953770000 \times 10^{8}-\right. \\
& \left.4.400935224553063570000 \times 10^{8}\right)(-1)-\frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{109.3}{15}}\right)}{2 \sqrt[4]{5} \sqrt{109.3}}= \\
& -\left(\left(0.100000000000000000000\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(109.3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{\left.-1 / 2 \arg \left(109.3-z_{0}\right) /(2 \pi)\right\rfloor}\right.\right. \\
& \left(-6.19144859385390234954 \times 10^{6}\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(109.3-z_{0}\right) /(2 \pi)\right\rfloor}\right. \\
& z_{0}^{1 / 2\left\lfloor\arg \left(109.3-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(109.3-z_{0}\right)^{k} z_{0}^{-k}}{k!}+ \\
& 3.34370152488211012002 \pi \exp \left(\pi\left(\frac{1}{z_{0}}\right)^{\left.1 / 2 \arg \left(7.28667-z_{0}\right) /(2 \pi)\right\rfloor}\right. \\
& \left.z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(7.28667-z_{0}\right) /(2 \pi)\right\rfloor\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(7.28667-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \\
& \left.\left(\frac{1}{z_{0}}\right)^{\left.1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor\right\rfloor} z_{0}^{1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor}\right) \\
& \left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) /\left(\pi \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(109.3-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right)
\end{aligned}
$$

Page 219

For $\mathrm{x}=2$, we obtain:
$(2)^{\wedge} 1 / 4 *(2)^{\wedge} 1 / 24$
Input:
$\sqrt[4]{2} \sqrt[24]{2}$

Result:

$2^{7 / 24}$
Decimal approximation:
1.224053543304655239132160216826038822387456572683921807769...
1.2240535433....
$(2)^{\wedge} 1 / 4 *(34 * 2)^{\wedge} 1 / 24$
Input:
$\sqrt[4]{2} \sqrt[24]{34 \times 2}$
Result:
$\sqrt[3]{2} \sqrt[24]{17}$

Decimal approximation:
1.417790418185826872580576577513256812406227057233675690246.
1.4177904181858.....
$(2)^{\wedge} 1 / 4 *\left(((154+6 * \text { sqrt645) } * 2))^{\wedge} 1 / 24\right.$

Input:

$\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) \times 2}$

Exact result:

$2 \sqrt[7 / 24]{\sqrt[24]{154+6 \sqrt{645}}}$

Decimal approximation:
1.553798379832567849282597834058691109266699232353452412111...
1.55379837983256.....

Alternate form:

$\sqrt[3]{2} \sqrt[24]{77+3 \sqrt{645}}$

Minimal polynomial:
$x^{48}-39424 x^{24}+8126464$
$(2)^{\wedge} 1 / 4 *(((154-6 * \operatorname{sqrt645}) * 2))^{\wedge} 1 / 24$

Input:

$\sqrt[4]{2} \sqrt[24]{(154-6 \sqrt{645}) \times 2}$

Exact result:

$2 \sqrt[7 / 24]{24} 154-6 \sqrt{645}$

Decimal approximation:

1.248871926166649760260623186603230360634938018543309807283
1.24887192616664976.....

Alternate form:
$\sqrt[3]{2} \sqrt[24]{77-3 \sqrt{645}}$

Minimal polynomial:

$x^{48}-39424 x^{24}+8126464$
$(2)^{\wedge} 1 / 4 *(4 * 2)^{\wedge} 1 / 24$

Input:
 $\sqrt[4]{2} \sqrt[24]{4 \times 2}$

Result:

$2^{3 / 8}$

Decimal approximation:
1.296839554651009665933754117792451159835345149424965512807...
1.296839554651......
$(2)^{\wedge} 1 / 4 *(2764 * 2)^{\wedge} 1 / 24$

Input:

$\sqrt[4]{2} \sqrt[24]{2764 \times 2}$

Result:

$2 \sqrt[3 / 8]{24} 691$

Decimal approximation:

1.702934067394305862706536481195677787140783359413309374154...
1.7029340673943....

From the sum and the difference of the various expressions, we obtain:
$(2)^{\wedge} 1 / 4 *(2)^{\wedge} 1 / 24+(2)^{\wedge} 1 / 4 *\left(34^{*} 2\right)^{\wedge} 1 / 24+(2)^{\wedge} 1 / 4 *\left(\left((154+6 * \text { sqrt645)*2)})^{\wedge} 1 / 24+\right.\right.$ $(2)^{\wedge} 1 / 4 *(4 * 2)^{\wedge} 1 / 24+(2)^{\wedge} 1 / 4 *(2764 * 2)^{\wedge} 1 / 24$

Input:

$$
\begin{aligned}
& \sqrt[4]{2} \sqrt[24]{2}+\sqrt[4]{2} \sqrt[24]{34 \times 2}+ \\
& \sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) \times 2}+\sqrt[4]{2} \sqrt[24]{4 \times 2}+\sqrt[4]{2} \sqrt[24]{2764 \times 2}
\end{aligned}
$$

Exact result:

$$
2^{7 / 24}+2^{3 / 8}+\sqrt[3]{2} \sqrt[24]{17}+2^{3 / 8} \sqrt[24]{691}+2^{7 / 24} \sqrt[24]{154+6 \sqrt{645}}
$$

Decimal approximation:

7.195415963368365489635625227386115691036511371109324797088...
7.195415963368...

Alternate forms:

$2^{7 / 24}(1+\sqrt[12]{2}+\sqrt[24]{34}+\sqrt[12]{2} \sqrt[24]{691}+\sqrt[24]{154+6 \sqrt{645}})$
$2^{7 / 24}(1+\sqrt[12]{2}+\sqrt[24]{34}+\sqrt[12]{2} \sqrt[24]{691}+\sqrt[24]{2(77+3 \sqrt{645})})$
$(2)^{\wedge} 1 / 4 *(2)^{\wedge} 1 / 24-(2)^{\wedge} 1 / 4 *(34 * 2)^{\wedge} 1 / 24-(2)^{\wedge} 1 / 4 *\left(\left((154+6 * \text { sqrt645)*2)})^{\wedge} 1 / 24-\right.\right.$ $(2)^{\wedge} 1 / 4 *(4 * 2)^{\wedge} 1 / 24-(2)^{\wedge} 1 / 4 *(2764 * 2)^{\wedge} 1 / 24$

Input:

$$
\begin{aligned}
& \sqrt[4]{2} \sqrt[24]{2}-\sqrt[4]{2} \sqrt[24]{34 \times 2}- \\
& \sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) \times 2}-\sqrt[4]{2} \sqrt[24]{4 \times 2}-\sqrt[4]{2} \sqrt[24]{2764 \times 2}
\end{aligned}
$$

Exact result:

$2^{7 / 24}-2^{3 / 8}-\sqrt[3]{2} \sqrt[24]{17}-2^{3 / 8} \sqrt[24]{691}-2 \sqrt{7 / 24} \sqrt[24]{154+6 \sqrt{645}}$

Decimal approximation:

$-4.74730887675905501137130479373403804626159822574148118154 \ldots$
-4.747308876759055....

Alternate forms:

$-2^{7 / 24}(-1+\sqrt[12]{2}+\sqrt[24]{34}+\sqrt[12]{2} \sqrt[24]{691}+\sqrt[24]{154+6 \sqrt{645}})$
$-2^{7 / 24}(-1+\sqrt[12]{2}+\sqrt[24]{34}+\sqrt[12]{2} \sqrt[24]{691}+\sqrt[24]{2(77+3 \sqrt{645})})$
$(2)^{\wedge} 1 / 4 *(2)^{\wedge} 1 / 24+(2)^{\wedge} 1 / 4 *(34 * 2)^{\wedge} 1 / 24+(2)^{\wedge} 1 / 4 *\left(\left((154-6 * \text { sqrt645)*2)})^{\wedge} 1 / 24+\right.\right.$ $(2)^{\wedge} 1 / 4 *(4 * 2)^{\wedge} 1 / 24+(2)^{\wedge} 1 / 4 *(2764 * 2)^{\wedge} 1 / 24$

Input:

$$
\begin{aligned}
& \sqrt[4]{2} \sqrt[24]{2}+\sqrt[4]{2} \sqrt[24]{34 \times 2}+ \\
& \sqrt[4]{2} \sqrt[24]{(154-6 \sqrt{645}) \times 2}+\sqrt[4]{2} \sqrt[24]{4 \times 2}+\sqrt[4]{2} \sqrt[24]{2764 \times 2}
\end{aligned}
$$

Exact result:

$2^{7 / 24}+2^{3 / 8}+\sqrt[3]{2} \sqrt[24]{17}+2^{3 / 8} \sqrt[24]{691}+2^{7 / 24} \sqrt[24]{154-6 \sqrt{645}}$

Decimal approximation:

$6.890489509702447400613650579930654942404750157299182192260 \ldots$
6.8904895097024474.....

Alternate forms:

$2^{7 / 24}(1+\sqrt[12]{2}+\sqrt[24]{34}+\sqrt[12]{2} \sqrt[24]{691}+\sqrt[24]{154-6 \sqrt{645}})$
$2^{7 / 24}(1+\sqrt[12]{2}+\sqrt[24]{34}+\sqrt[12]{2} \sqrt[24]{691}+\sqrt[24]{2(77-3 \sqrt{645})})$
$(2)^{\wedge} 1 / 4 *(2)^{\wedge} 1 / 24-(2)^{\wedge} 1 / 4 *(34 * 2)^{\wedge} 1 / 24-(2)^{\wedge} 1 / 4 *\left(\left((154-6 * \text { sqrt645)*2)})^{\wedge} 1 / 24-\right.\right.$ $(2)^{\wedge} 1 / 4 *(4 * 2)^{\wedge} 1 / 24-(2)^{\wedge} 1 / 4 *(2764 * 2)^{\wedge} 1 / 24$

Input:

```
\(\sqrt[4]{2} \sqrt[24]{2}-\sqrt[4]{2} \sqrt[24]{34 \times 2}-\)
    \(\sqrt[4]{2} \sqrt[24]{(154-6 \sqrt{645}) \times 2}-\sqrt[4]{2} \sqrt[24]{4 \times 2}-\sqrt[4]{2} \sqrt[24]{2764 \times 2}\)
```


Exact result:

$2^{7 / 24}-2^{3 / 8}-\sqrt[3]{2} \sqrt[24]{17}-2^{3 / 8} \sqrt[24]{691}-2^{7 / 24} \sqrt[24]{154-6 \sqrt{645}}$

Decimal approximation:

$-4.44238242309313692234933014627857729762983701193133857672 \ldots$
-4.4423824230931....

Alternate forms:

$-2^{7 / 24}(-1+\sqrt[12]{2}+\sqrt[24]{34}+\sqrt[12]{2} \sqrt[24]{691}+\sqrt[24]{154-6 \sqrt{645}})$
$-2^{7 / 24}(-1+\sqrt[12]{2}+\sqrt[24]{34}+\sqrt[12]{2} \sqrt[24]{691}+\sqrt[24]{2(77-3 \sqrt{645})})$

From the product and the division, we obtain:
$\left(\left((2)^{\wedge} 1 / 4 *(2)^{\wedge} 1 / 24\right)\right) *\left(\left((2)^{\wedge} 1 / 4 *\left(34^{*} 2\right)^{\wedge} 1 / 24\right)\right) * \quad\left(\left((2)^{\wedge} 1 / 4 *\right.\right.$ $\left(\left((154+6 * \text { sqrt645)*2) })^{\wedge} 1 / 24\right)\right) *\left(\left((2)^{\wedge} 1 / 4 *(4 * 2)^{\wedge} 1 / 24\right)\right) *\left(\left((2)^{\wedge} 1 / 4 *\right.\right.$ $\left.\left.(2764 * 2)^{\wedge} 1 / 24\right)\right)$

Input:

$(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{34 \times 2})$

$$
(\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) \times 2})(\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2})
$$

Exact result:

$2 \times 2 \sqrt[2 / 3]{24} 11747(154+6 \sqrt{645})$

Decimal approximation:

5.955129343663127583910514960104337690361486792157509162239
5.9551293436631....

Alternate form:

$2 \times 2^{17 / 24} \sqrt[24]{11747(77+3 \sqrt{645})}$

Minimal polynomial:

$x^{48}-3978116632177278976 x^{24}+82743762879974765661427736630001664$
$\left(\left((2)^{\wedge} 1 / 4 *(2)^{\wedge} 1 / 24\right)\right) *\left(\left((2)^{\wedge} 1 / 4 *(34 * 2)^{\wedge} 1 / 24\right)\right) *\left(\left((2)^{\wedge} 1 / 4 *(((154-\right.\right.$
$\left.\left.\left.\left.\left.6^{*} \operatorname{sqrt645}\right)^{*} 2\right)\right)^{\wedge} 1 / 24\right)\right)^{*}\left(\left((2)^{\wedge} 1 / 4 *(4 * 2)^{\wedge} 1 / 24\right)\right) *\left(\left((2)^{\wedge} 1 / 4 *(2764 * 2)^{\wedge} 1 / 24\right)\right)$

Input:

$$
\begin{aligned}
& (\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{34 \times 2}) \\
& (\sqrt[4]{2} \sqrt[24]{(154-6 \sqrt{645}) \times 2})(\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2})
\end{aligned}
$$

Exact result:

$2 \times 2^{2 / 3} \sqrt[24]{11747(154-6 \sqrt{645})}$

Decimal approximation:

4.786460039167703480953084500213061264401073542119658838964...
4.7864600391677....

Alternate form:

$2 \times 2^{17 / 24} \sqrt[24]{11747(77-3 \sqrt{645})}$

Minimal polynomial:

$x^{48}-3978116632177278976 x^{24}+82743762879974765661427736630001664$
$1 /\left(\left((2)^{\wedge} 1 / 4 *(2)^{\wedge} 1 / 24\right)\right) * 1 /\left(\left((2)^{\wedge} 1 / 4 *(34 * 2)^{\wedge} 1 / 24\right)\right) * 1 /\left(\left((2)^{\wedge} 1 / 4 *\right.\right.$ $\left(\left((154+6 * \text { sqrt645)*2) })^{\wedge} 1 / 24\right)\right) * 1 /\left(\left((2)^{\wedge} 1 / 4 *(4 * 2)^{\wedge} 1 / 24\right)\right) * 1 /\left(\left((2)^{\wedge} 1 / 4 *\right.\right.$ (2764*2)^1/24))

Input:

$$
\frac{\frac{1}{\sqrt[4]{2} \sqrt[24]{2}} \times \frac{1}{\sqrt[4]{2} \sqrt[24]{34 \times 2}} \times}{\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) \times 2}} \times \frac{1}{\sqrt[4]{2} \sqrt[24]{4 \times 2}} \times \frac{1}{\sqrt[4]{2} \sqrt[24]{2764 \times 2}}
$$

Exact result:

$\frac{1}{2 \times 2^{2 / 3} \sqrt[24]{11747(154+6 \sqrt{645})}}$

Decimal approximation:

0.167922465204572464542118064342010499761419509876299815233...
0.167922465204572...

Alternate forms:

$\frac{1}{2 \times 2^{17 / 24} \sqrt[24]{11747(77+3 \sqrt{645})}}$
$\frac{\sqrt[24]{\frac{77-3 \sqrt{645}}{364157}}}{2 \times 2^{19 / 24}}$

Minimal polynomial:

$82743762879974765661427736630001664 x^{48}-3978116632177278976 x^{24}+$ 1

$$
\begin{aligned}
& 1 /\left(\left((2)^{\wedge} 1 / 4 *(2)^{\wedge} 1 / 24\right)\right) * 1 /\left(\left((2)^{\wedge} 1 / 4 *\left(34^{*} 2\right)^{\wedge} 1 / 24\right)\right) * 1 /\left(\left((2)^{\wedge} 1 / 4 *(((154-\right.\right. \\
& \left.\left.\left.\left.\left.6^{*} \operatorname{sqrt645}\right)^{*} 2\right)\right)^{\wedge} 1 / 24\right)\right)^{*} 1 /\left(\left((2)^{\wedge} 1 / 4 *\left(4^{*} 2\right)^{\wedge} 1 / 24\right)\right) * 1 /\left(\left((2)^{\wedge} 1 / 4 *\left(2764^{*} 2\right)^{\wedge} 1 / 24\right)\right)
\end{aligned}
$$

Input:

$$
\frac{\frac{1}{\sqrt[4]{2} \sqrt[24]{2}} \times \frac{1}{\sqrt[4]{2} \sqrt[24]{34 \times 2}} \times}{\sqrt[4]{2} \sqrt[24]{(154-6 \sqrt{645}) \times 2}} \times \frac{1}{\sqrt[4]{2} \sqrt[24]{4 \times 2}} \times \frac{1}{\sqrt[4]{2} \sqrt[24]{2764 \times 2}}
$$

Exact result:

1
$2 \times 2 \sqrt[2 / 3]{24} \sqrt{11747(154-6 \sqrt{645})}$

Decimal approximation:

$0.208922667653543308185236558412405147354168704321026971710 \ldots$
0.2089226676535433...

Alternate forms:

$\sqrt[24]{\frac{77}{3203158846688198656}+\frac{3 \sqrt{645}}{3203158846688198656}}$
\qquad
$2 \times 2^{17 / 24} \sqrt[24]{11747(77-3 \sqrt{645})}$

Minimal polynomial:

$82743762879974765661427736630001664 x^{48}-3978116632177278976 x^{24}+$ 1

Now, we obtain also:
$(987-18)^{*} \operatorname{colog}\left(\left(\left(\left(\left(1 /\left(\left((2)^{\wedge} 1 / 4 *(2)^{\wedge} 1 / 24\right)\right) * 1 /\left(\left((2)^{\wedge} 1 / 4 *\left(34^{*} 2\right)^{\wedge} 1 / 24\right)\right) * 1 /\right.\right.\right.\right.\right.$ $\left(\left((2)^{\wedge} 1 / 4 *\left(\left((154+6 * \text { sqrt645)*2))})^{\wedge} 1 / 24\right)\right) * 1 /\left(\left((2)^{\wedge} 1 / 4 *(4 * 2)^{\wedge} 1 / 24\right)\right) *\right.\right.$ $\left.\left.\left.\left.\left.1 /\left(\left((2)^{\wedge} 1 / 4 *\left(2764^{*} 2\right)^{\wedge} 1 / 24\right)\right)\right)\right)\right)\right)\right)$

Where 987 is a Fibonacci number and 18 is a Lucas number

Input:

(987-18) $\left(-\log \left(\frac{1}{\sqrt[4]{2} \sqrt[24]{2}} \times \frac{1}{\sqrt[4]{2} \sqrt[24]{34 \times 2}} \times\right.\right.$

$$
\left.\frac{1}{\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) \times 2}} \times \frac{1}{\sqrt[4]{2} \sqrt[24]{4 \times 2}} \times \frac{1}{\sqrt[4]{2} \sqrt[24]{2764 \times 2}}\right)
$$

$\log (x)$ is the natural logarithm

Exact result:

$-969 \log \left(\frac{1}{2 \times 2^{2 / 3} \sqrt[24]{11747(154+6 \sqrt{645})}}\right)$

Decimal approximation:

1728.941082144663417169561966684201877211254848111879753949...
1728.94108214....

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

Property:

$-969 \log \left(\frac{1}{2 \times 2^{2 / 3} \sqrt[24]{11747(154+6 \sqrt{645})}}\right)$ is a transcendental number

Alternate forms:

$$
\begin{aligned}
& \frac{323}{8}(41 \log (2)+\log (11747(77+3 \sqrt{645}))) \\
& \frac{13243 \log (2)}{8}+\frac{323}{8} \log (11747(77+3 \sqrt{645}))
\end{aligned}
$$

$$
\frac{323}{8}(41 \log (2)+\log (17)+\log (691)+\log (77+3 \sqrt{645}))
$$

Alternative representations:

$$
\left.\begin{array}{l}
(987-18)(-1) \log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2}) \\
\log _{e}\left(\frac{(\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) 2})((\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2}))))=-969}{(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{8})(\sqrt[4]{2} \sqrt[24]{68})(\sqrt[4]{2} \sqrt[24]{5528})(\sqrt[4]{2} \sqrt[24]{2(154+6 \sqrt{645})})}\right)
\end{array}\right)
$$

$$
(987-18)(-1) \log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) 2})
$$

$$
((\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2}))))=-969 \log (a)
$$

$$
\log _{a}\left(\frac{1}{(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{8})(\sqrt[4]{2} \sqrt[24]{68})(\sqrt[4]{2} \sqrt[24]{5528})(\sqrt[4]{2} \sqrt[24]{2(154+6 \sqrt{645})})}\right)
$$

$$
(987-18)(-1) \log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) 2})
$$

$$
((\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2}))))=969 \mathrm{Li}_{1}
$$

$$
\left.1-\frac{1}{(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{8})(\sqrt[4]{2} \sqrt[24]{68})(\sqrt[4]{2} \sqrt[24]{5528})(\sqrt[4]{2} \sqrt[24]{2(154+6 \sqrt{645})})}\right)
$$

Series representations:

$$
\begin{aligned}
& (987-18)(-1) \log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2}) \\
& 969 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1}{2 \times 2^{2 / 3} \sqrt[24]{11747(154+6 \sqrt{645})}}\right)^{k}}{k}
\end{aligned}
$$

$$
(987-18)(-1) \log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2})
$$

$$
(\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) 2})((\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2}))))=
$$

$$
969 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1}{2 \times 2^{17 / 24} \sqrt[24]{11747(77+3 \sqrt{645})}}\right)^{k}}{k}
$$

$$
(987-18)(-1) \log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2})
$$

Integral representation:

$$
\begin{aligned}
& (987-18)(-1) \log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2}) \\
& -969 \int_{1}^{\left.2 \times 2^{2 / 3} \sqrt[24]{\sqrt[24]{11747(154+6 \sqrt{645})}}\right)} \frac{1}{t} d t
\end{aligned}
$$

We have also that:
$1 / 13^{*}(987-18) * \operatorname{colog}\left(\left(\left(\left(\left(1 /\left(\left((2)^{\wedge} 1 / 4 *(2)^{\wedge} 1 / 24\right)\right) * 1 /\left(\left((2)^{\wedge} 1 / 4 *(34 * 2)^{\wedge} 1 / 24\right)\right) * 1 /\right.\right.\right.\right.\right.$
$\left(\left((2)^{\wedge} 1 / 4 *(((154+6 * \operatorname{sqrt645}) * 2))^{\wedge} 1 / 24\right)\right) * 1 /\left(\left((2)^{\wedge} 1 / 4 *(4 * 2)^{\wedge} 1 / 24\right)\right)^{*}$
$\left.\left.\left.\left.\left.1 /\left(\left((2)^{\wedge} 1 / 4 *(2764 * 2)^{\wedge} 1 / 24\right)\right)\right)\right)\right)\right)\right)+2 \mathrm{Pi}$

Input:

$$
\begin{aligned}
& \frac{1}{13}(987-18) \\
& \left(-\log \left(\frac{1}{\sqrt[4]{2} \sqrt[24]{2}} \times \frac{1}{\sqrt[4]{2} \sqrt[24]{34 \times 2}} \times \frac{1}{\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) \times 2}} \times \frac{1}{\sqrt[4]{2} \sqrt[24]{4 \times 2}} \times\right.\right. \\
& \left.\left.\frac{1}{\sqrt[4]{2} \sqrt[24]{2764 \times 2}}\right)\right)+2 \pi
\end{aligned}
$$

$\log (x)$ is the natural logarithm

Exact result:

$2 \pi-\frac{969}{13} \log \left(\frac{1}{2 \times 2^{2 / 3} \sqrt[24]{11747(154+6 \sqrt{645})}}\right)$

Decimal approximation:

139.2786531644613877976608226653437655538754809612025004072...
$139.278653164 \ldots$. result practically equal to the rest mass of Pion meson 139.57

Alternate forms:

$2 \pi+\frac{13243 \log (2)}{104}+\frac{323}{104} \log (11747(77+3 \sqrt{645}))$
$2 \pi+\frac{323}{104}(41 \log (2)+\log (11747(77+3 \sqrt{645})))$
$\frac{1}{104}(208 \pi+323(41 \log (2)+\log (17)+\log (691)+\log (77+3 \sqrt{645})))$

Alternative representations:

$$
\frac{1}{13}(987-18)(-\log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) 2})
$$

$$
((\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2})))))+2 \pi=2 \pi-\frac{969}{13} \log _{e}
$$

$(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{8})(\sqrt[4]{2} \sqrt[24]{68})(\sqrt[4]{2} \sqrt[24]{5528})(\sqrt[4]{2} \sqrt[24]{2(154+6 \sqrt{645})}))$
$\frac{1}{13}(987-18)(-\log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) 2})$

$$
((\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2})))))+2 \pi=2 \pi-\frac{969}{13} \log (a) \log _{a}
$$

$(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{8})(\sqrt[4]{2} \sqrt[24]{68})(\sqrt[4]{2} \sqrt[24]{5528})(\sqrt[4]{2} \sqrt[24]{2(154+6 \sqrt{645})}))$

$$
\begin{aligned}
& \frac{1}{13}(987-18)(-\log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2}) \\
& (\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) 2})((\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2})))))+ \\
& \left.2 \pi=2 \pi+\frac{969}{13} \mathrm{Li}_{1}\left(1-\frac{1}{(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{8})(\sqrt[4]{2} \sqrt[24]{68})(\sqrt[4]{2} \sqrt[24]{5528})(\sqrt[4]{2} \sqrt[24]{2(154+6 \sqrt{645})})}\right)\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{13}(987-18)(-\log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) 2}) \\
& ((\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2})))))+2 \pi= \\
& 2 \pi+\frac{969}{13} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1}{2 \times 2^{2 / 3} \sqrt[24]{11747(154+6 \sqrt{645})}}\right)^{k}}{k} \\
& \frac{1}{13}(987-18)(-\log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) 2}) \\
& ((\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2})))))+2 \pi= \\
& \left.2 \pi+\frac{969}{13} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1}{2 \times 2^{17 / 24} \sqrt[24]{11747(77+3 \sqrt{645})}}\right.}{k}\right)^{k}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{13}(987-18)(-\log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) 2}) \\
& \left.2 \pi-\frac{1938}{13} i \pi\left(\frac{\left.\arg \left(\frac{\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2}))}{2 \times 2^{2 / 3} \sqrt[24]{11747(154+6 \sqrt{645})}}-x\right)\right)+2 \pi=}{2 \pi}\right) \right\rvert\,-\frac{969 \log (x)}{13}+ \\
& \frac{969}{13} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{1}{2 \times 2^{2 / 3} \sqrt[24]{11747(154+6 \sqrt{645})}}-x\right)^{k} x^{-k}}{k} \text { for } x<0
\end{aligned}
$$

Integral representation:

$$
\begin{aligned}
& \frac{1}{13}(987-18)(-\log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2}) \\
& (\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) 2})((\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2})))))+ \\
& 2 \pi=2 \pi-\frac{969}{13} \int_{1}^{2 \times 2^{2 / 3} \sqrt[24]{11747(154+6 \sqrt{645})}} \frac{1}{t} d t
\end{aligned}
$$

And:
$(55+13+2) * \operatorname{colog}\left(\left(\left(\left(\left(1 /\left(\left((2)^{\wedge} 1 / 4 *(2)^{\wedge} 1 / 24\right)\right) * 1 /\left(\left((2)^{\wedge} 1 / 4 *(34 * 2)^{\wedge} 1 / 24\right)\right) * 1 /\right.\right.\right.\right.\right.$ $\left(\left((2)^{\wedge} 1 / 4 *(((154+6 * \operatorname{sqrt645}) * 2))^{\wedge} 1 / 24\right)\right) * 1 /\left(\left((2)^{\wedge} 1 / 4 *(4 * 2)^{\wedge} 1 / 24\right)\right) *$ $\left.\left.\left.\left.\left.1 /\left(\left((2)^{\wedge} 1 / 4 *(2764 * 2)^{\wedge} 1 / 24\right)\right)\right)\right)\right)\right)\right)$

Where 55, 13 and 2 are Fibonacci numbers

Input:

$(55+13+2)\left(-\log \left(\frac{1}{\sqrt[4]{2} \sqrt[24]{2}} \times \frac{1}{\sqrt[4]{2} \sqrt[24]{34 \times 2}} \times\right.\right.$

$$
\left.\left.\frac{1}{\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) \times 2}} \times \frac{1}{\sqrt[4]{2} \sqrt[24]{4 \times 2}} \times \frac{1}{\sqrt[4]{2} \sqrt[24]{2764 \times 2}}\right)\right)
$$

$\log (x)$ is the natural logarithm

Exact result:

$-70 \log \left(\frac{1}{2 \times 2^{2 / 3} \sqrt[24]{11747(154+6 \sqrt{645})}}\right)$

Decimal approximation:

124.8977045924937453063667055396224266303280076035413650943.
124.897704592... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18

Property:

$-70 \log \left(\frac{1}{2 \times 2^{2 / 3} \sqrt[24]{11747(154+6 \sqrt{645})}}\right)$ is a transcendental number

Alternate forms:

$\frac{35}{12}(41 \log (2)+\log (11747(77+3 \sqrt{645})))$
$\frac{1435 \log (2)}{12}+\frac{35}{12} \log (11747(77+3 \sqrt{645}))$
$\frac{35}{12}(41 \log (2)+\log (17)+\log (691)+\log (77+3 \sqrt{645}))$

Alternative representations:

$$
\begin{aligned}
& (55+13+2)(-1) \log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2}) \\
& (\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) 2})((\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2}))))=-70 \\
& \log _{e}\left(\frac{1}{(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{8})(\sqrt[4]{2} \sqrt[24]{68})(\sqrt[4]{2} \sqrt[24]{5528})(\sqrt[4]{2} \sqrt[24]{2(154+6 \sqrt{645})})}\right) \\
& (55+13+2)(-1) \log \left(1 /\left((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2})\left(\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645})^{2}}\right)\right.\right. \\
& ((\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2}))))=-70 \log (a) \\
& \log _{a}\left(\frac{1}{(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{8})(\sqrt[4]{2} \sqrt[24]{68})(\sqrt[4]{2} \sqrt[24]{5528})(\sqrt[4]{2} \sqrt[24]{2(154+6 \sqrt{645})})}\right) \\
& (55+13+2)(-1) \log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645})} 2) \\
& ((\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2})))=70 \mathrm{Li}_{1} \\
& \left.1-\frac{1}{(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{8})(\sqrt[4]{2} \sqrt[24]{68})(\sqrt[4]{2} \sqrt[24]{5528})(\sqrt[4]{2} \sqrt[24]{2(154+6 \sqrt{645})})}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& (55+13+2)(-1) \log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2}) \\
& (\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) 2})((\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2}))))= \\
& 70 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1}{2 \times 2^{2 / 3} \sqrt[24]{11747(154+6 \sqrt{645})}}\right)^{k}}{k}
\end{aligned}
$$

$$
\begin{aligned}
& (55+13+2)(-1) \log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2}) \\
& (\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) 2})((\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2}))))= \\
& \left.70 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1}{2 \times 2^{17 / 24} \sqrt[24]{11747(77+3 \sqrt{645})}}\right.}{k}\right)^{k} \\
& (55+13+2)(-1) \log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2}) \\
& (\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) 2})((\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2}))))= \\
& -140 i \pi\left[\left.\frac{\arg \left(\frac{1}{2 \times 2^{2 / 3} \sqrt[24]{11747(154+6 \sqrt{645})}}-x\right)}{2 \pi} \right\rvert\,-70 \log (x)+\right. \\
& 70 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{1}{2 \times 2^{2 / 3} \sqrt[24]{11747(154+6 \sqrt{645})}}-x\right)^{k} x^{-k}}{k} \text { for } x<0
\end{aligned}
$$

Integral representation:

$$
\begin{aligned}
& (55+13+2)(-1) \log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2}) \\
& \frac{(\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) 2})((\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2}))))}{1} \frac{1}{t} d t
\end{aligned}
$$

And also:
$(76+2) * \operatorname{colog}\left(\left(\left(\left(\left(1 /\left(\left((2)^{\wedge} 1 / 4 *(2)^{\wedge} 1 / 24\right)\right) * 1 /\left(\left((2)^{\wedge} 1 / 4 *(34 * 2)^{\wedge} 1 / 24\right)\right) * 1 /\left(\left((2)^{\wedge} 1 / 4\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.*\left(\left((154+6 * \operatorname{sqrt645})^{*} 2\right)\right)^{\wedge} 1 / 24\right)\right)^{*} 1 /\left(\left((2)^{\wedge} 1 / 4 *\left(4^{*} 2\right)^{\wedge} 1 / 24\right)\right)^{*} 1 /\left(\left((2)^{\wedge} 1 / 4 *\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.(2764 * 2)^{\wedge} 1 / 24\right)\right)\right)\right)\right)\right)\right)+1 /$ golden ratio

Where 76 and 2 are Lucas numbers

Input:

$$
\begin{aligned}
& (76+2)\left(-\log \left(\frac{1}{\sqrt[4]{2} \sqrt[24]{2}} \times \frac{1}{\sqrt[4]{2} \sqrt[24]{34 \times 2}} \times\right.\right. \\
& \left.\left.\frac{1}{\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) \times 2}} \times \frac{1}{\sqrt[4]{2} \sqrt[24]{4 \times 2}} \times \frac{1}{\sqrt[4]{2} \sqrt[24]{2764 \times 2}}\right)\right)+\frac{1}{\phi}
\end{aligned}
$$

Exact result:

$\frac{1}{\phi}-78 \log \left(\frac{1}{2 \times 2^{2 / 3} \sqrt[24]{11747(154+6 \sqrt{645})}}\right)$

Decimal approximation:

139.7897619632429253324417730070877706486572319380375696816...
$139.789761963 \ldots$ result practically equal to the rest mass of Pion meson 139.57

Property:

$\frac{1}{\phi}-78 \log \left(\frac{1}{2 \times 2^{2 / 3} \sqrt[24]{11747(154+6 \sqrt{645})}}\right)$ is a transcendental number

Alternate forms:

$$
\begin{aligned}
& \frac{1}{\phi}+\frac{533 \log (2)}{4}+\frac{13}{4} \log (11747(77+3 \sqrt{645})) \\
& \frac{1}{\phi}+\frac{13}{4}(41 \log (2)+\log (11747(77+3 \sqrt{645})))
\end{aligned}
$$

```
\(\underline{13 \phi(41 \log (2)+\log (17)+\log (691)+\log (77+3 \sqrt{645}))+4}\)

\section*{Alternative representations:}
\[
(76+2)(-1) \log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) 2})
\]
\[
((\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2}))))+\frac{1}{\phi}=-78 \log (a) \log _{a}\left(\frac{1}{(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{8})(\sqrt[4]{2} \sqrt[24]{68})(\sqrt[4]{2} \sqrt[24]{5528})(\sqrt[4]{2} \sqrt[24]{2(154}+6 \sqrt{645}))}+\frac{1}{\phi}\right.
\]
\[
(76+2)(-1) \log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) 2})
\]
\[
((\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2}))))+\frac{1}{\phi}=78 \operatorname{Li}_{1}\left(1-\frac{1}{(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{8})(\sqrt[4]{2} \sqrt[24]{68})(\sqrt[4]{2} \sqrt[24]{5528})(\sqrt[4]{2} \sqrt[24]{2(154}+6 \sqrt{645})}\right)\left(\frac{1}{\phi}\right.
\]

\section*{Series representations:}
\[
\begin{aligned}
& (76+2)(-1) \log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2}) \\
& (\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) 2})((\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2}))))+\frac{1}{\phi}= \\
& \frac{1}{\phi}+78 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1}{2 \times 2^{2 / 3} \sqrt[24]{11747(154+6 \sqrt{645})}}\right)}{k}
\end{aligned}
\]
\[
\begin{aligned}
& (76+2)(-1) \log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) 2}) \\
& ((\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2}))))+\frac{1}{\phi}=-78 \log _{e}\left(\frac{1}{(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{8})(\sqrt[4]{2} \sqrt[24]{68})(\sqrt[4]{2} \sqrt[24]{5528})(\sqrt[4]{2} \sqrt[24]{2(154+6 \sqrt{645})}))+\frac{1}{\phi}}\right.
\end{aligned}
\]
\[
\begin{aligned}
& (76+2)(-1) \log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2}) \\
& (\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) 2})((\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2}))))+\frac{1}{\phi}= \\
& \frac{1}{\phi}+78 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1}{2 \times 2^{17 / 24} \sqrt[24]{11747(77+3 \sqrt{645})}}\right)^{k}}{k}
\end{aligned}
\]
\[
(76+2)(-1) \log (1 /((\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2})(\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) 2})
\]
\[
((\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2}))))+\frac{1}{\phi}=
\]
\[
\frac{1}{\phi}-156 i \pi\left|\frac{\arg \left(\frac{1}{2 \times 2^{2 / 3} \sqrt[24]{11747(154+6 \sqrt{645})}}-x\right)}{2 \pi}\right|-78 \log (x)+
\]
\[
78 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{1}{2 \times 2^{2 / 3} \sqrt[24]{11747(154+6 \sqrt{645})}}-x\right)^{k} x^{-k}}{k} \text { for } x<0
\]

\section*{Integral representation:}
\[
\begin{aligned}
& (76+2)(-1) \log (1 /(\sqrt[4]{2} \sqrt[24]{34 \times 2})(\sqrt[4]{2} \sqrt[24]{2}) \\
& (\sqrt[4]{2} \sqrt[24]{(154+6 \sqrt{645}) 2})((\sqrt[4]{2} \sqrt[24]{4 \times 2})(\sqrt[4]{2} \sqrt[24]{2764 \times 2}))))+ \\
& \frac{1}{\phi}=\frac{1}{\phi}-78 \int_{1}^{2 \times 2^{2 / 3} \sqrt[24]{11747(154+6 \sqrt{645})}} \frac{1}{t} d t
\end{aligned}
\]

Page 271


For \(\alpha=\pi\) and \(\beta=\pi\), we obtain:
\(\left(\left((1 / \mathrm{Pi}+1 / \mathrm{Pi}+2 / 3)^{\wedge} 1 / 4\right)\right)\)

\section*{Input:}
\(\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}\)

\section*{Exact result:}
\(\sqrt[4]{\frac{2}{3}+\frac{2}{\pi}}\)

\section*{Decimal approximation:}
\(1.068464184825644425897574377964239345880285534736675925161 \ldots\)
1.06846418482....

\section*{Property:}
\(\sqrt[4]{\frac{2}{3}+\frac{2}{\pi}}\) is a transcendental number
Alternate form:
\(\sqrt[4]{\frac{2(3+\pi)}{3 \pi}}\)

All 4th roots of \(\mathbf{2 / 3}+\mathbf{2} / \boldsymbol{\pi}\) :
\(\sqrt[4]{\frac{2}{3}+\frac{2}{\pi}} e^{0} \approx 1.06846\) (real, principal root)
\(\sqrt[4]{\frac{2}{3}+\frac{2}{\pi}} e^{(i \pi) / 2} \approx 1.06846 i\)
\(\sqrt[4]{\frac{2}{3}+\frac{2}{\pi}} e^{i \pi} \approx-1.0685\) (real root)
\(\sqrt[4]{\frac{2}{3}+\frac{2}{\pi}} e^{-(i \pi) / 2} \approx-1.0685 i\)

Alternative representations:
\(\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}=\sqrt[4]{\frac{2}{3}+\frac{2}{180^{\circ}}}\)
\(\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}=\sqrt[4]{\frac{2}{3}+-\frac{2}{i \log (-1)}}\)
\(\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}=\sqrt[4]{\frac{2}{3}+\frac{2}{\cos ^{-1}(-1)}}\)

Series representations:
\(\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}=\sqrt[4]{\frac{2}{3}+\frac{1}{2 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}}}\)
\(\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}=\sqrt[4]{\frac{2}{3}+\frac{2}{\sum_{k=0}^{\infty}-\frac{4(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}}}\)
\(\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}=\sqrt[4]{\frac{2}{3}+\frac{2}{\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)}}\)

\section*{Integral representations:}
\(\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}=\sqrt[4]{\frac{2}{3}+\frac{1}{\int_{0}^{\infty} \frac{1}{1+t^{2}} d t}}\)
\(\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}=\sqrt[4]{\frac{2}{3}+\frac{1}{\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t}}\)
\(\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}=\sqrt[4]{\frac{2}{3}+\frac{1}{\int_{0}^{\operatorname{son}(t)} \frac{\sin }{t} d t}}\)

We have that:
\(\left(\left(\left(1 /\left(\left((1 / \mathrm{Pi}+1 / \mathrm{Pi}+2 / 3)^{\wedge} 1 / 4\right)\right)\right)\right)\right)^{\wedge} 1 / 8\)

\section*{Input:}
\(\sqrt[8]{\frac{1}{\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}}}\)

\section*{Exact result:}
\(\frac{1}{\sqrt[32]{\frac{2}{3}+\frac{2}{\pi}}}\)

\section*{Decimal approximation:}
0.991756382006323331780556886585458507434083683035961074243.
\(0.99175638200632 \ldots .\). result very near to the value of the following RogersRamanujan continued fraction:
\(\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684 .10 .}\)
and to the dilaton value \(\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}\)

\section*{Property:}
\(\frac{1}{\sqrt[32]{\frac{2}{3}+\frac{2}{\pi}}}\) is a transcendental number

\section*{Alternate form:}
\(\sqrt[32]{\frac{3 \pi}{2(3+\pi)}}\)

All 8th roots of \(1 /(2 / 3+2 / \pi)^{\wedge}(1 / 4)\) :
\(\frac{e^{0}}{\sqrt[32]{\frac{2}{3}+\frac{2}{\pi}}}\)
\(\frac{e^{(i \pi) / 4}}{\sqrt[32]{\frac{2}{3}+\frac{2}{\pi}}} \approx 0.70128+0.70128 i\)
\(\frac{e^{(i \pi) / 2}}{\sqrt[32]{\frac{2}{3}+\frac{2}{\pi}}} \approx 0.991756 i\)
\(\frac{e^{(3 i \pi) / 4}}{\sqrt[32]{\frac{2}{3}+\frac{2}{\pi}}} \approx-0.7013+0.70128 i\)
\(\frac{e^{i \pi}}{\sqrt[32]{\frac{2}{3}+\frac{2}{\pi}}} \approx-0.9918\) (real root)

\section*{Alternative representations:}
\(\sqrt[8]{\frac{1}{\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}}}=\sqrt[8]{\frac{1}{\sqrt[4]{\frac{2}{3}+\frac{2}{180^{\circ}}}}}\)
\(\sqrt[8]{\frac{1}{\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}}}=\sqrt[8]{\sqrt[8]{\sqrt[4]{\frac{2}{3}+\frac{2}{\cos ^{-1}(-1)}}}}\)
\(\sqrt[8]{\frac{1}{\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}}}=\sqrt[8]{\sqrt[8]{\sqrt[4]{\frac{2}{3}+-\frac{2}{i \log (-1)}}}}\)

\section*{Series representations:}
\(\sqrt[8]{\frac{1}{\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}}}=\frac{1}{\sqrt[32]{\frac{2}{3}+\frac{1}{2 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}}}}\)
\(\sqrt[8]{\frac{1}{\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}}}=\frac{1}{\sqrt[32]{\frac{2}{3}+\frac{2}{\sum_{k=0}^{\infty}-\frac{4(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}}}}\)
\(\sqrt[8]{\frac{1}{\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}}}=\frac{1}{\sqrt[32]{\frac{2}{3}+\frac{2}{\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{2}{1+4 k}+\frac{2}{2+4 k}+\frac{1}{3+4 k}\right)}}}\)

\section*{Integral representations:}
\(\sqrt[8]{\frac{1}{\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}}}=\frac{1}{\sqrt[32]{\frac{2}{3}+\frac{1}{6^{\infty} \frac{1}{1+t^{2}} d t}}}\)
\(\sqrt[8]{\frac{1}{\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}}}=\frac{1}{\sqrt[32]{\frac{2}{3}+\frac{1}{\int_{0}^{1} \frac{1}{{\sqrt{1-t^{2}}}^{2}}}}}\)
\(\sqrt[8]{\frac{1}{\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}}}=\frac{1}{\sqrt[32]{\frac{2}{3}+\frac{1}{\int_{0}^{\infty} \frac{\sin (t)}{t} d t}}}\)
\(16^{*} \log\) base \(0.99175638200632\left(\left(\left(1 /\left(\left((1 / \mathrm{Pi}+1 / \mathrm{Pi}+2 / 3)^{\wedge} 1 / 4\right)\right)\right)\right)\right)-\mathrm{Pi}+1 /\) golden ratio

\section*{Input interpretation:}
\(16 \log _{0.99175638200632}\left(\frac{1}{\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}}\right)-\pi+\frac{1}{\phi}\)
\(\phi\) is the golden ratio

\section*{Result:}
125.476441335...
125.476441335... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for \(\mathrm{T}=0\) and to the Higgs boson mass 125.18

\section*{Alternative representation:}
\[
\begin{gathered}
16 \log _{0.991756382006320000}\left(\frac{1}{\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}}\right)-\pi+\frac{1}{\phi}= \\
\left.-\pi+\frac{1}{\phi}+\frac{16 \log \left(\frac{1}{\log (0.991756382006320000)}\right.}{\sqrt[4]{\frac{2}{3}+\frac{2}{2}}}\right)
\end{gathered}
\]

\section*{Series representations:}
\[
\begin{aligned}
& 16 \log _{0.991756382006320000}\left(\frac{1}{\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}}\right)-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\pi-\frac{16 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1}{\sqrt[4]{\frac{2}{3}+\frac{2}{\pi}}}\right.}{\log (0.991756382006320000)}}{k}
\end{aligned}
\]
\(16 \log _{0.991756382006320000}\left(\frac{1}{\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}}\right)-\pi+\frac{1}{\phi}=\frac{1.000000000000000}{\phi}-\)
\[
\begin{aligned}
& 1.000000000000000 \pi-1932.895370487383 \log \left(\frac{1}{\sqrt[4]{\frac{2}{3}+\frac{2}{\pi}}}\right)- \\
& 16.00000000000000 \log \left(\frac{1}{\sqrt[4]{\frac{2}{3}+\frac{2}{\pi}}}\right) \sum_{k=0}^{\infty}(-0.008243617993680000)^{k} G(k) \\
& \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
\]
\(16^{*} \log\) base \(0.99175638200632\left(\left(\left(1 /\left(\left((1 / \mathrm{Pi}+1 / \mathrm{Pi}+2 / 3)^{\wedge} 1 / 4\right)\right)\right)\right)\right)+11+1 /\) golden ratio

\section*{Input interpretation:}
\(16 \log _{0.99175638200632}\left(\frac{1}{\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}}\right)+11+\frac{1}{\phi}\)
\(\log _{b}(x)\) is the base- \(b\) logarithm
\(\phi\) is the golden ratio

\section*{Result:}
139.618033989...
\(139.618033989 \ldots\) result practically equal to the rest mass of Pion meson 139.57

\section*{Alternative representation:}
\[
\begin{aligned}
& 16 \log _{0.991756382006320000}\left(\frac{1}{\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}}\right)+11+\frac{1}{\phi}= \\
& 11+\frac{1}{\phi}+\frac{16 \log \left(\frac{1}{\sqrt[4]{\frac{2}{3}+\frac{2}{\pi}}}\right)}{\log (0.991756382006320000)}
\end{aligned}
\]

\section*{Series representations:}
\(16 \log _{0.991756382006320000}\left(\frac{1}{\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}}\right)+11+\frac{1}{\phi}=\)
\(11+\frac{1}{\phi}-\frac{16 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1}{\sqrt[4]{2_{3}^{2}+{ }^{2}}}\right)^{k}}{\log (0.991756382006320000)}}{k}\)
\(16 \log _{0.991756382006320000}\left(\frac{1}{\sqrt[4]{\frac{1}{\pi}+\frac{1}{\pi}+\frac{2}{3}}}\right)+11+\frac{1}{\phi}=11.00000000000000+\)
\(\frac{1.000000000000000}{\phi}-1932.895370487383 \log \left(\frac{1}{\sqrt[4]{\frac{2}{3}+\frac{2}{\pi}}}\right)-\)
\[
\begin{aligned}
& \quad 16.00000000000000 \log \left(\frac{1}{\sqrt[4]{\frac{2}{3}+\frac{2}{\pi}}}\right) \sum_{k=0}^{\infty}(-0.008243617993680000)^{k} G(k) \\
& \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
\]

Page 277


For \(\mathrm{a}=2\)
\(\mathrm{Pi} /\left(\left(\left(\left(\left(\mathrm{e}^{\wedge}\left(4 \mathrm{Pi}^{*} 2\right)-2 \mathrm{e}^{\wedge}\left(2 \mathrm{Pi}^{*} 2\right) \cos 2 \mathrm{Pi}^{*} 2+1\right)\right)\right)\right)\right)\)

\section*{Input:}
\(\frac{\pi}{e^{4 \pi \times 2}-\left(2 e^{2 \pi \times 2}\right)(\cos (2) \pi \times 2)+1}\)

\section*{Exact result:}
\(\frac{\pi}{1+e^{8 \pi}-4 e^{4 \pi} \pi \cos (2)}\)
Decimal approximation:
\(3.8205960455703698361853758638851220368411091340758333 \ldots \times 10^{-11}\)
\(3.82059604557036 \ldots . . * 10^{-11}\)

\section*{Alternate forms:}
\(-\frac{\pi}{-1-e^{8 \pi}+4 e^{4 \pi} \pi \cos (2)}\)
\(\frac{\pi}{1+e^{8 \pi}-2\left(e^{-2 i}+e^{2 i}\right) e^{4 \pi} \pi}\)

\section*{Alternative representations:}
\[
\frac{\pi}{e^{4 \pi 2}-(\cos (2) \pi 2) 2 e^{2 \pi 2}+1}=\frac{\pi}{1-4 \pi \cosh (-2 i) e^{4 \pi}+e^{8 \pi}}
\]
\[
\frac{\pi}{e^{4 \pi 2}-(\cos (2) \pi 2) 2 e^{2 \pi 2}+1}=\frac{\pi}{1+e^{8 \pi}-\frac{4 \pi e^{4 \pi}}{\sec (2)}}
\]
\[
\frac{\pi}{e^{4 \pi 2}-(\cos (2) \pi 2) 2 e^{2 \pi 2}+1}=\frac{\pi}{1-4 \pi \cosh (2 i) e^{4 \pi}+e^{8 \pi}}
\]

\section*{Series representations:}
\[
\frac{\pi}{e^{4 \pi^{2}}-(\cos (2) \pi 2) 2 e^{2 \pi 2}+1}=\frac{\pi}{1+e^{8 \pi}-4 e^{4 \pi} \pi \sum_{k=0}^{\infty} \frac{(-4)^{k}}{(2 k)!}}
\]
\[
\frac{\pi}{e^{4 \pi 2}-(\cos (2) \pi 2) 2 e^{2 \pi 2}+1}=\frac{\pi}{1+e^{8 \pi}+4 e^{4 \pi} \pi \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(2-\frac{\pi}{2}\right)^{1+2 k}}{(1+2 k)!}}
\]
\[
\frac{\pi}{e^{4 \pi 2}-(\cos (2) \pi 2) 2 e^{2 \pi 2}+1}=\frac{\pi}{1+e^{8 \pi}-4 e^{4 \pi} \pi \sum_{k=0}^{\infty} \frac{\cos \left(\frac{k \pi}{2}+z_{0}\right)\left(2-z_{0}\right)^{k}}{k!}}
\]

\section*{Integral representations:}
\(\frac{\pi}{e^{4 \pi 2}-(\cos (2) \pi 2) 2 e^{2 \pi 2}+1}=\frac{\pi}{1+e^{8 \pi}+4 e^{4 \pi} \pi\left(-1+2 \int_{0}^{1} \sin (2 t) d t\right)}\)
\(\frac{\pi}{e^{4 \pi 2}-(\cos (2) \pi 2) 2 e^{2 \pi 2}+1}=\frac{\pi}{1+e^{8 \pi}+2 i e^{4 \pi} \sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-1 / s+s}}{\sqrt{s}} d s}\) for \(\gamma>0\)
\(\frac{\pi}{e^{4 \pi 2}-(\cos (2) \pi 2) 2 e^{2 \pi 2}+1}=\frac{\pi}{1+e^{8 \pi}+2 i e^{4 \pi} \sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)} d s}\) for \(0<\gamma<\frac{1}{2}\)
\(\operatorname{sqrt}\left[1 / 10^{\wedge} 10 * 1 /\left(\left(\left(\mathrm{Pi} /\left(\left(\left(\left(\left(\mathrm{e}^{\wedge}\left(4 \mathrm{Pi}^{*} 2\right)-2 \mathrm{e}^{\wedge}\left(2 \mathrm{Pi}^{*} 2\right) \cos 2 \mathrm{Pi}^{*} 2+1\right)\right)\right)\right)\right)\right)\right)\right)\right]\)

\section*{Input:}
\(\sqrt{\frac{1}{10^{10}} \times \frac{1}{\frac{\pi}{e^{4 \pi \times 2}-\left(2 e^{2 \pi \times 2}\right)(\cos (2) \pi \times 2)+1}}}\)

\section*{Exact result:}


\section*{Decimal approximation:}
1.617835791367246766261901145284736113702929252494221307447...
\(1.61783579136724676 \ldots\). result that is a very good approximation to the value of the golden ratio 1,618033988749...

\section*{Alternate form:}


All 2nd roots of \(\left(1+\mathrm{e}^{\wedge}(8 \pi)-4 \mathrm{e}^{\wedge}(4 \pi) \pi \cos (2)\right) /(10000000000 \pi):\)
\(\frac{e^{0} \sqrt{\frac{1+e^{8 \pi}-4 e^{4 \pi} \pi \cos (2)}{\pi}}}{100000} \approx 1.618\) (real, principal root)


Alternative representations:
\(\sqrt{\frac{1}{\frac{\pi 10^{10}}{e^{4 \pi 2}-\left(2 e^{2 \pi 2}\right)(\cos (2) \pi 2)+1}}}=\sqrt{\frac{1}{\frac{10^{10} \pi}{1-4 \pi \cosh (-2 i) e^{4 \pi}+e^{8 \pi}}}}\)
\(\sqrt{\frac{1}{\frac{\pi 10^{10}}{e^{4 \pi 2}-\left(2 e^{2 \pi 2}\right)(\cos (2) \pi 2)+1}}}=\sqrt{\frac{1}{\frac{10^{10} \pi}{1+e^{8 \pi}-\frac{4 \pi e^{4 \pi}}{\sec (2)}}}}\)
\(\sqrt{\frac{1}{\frac{\pi 10^{10}}{e^{4 \pi 2}-\left(2 e^{2 \pi 2}\right)(\cos (2) \pi 2)+1}}}=\sqrt{\frac{1}{\frac{100^{10} \pi}{1-4 \pi \cosh (2 i) e^{4 \pi}+e^{8 \pi}}}}\)

Series representations:
\(\sqrt{\frac{1}{\frac{\pi 1010}{e^{4 \pi 2}-\left(2 e^{2 \pi 2}\right)(\cos (2) \pi 2)+1}}}=\frac{\sqrt{1+e^{8 \pi}-4 e^{4 \pi} \pi \sum_{k=0}^{\infty} \frac{(-4)^{k}}{(2 k)!}}}{100000 \sqrt{\pi}}\)
\(\sqrt{\frac{1}{\frac{\pi 10}{e^{4 \pi 2}-\left(2 e^{2 \pi 2}\right)(\cos (2) \pi 2)+1}}}=\frac{\sqrt{1+e^{8 \pi}+4 e^{4 \pi} \pi \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(2-\frac{\pi}{2}\right)^{1+2 k}}{(1+2 k)!}}}{100000 \sqrt{\pi}}\)
\(\sqrt{\frac{1}{\frac{\pi 10}{e^{4 \pi 2}-\left(2 e^{2 \pi 2}\right)(\cos (2) \pi 2)+1}}}=\frac{\sqrt{1+e^{8 \pi}-4 e^{4 \pi} \pi \sum_{k=0}^{\infty} \frac{\cos \left(\frac{k \pi}{2}+z_{0}\right)\left(2-z_{0}\right)^{k}}{k!}}}{100000 \sqrt{\pi}}\)

\section*{Integral representations:}
\(\sqrt{\frac{1}{\frac{\pi 10^{10}}{e^{4 \pi 2}-\left(2 e^{2 \pi 2}\right)(\cos (2) \pi 2)+1}}}=\frac{\sqrt{1+e^{8 \pi}+4 e^{4 \pi} \pi \int_{\frac{\pi}{2}}^{2} \sin (t) d t}}{100000 \sqrt{\pi}}\)
\(\sqrt{\frac{1}{\frac{\pi 10^{10}}{e^{4 \pi 2}-\left(2 e^{\left.2 \pi^{2}\right)(\cos (2) \pi 2)+1}\right.}}}=\frac{\sqrt{1+e^{8 \pi}-4 e^{4 \pi} \pi\left(1-2 \int_{0}^{1} \sin (2 t) d t\right)}}{100000 \sqrt{\pi}}\)
\(\sqrt{\frac{1}{\frac{\pi 10^{10}}{e^{4 \pi 2}-\left(2 e^{2 \pi 2}\right)(\cos (2) \pi 2)+1}}}=\frac{\sqrt{1+e^{8 \pi}+2 i e^{4 \pi \sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-1 / s+s}}{\sqrt{s}} d s}}}{100000 \sqrt{\pi}}\) for \(\gamma>0\)
\(\sqrt{\frac{1}{\frac{\pi 10^{10}}{e^{4 \pi 2}-\left(2 e^{2 \pi 2}\right)(\cos (2) \pi 2)+1}}}=\frac{\sqrt{1+e^{8 \pi}+2 i e^{4 \pi} \sqrt{\pi} \int_{-i \infty \alpha+\gamma}^{i \infty+\gamma} \frac{\Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)} d s}}{100000 \sqrt{\pi}}\) for \(0<\gamma<\frac{1}{2}\)

And:
\(1 / 10^{\wedge} 27 *\left(\left(\left((47+7) / 10^{\wedge} 3+\operatorname{sqrt}\left[1 / 10^{\wedge} 10 * 1 /\left(\left(\left(\mathrm{Pi} /\left(\left(\left(\left(\left(\mathrm{e}^{\wedge}\left(4 \mathrm{Pi}^{*} 2\right)-2 \mathrm{e}^{\wedge}\left(2 \mathrm{Pi}^{*} 2\right) \cos \right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\) \(\left.\left.2 \mathrm{Pi}^{*} 2+1\right)\right)\) )) )) ) ) \(\left.]\right)\) ))

Where 47 and 7 are Lucas number

\section*{Input:}
\[
\frac{1}{10^{27}}\left(\frac{47+7}{10^{3}}+\sqrt{\frac{1}{10^{10}} \times \frac{1}{\frac{\pi}{e^{4 \pi \times 2}-\left(2 e^{2 \pi \times 2}\right)(\cos (2) \pi \times 2)+1}}}\right)
\]

\section*{Exact result:}
\(\frac{\frac{27}{500}+\frac{\sqrt{\frac{1+e^{8 \pi}-4 e^{4 \pi} \pi \cos (2)}{\pi}}}{100000}}{1000000000000000000000000000}\)

\section*{Decimal approximation:}
\(1.6718357913672467662619011452847361137029292524942213 \ldots \times 10^{-27}\)
\(1.671835791367 \ldots * 10^{-27}\) result practically equal to the proton mass

\section*{Alternate forms:}
\(\frac{5400+\sqrt{\frac{1+e^{8 \pi}-4 e^{4 \pi} \pi \cos (2)}{\pi}}}{100000000000000000000000000000000}\)
\(\frac{27}{500000000000000000000000000000}+\)
\(\frac{\sqrt{\frac{1+e^{8 \pi}-4 e^{4 \pi} \pi \cos (2)}{\pi}}}{100000000000000000000000000000000}\)
500000000000000000000000000000
\(\sqrt{\frac{1+e^{8 \pi}-2\left(e^{-2 i}+e^{2 i}\right) e^{4 \pi} \pi}{\pi}}\)
\(\frac{27}{10000000000000000000000000000000}\)
\(\overline{100000000000000000000000000000000}\)

\section*{Alternative representations:}


\section*{Series representations:}
\[
\frac{\frac{47+7}{10^{3}}+\sqrt{\frac{1}{\frac{10^{10} \pi}{e^{4 \pi 2}-\left(2 e^{2 \pi 2}\right)(\cos (2) \pi 2)+1}}}}{\sqrt[10^{27}]{\sqrt{1+e^{8 \pi}-4 e^{4 \pi} \pi \sum_{k=0}^{\infty} \frac{(-4)^{k}}{(2 k)!}}}=\frac{27}{500000000000000000000000000000}}+
\]


\section*{Integral representations:}


\(\frac{47+7}{10^{3}}+\sqrt{\frac{1}{\frac{10^{10} \pi}{e^{4 \pi 2}-\left(2 e^{2 \pi 2}\right)(\cos (2) \pi 2)+1}}}\)

\(\left(\left(\left(1 / \operatorname{sqrt}\left[1 / 10^{\wedge} 10 * 1 /\left(\left(\left(\operatorname{Pi} /\left(\left(\left(\left(\left(\mathrm{e}^{\wedge}\left(4 \mathrm{Pi}^{*} 2\right)-2 \mathrm{e}^{\wedge}\left(2 \mathrm{Pi}^{*} 2\right) \cos 2 \mathrm{Pi}^{*} 2+1\right)\right)\right)\right)\right)\right)\right)\right)\right]\right)\right)\right)^{\wedge} 1 / 64\)

Input:
\(\sqrt[64]{\frac{1}{\sqrt{\frac{1}{10^{10}} \times \frac{1}{e^{4 \pi \times 2}-\left(2 e^{2 \pi / 2}\right)(\cos (2) \pi / 2)+1}}}}\)

\section*{Exact result:}
\(10^{5 / 64} \sqrt[128]{\frac{\pi}{1+e^{8 \pi}-4 e^{4 \pi} \pi \cos (2)}}\)

\section*{Decimal approximation:}
\(0.992511161440058542133772227339081712370522859827805684454 .\).
\(0.99251116144 \ldots\) result very near to the value of the following Rogers-Ramanujan continued fraction:
\(\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684 .10 .}\)
and to the dilaton value \(\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}\)

\section*{Alternate form:}
\(10^{5 / 64} \sqrt[128]{\frac{\pi}{1+e^{8 \pi}-2\left(e^{-2 i}+e^{2 i}\right) e^{4 \pi} \pi}}\)

\section*{Series representations:}
\(\sqrt[64]{\frac{1}{\sqrt{\frac{\pi 10^{10}}{e^{4 \pi 2}-\left(2 e^{2 \pi 2}\right)(\cos (2) \pi 2)+1}}}}=10^{5 / 644} \sqrt[128]{\pi} \sqrt[128]{\frac{1}{1+e^{8 \pi}-4 e^{4 \pi} \pi \sum_{k=0}^{\infty} \frac{(-4)^{k}}{(2 k)!}}}\)
\(\sqrt[64]{\frac{1}{\sqrt{\frac{1}{e^{4 \pi 2}-\left(2 e^{2 \pi 2}\right)(\cos (2) \pi 2)+1}}}}=\)
\(10^{5 / 64} \sqrt[128]{\pi} \sqrt[128]{\frac{1}{1+e^{8 \pi}-4 e^{4 \pi} \pi\left(J_{0}(2)+2 \sum_{k=1}^{\infty}(-1)^{k} J_{2 k}(2)\right)}}\)


\section*{Integral representations:}

\(\sqrt[64]{\frac{1}{\sqrt{\frac{\pi}{e^{4 \pi 2}-\left(2 e^{2 \pi 2}\right)(\cos (2) \pi 2)+1}}}}=10^{5 / 64} \sqrt[128]{\pi} \sqrt[128]{\frac{1}{1+e^{8 \pi}-4 e^{4 \pi} \pi\left(1-2 \int_{0}^{1} \sin (2 t) d t\right)}}\)

\(10^{5 / 64} \sqrt[128]{\pi} \sqrt[128]{\frac{1}{1+e^{8 \pi}+2 i e^{4 \pi} \sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-1 / s+s}}{\sqrt{s}} d s}}\) for \(\gamma>0\)

\(2 \log\) base \(0.99251116144\left(\left(\left(1 / \mathrm{sqrt}\left[1 / 10^{\wedge} 10 * 1 /\left(\left(\left(\mathrm{Pi} /\left(\left(\left(\left(\mathrm{e}^{\wedge}\left(4 \mathrm{Pi}^{*} 2\right)-2 \mathrm{e}^{\wedge}\left(2 \mathrm{Pi}^{*} 2\right) \cos \right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\) \(\left.\left.\left.2 \mathrm{Pi}^{*} 2+1\right)\right)\right)\) )) )) ) \()\) )) ) \(-\mathrm{Pi}+1 /\) golden ratio

\section*{Input interpretation:}

\(\log _{b}(x)\) is the base- \(b\) logarithm
\(\phi\) is the golden ratio

\section*{Result:}
125.476441..
125.476441... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for \(\mathrm{T}=0\) and to the Higgs boson mass 125.18

\section*{Alternative representations:}








\section*{Series representations:}
\[
\begin{aligned}
& 2 \log _{0.992511161440000}\left(\sqrt{\frac{1}{\frac{1}{e^{4 \pi 2}-\left(2 e^{2 \pi 2}\right)(\cos (2) \pi 2)+1}}}\right)-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\pi-\frac{2 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1}{\sqrt{\frac{1+e^{8 \pi}-4 e^{4 \pi} \pi \cos (2)}{1000000000 \pi}}}\right.}{\log (0.992511161440000)}}{k}
\end{aligned}
\]

\(\frac{1}{\phi}-\pi+2 \log _{0.992511161440000}\left(1 /\left(\exp \left(i \pi\left[\frac{\arg \left(-x+\frac{1+e^{8 \pi}-4 e^{4 \pi} \pi \cos (2)}{1000000000 \pi}\right)}{2 \pi}\right)\right) \sqrt{x}\right.\right.\)
\[
\left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{-k}\left(-x+\frac{1+e^{8 \pi}-4 e^{4 \pi} \pi \cos (2)}{10000000000 \pi}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right)
\]
\(2 \log _{0.992511161440000}\left(\frac{1}{\sqrt{\frac{1}{e^{4 \pi 2}-\left(2 e^{2 \pi 2}\right)(\cos (2) \pi 2)+1}}}\right)-\pi+\frac{1}{\phi}=\)
\[
\frac{1}{\phi}-\pi+2 \log _{0.992511161440000}
\]
\[
\left.\left.\left.\left.\frac{\left(\frac{1}{z_{0}}\right)^{-1 / 2} \arg \left(\frac{1+e^{8 \pi}-4 e^{4 \pi} \pi \cos (2)}{1000000000 \pi}-z_{0}\right) /\left.(2 \pi)\right|_{z_{0}} ^{1 / 2}\left(-1-\left[\operatorname { a r g } \left(\frac{1+e^{8 \pi}-4 e^{4 \pi} \pi \cos (2)}{10000000000 \pi}-z_{0}\right.\right.\right.}{)}\right) /(2 \pi)\right]\right)\right]
\]

\section*{Integral representations:}
\[
\left.\begin{array}{l}
2 \log _{0.992511161440000}\left(\frac{1}{\sqrt{\frac{1}{e^{4 \pi 2}-\left(2 e^{2 \pi 2}\right)(\cos (2) \pi 2)+1}}}\right)-\pi+\frac{1}{\phi}= \\
\frac{1}{\phi}-\pi+2 \log _{0.992511161440000}\left(\frac{1}{\sqrt{\left.\frac{1+e^{8 \pi}+4 e^{4 \pi} \pi(-1+2}{} \int_{0}^{1} \sin (2 t) d t\right)}} 1000000000 \pi\right.
\end{array}\right)
\]

\(2 \log _{0.992511161440000}\left(\frac{1}{\sqrt{\frac{1}{e^{4 \pi 2}-\left(2 e^{2 \pi 2}\right)(\cos (2) \pi 2)+1}}}\right)-\pi+\frac{1}{\phi}=\) \(\frac{1}{\phi}-\pi+2 \log _{0.992511161440000}\left(\frac{1}{\sqrt{\frac{1+e^{8 \pi}-\frac{2 e^{4 \pi} \sqrt{\pi}}{i} \int_{-i \infty 0+\gamma}^{i \infty+\gamma} \frac{\mathcal{A}^{-1 / s+s}}{\sqrt{s}} d s}{10000000000 \pi}}}\right)\) for \(\gamma>0\)
\(2 \log _{0.992511161440000}\left(\frac{1}{\sqrt{\frac{1}{e^{4 \pi 2}-\left(2 e^{2 \pi 2}\right)(\cos (2) \pi 2)+1}}}\right)-\pi+\frac{1}{\phi}=\)
\(\left.\frac{1}{\phi}-\pi+2 \log _{0.992511161440000} \frac{1}{\sqrt{\frac{1+e^{8 \pi}-2 e^{4 \pi} \sqrt{\pi}}{i} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)} d s}}\right)\) for \(0<\gamma<\frac{1}{2}\)
\(2 \log\) base \(0.99251116144\left(\left(\left(1 / \mathrm{sqrt}\left[1 / 10^{\wedge} 10 * 1 /\left(\left(\left(\mathrm{Pi} /\left(\left(()\left(\mathrm{e}^{\wedge}(4 \mathrm{Pi} * 2)-2 \mathrm{e}^{\wedge}\left(2 \mathrm{Pi}^{*} 2\right) \cos \right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\) \(\left.\left.2 \mathrm{Pi}^{*} 2+1\right)\right)\) )) )) )) \(\left.]\right)\) )) \(+11+1\) (golden ratio

\section*{Input interpretation:}

\(\log _{b}(x)\) is the base- \(b\) logarithm
\(\phi\) is the golden ratio

\section*{Result:}
139.618034...
139.618034... result practically equal to the rest mass of Pion meson 139.57

\section*{Alternative representations:}






\section*{Series representations:}


\(11+\frac{1}{\phi}+2 \log _{0.992511161440000}\left(1 /\left(\exp \left(i \pi\left(\frac{\arg \left(-x+\frac{1+e^{8 \pi}-4 e^{4 \pi} \pi \cos (2)}{10000000000 \pi}\right)}{2 \pi}\right)\right) \sqrt{x}\right.\right.\)
\[
\left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{-k}\left(-x+\frac{1+e^{8 \pi}-4 e^{4 \pi} \pi \cos (2)}{10000000000 \pi}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right)
\]
\(2 \log _{0.992511161440000}\left(\frac{1}{\sqrt{\frac{1}{e^{4 \pi 2}-\left(2 e^{2 \pi^{2} 2}\right)(\cos (2) \pi 2)+1}}}\right)+11+\frac{1}{\phi}=\) \(11+\frac{1}{\phi}+2 \log _{0.992511161440000}\)
\[
\frac{\left.\left.\left(\frac{1}{z_{0}}\right)^{-1 / 2}\left[\arg \left(\frac{1+e^{8 \pi}-4 e^{4 \pi} \pi \cos (2)}{10000000000 \pi}-z_{0}\right) /\left.(2 \pi)\right|_{Z_{0}} ^{1 / 2\left(-1-\left[\operatorname { a r g } \left(\frac{1+e^{8 \pi}-4 e^{4 \pi} \pi \cos (2)}{10000000000 \pi}-z_{0}\right.\right.\right.}\right) /(2 \pi)\right]\right)}{\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{1+e^{8 \pi}-4 e^{4 \pi} \pi \cos (2)}{10000000000 \pi}-z_{0}\right)^{k} z_{0}^{-k}}{k!}}
\]

\section*{Integral representations:}
\(2 \log _{0.992511161440000}\left(\frac{1}{\sqrt{\frac{1}{e^{4 \pi 2}-\left(2 e^{2 \pi 2}\right)(\cos (2) \pi 2)+1}}}\right)+11+\frac{1}{\phi}=\)
\[
11+\frac{1}{\phi}+2 \log _{0.992511161440000}\left(\frac{1}{\sqrt{\left.\frac{1+e^{8 \pi}+4 e^{4 \pi} \pi(-1+2}{} \int_{0}^{1} \sin (2 t) d t\right)}}\right)
\]

\(2 \log _{0.992511161440000}\left(\frac{1}{\sqrt{\frac{1}{e^{4 \pi 2}-\left(2 e^{2 \pi 2}\right)(\cos (2) \pi 2)+1}}}\right)+11+\frac{1}{\phi}=\) \(11+\frac{1}{\phi}+2 \log _{0.992511161440000}\left(\frac{1}{\sqrt{\frac{1+e^{8 \pi}-\frac{2 e^{4 \pi} \sqrt{\pi}}{i} \int_{-i \infty+\gamma}^{i \infty 0+\gamma} \frac{\mathcal{H}^{-1 / s+s}}{\sqrt{s}} d s}{10000000000 \pi}}}\right)\) for \(\gamma>0\) \(2 \log _{0.992511161440000}\left(\frac{1}{\sqrt{\frac{1}{e^{4 \pi 2}-\left(2 e^{2 \pi 2}\right)(\cos (2) \pi 2)+1}}}\right)+11+\frac{1}{\phi}=\) \(11+\frac{1}{\phi}+2 \log _{0.992511161440000}\left(\frac{1}{\left.\sqrt{\frac{1+e^{8 \pi \tau_{-}} \frac{2 e^{4 \pi} \sqrt{\pi}}{i} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(\mathrm{s})}{2} d s}{2}}\right) \text { for } 0<\gamma<\frac{1}{2}} 10\right.\)

Page 285

\(\left.\left.\left.\left.(4 / \mathrm{Pi})^{*}\left[\left(\left(\left(1-\exp -\left(\left(\left(1^{*}(2 \mathrm{Pi}) / 2\right)\right)\right)\right)\right) / 1^{\wedge} 2\right)\right)\right)-\left(\left(\left(1-\exp -\left(\left(\left(3^{*} 2 \mathrm{Pi}\right) / 2\right)\right)\right)\right)\right) / 3^{\wedge} 2\right)\right)\right)+(((1-\exp -\) \(\left.\left.\left.\left.\left.\left(\left(\left(5^{*} 2 \mathrm{Pi}\right) / 2\right)\right)\right)\right)\right) / 5^{\wedge} 2\right)\right]\)

\section*{Input:}
\(\frac{4}{\pi}\left(\frac{1-\exp \left(-\left(1 \times \frac{2 \pi}{2}\right)\right)}{1^{2}}-\frac{1-\exp \left(-\left(\frac{1}{2}(3 \times 2 \pi)\right)\right.}{3^{2}}+\frac{1-\exp \left(-\left(\frac{1}{2}(5 \times 2 \pi)\right)\right)}{5^{2}}\right)\)

\section*{Exact result:}
\(4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5 \pi}\right)+\frac{1}{9}\left(e^{-3 \pi}-1\right)\right)\)
\(\pi\)

\section*{Decimal approximation:}
1.127687805353210754479544108095192580170402923803231305534...
1.12768780535....

Alternate forms:
\(\frac{836-36 e^{-5 \pi}+100 e^{-3 \pi}-900 e^{-\pi}}{225 \pi}\)
\(-\frac{4\left(-209+9 e^{-5 \pi}-25 e^{-3 \pi}+225 e^{-\pi}\right)}{225 \pi}\)
\(\frac{836-4 e^{-5 \pi}\left(9-25 e^{2 \pi}+225 e^{4 \pi}\right)}{225 \pi}\)

\section*{Series representations:}
\[
\begin{aligned}
& \frac{\left(\frac{1-\exp \left(-\frac{1}{2}(2 \pi)\right)}{1^{2}}-\frac{1-\exp \left(-\frac{1}{2}(3 \times 2 \pi)\right)}{3^{2}}+\frac{1-\exp \left(-\frac{1}{2}(5 \times 2 \pi)\right)}{5^{2}}\right) 4}{\pi}=\frac{1}{225 \pi} 4\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{-5 \pi} \\
& \left(-1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{\pi}\right)\left(9+9\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{\pi}-16\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}-16\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{3 \pi}+209\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{4 \pi}\right) \\
& \frac{\left(\frac{1-\exp \left(-\frac{1}{2}(2 \pi)\right)}{1^{2}}-\frac{1-\exp \left(-\frac{1}{2}(3 \times 2 \pi)\right)}{3^{2}}+\frac{1-\exp \left(-\frac{1}{2}(5 \times 2 \pi)\right)}{5^{2}}\right)^{2}}{\pi}=\frac{1}{225 \pi} 4\left(-1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{\pi}\right) \\
& \left(9+9\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{\pi}-16\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}-16\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{3 \pi}+209\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{4 \pi}\right) \\
& \left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{-5 \pi} \\
& \frac{\left(\frac{1-\exp \left(-\frac{1}{2}(2 \pi)\right)}{1^{2}}-\frac{1-\exp \left(-\frac{1}{2}(3 \times 2 \pi)\right)}{3^{2}}+\frac{1-\exp \left(-\frac{1}{2}(5 \times 2 \pi)\right)}{5^{2}}\right) 4}{\pi}= \\
& \frac{1}{225 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}} e^{-20 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\left(-1+e^{\sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right) \\
& \left(1+e^{\sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\left(1+e^{2 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)\left(9+9 e^{4 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}-\right. \\
& \left.16 e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}-16 e^{12 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+209 e^{16 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)
\end{aligned}
\]

\section*{Integral representations:}
\[
\frac{\left(\frac{1-\exp \left(-\frac{1}{2}(2 \pi)\right)}{1^{2}}-\frac{1-\exp \left(-\frac{1}{2}(3 \times 2 \pi)\right)}{3^{2}}+\frac{1-\exp \left(-\frac{1}{2}(5 \times 2 \pi)\right)}{5^{2}}\right) 4}{\pi}=\left(\begin{array}{l}
\frac{1}{225 \int_{0}^{\infty} \frac{\sin (t)}{t} d t} 2 e^{-10} \int_{0}^{\infty} \sin (t) / t d t \\
\left(9+9 e^{2} \int_{0}^{\infty} \sin (t) / t d t\right. \\
\left(-16 e^{4 \int_{0}^{\infty} \sin (t) / t d t}\right)\left(1+e^{\left.\int_{0}^{\infty} \sin (t) / t\right) / t d t}\right) \\
\\
\left(16 e^{6 \int_{0}^{\infty} \sin (t) / t d t}+209 e^{8} \int_{0}^{\infty} \sin (t) / t d t\right)
\end{array}\right.
\]
\[
\begin{aligned}
& \frac{\left(\frac{1-\exp \left(-\frac{1}{2}(2 \pi)\right)}{1^{2}}-\frac{1-\exp \left(-\frac{1}{2}(3 \times 2 \pi)\right)}{3^{2}}+\frac{1-\exp \left(-\frac{1}{2}(5 \times 2 \pi)\right)}{5^{2}}\right) 4}{4}= \\
& \frac{1}{225 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t} 2 e^{-10} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\left(-1+e^{\infty_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}\right)\left(1+e^{\int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}\right) \\
& \left(9+9 e^{2} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t-16 e^{4} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t-16 e^{6} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t+209 e^{8} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right) \\
& \frac{\left(\frac{1-\exp \left(-\frac{1}{2}(2 \pi)\right)}{1^{2}}-\frac{1-\exp \left(-\frac{1}{2}(3 \times 2 \pi)\right)}{3^{2}}+\frac{1-\exp \left(-\frac{1}{2}(5 \times 2 \pi)\right.}{5^{2}}\right) 4}{\pi}=\frac{1}{225 \int_{0}^{\infty} \frac{\sin ^{2}(t)}{t^{2}} d t} \\
& 2 e^{-10} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t\left(-1+e^{6^{\infty} \sin ^{2}(t) / t^{2} d t}\right)\left(1+e^{\left.\int_{5^{\infty} \sin ^{2}(t) / t^{2} d t}\right)}\right. \\
& \left(9+9 e^{2} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t-16 e^{4} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t-16 e^{6} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t+209 e^{8} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t\right)
\end{aligned}
\]
\(1 /\left(\left(\left(\left((4 / \mathrm{Pi}) *\left[\left(\left(\left(1-\exp -\left(\left(\left(1^{*}(2 \mathrm{Pi}) / 2\right)\right)\right)\right)\right) / 1^{\wedge} 2\right)\right)\right)-\left(\left(\left(1-\exp -\left(\left(\left(3^{*} 2 \mathrm{Pi}\right) / 2\right)\right)\right)\right)\right) / 3^{\wedge} 2\right)\right)\right)+(((1-\) \(\left.\left.\left.\left.\left.\left.\left.\left.\left.\exp -\left(\left(\left(5^{*} 2 \mathrm{Pi}\right) / 2\right)\right)\right)\right)\right) / 5^{\wedge} 2\right)\right]\right)\right)\right)\right)^{\wedge} 1 / 16\)

\section*{Input:}
\[
1
\]
\[
\sqrt[16]{\frac{4}{\pi}\left(\frac{1-\exp \left(-\left(1 \times \frac{2 \pi}{2}\right)\right)}{1^{2}}-\frac{1-\exp \left(-\left(\frac{1}{2}(3 \times 2 \pi)\right)\right)}{3^{2}}+\frac{1-\exp \left(-\left(\frac{1}{2}(5 \times 2 \pi)\right)\right)}{5^{2}}\right)}
\]

\section*{Exact result:}
\[
\frac{\sqrt[16]{\frac{\pi}{1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5 \pi}\right)+\frac{1}{9}\left(e^{-3 \pi}-1\right)}}}{\sqrt[8]{2}}
\]

\section*{Decimal approximation:}
0.992517549804915570322498320383589647162373397550035453842...
\(0.9925175498 \ldots\) result very near to the value of the following Rogers-Ramanujan continued fraction:
\[
\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684
\]
and to the dilaton value \(\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}\)

\section*{Alternate forms:}
\[
\begin{aligned}
& \sqrt[8]{\frac{15}{2}} \sqrt[16]{\frac{\pi}{209-9 e^{-5 \pi}+25 e^{-3 \pi}-225 e^{-\pi}}} \\
& \sqrt[8]{\frac{15}{2}} e^{(5 \pi) / 16} \sqrt[16]{\frac{\pi}{-9+25 e^{2 \pi}-225 e^{4 \pi}+209 e^{5 \pi}}}
\end{aligned}
\]

\section*{Series representations:}
\(\frac{1}{\sqrt[16]{\frac{\left(\frac{1-\exp \left(-\frac{1}{2}(2 \pi)\right)}{1^{2}}-\frac{1-\exp \left(-\frac{1}{2}(3 \times 2 \pi)\right)}{3^{2}}+\frac{1-\exp \left(-\frac{1}{2}(5 \times 2 \pi)\right)}{5^{2}}\right) 4}{\pi}}}=\)
\(\sqrt[8]{\frac{15}{2}} \sqrt[16]{\pi} \sqrt[16]{\frac{\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{5 \pi}}{-9+25\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}-225\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{4 \pi}+209\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{5 \pi}}}\)
\[
\sqrt{\sqrt[16]{\frac{\left(\frac{1-\exp \left(-\frac{1}{2}(2 \pi)\right)}{1^{2}}-\frac{1-\exp \left(-\frac{1}{2}(3 \times 2 \pi)\right)}{3^{2}}+\frac{1-\exp \left(-\frac{1}{2}(5 \times 2 \pi)\right)}{5^{2}}\right) 4}{\pi}}}=\sqrt[8]{15} \sqrt[16]{\frac{e^{20 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}}{-9+25 e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}-225 e^{16 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+209 e^{20 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}}}
\]


\section*{Integral representations:}

\(-\mathrm{Pi}+1 /\) golden ratio +8 log base \(0.9925175\left(\left(1 /\left(_{(()(4 / \mathrm{Pi}) *[(((1-e x p-}\right.\right.\right.\) \(\left.\left.\left.\left.\left.\left.\left.\left.\left(\left(\left(1^{*}(2 \mathrm{Pi}) / 2\right)\right)\right)\right)\right) / 1^{\wedge} 2\right)\right)\right)-\left(\left(\left(1-\exp -\left(\left(\left(3^{*} 2 \mathrm{Pi}\right) / 2\right)\right)\right)\right)\right) / 3^{\wedge} 2\right)\right)\right)+(((1-\exp -\) \(\left.\left.\left.\left.\left.\left.\left.\left.\left.\left(\left(\left(5^{*} 2 \mathrm{Pi}\right) / 2\right)\right)\right)\right)\right) / 5^{\wedge} 2\right)\right]\right)\right)\right)\right)\)

\section*{Input interpretation:}
\(-\pi+\frac{1}{\phi}+8 \log _{0.9925175}\left(\frac{1}{\frac{4}{\pi}\left(\frac{1-\exp \left(-\left(1 \times \frac{2 \pi}{2}\right)\right)}{1^{2}}-\frac{1-\exp \left(-\left(\frac{1}{2}(3 \times 2 \pi)\right)\right)}{3^{2}}+\frac{1-\exp \left(-\left(\frac{1}{2}(5 \times 2 \pi)\right)\right)}{5^{2}}\right)}\right)\)
\(\log _{b}(x)\) is the base- \(b\) logarithm
\(\phi\) is the golden ratio

\section*{Result:}
125.476...
125.476... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for \(\mathrm{T}=0\) and to the Higgs boson mass 125.18

\section*{Alternative representation:}
\[
\begin{aligned}
& -\pi+\frac{1}{\phi}+8 \log _{0.992518}\left(\frac{1}{\left(\frac{1-\exp \left(-\frac{1}{2}(2 \pi)\right)}{1^{2}}-\frac{1-\exp \left(-\frac{1}{2}(3 \times 2 \pi)\right)}{3^{2}}+\frac{1-\exp \left(-\frac{1}{2}(5 \times 2 \pi)\right)}{5^{2}}\right)} 4\right. \\
& \quad 8 \log \left(\frac{1}{\pi}\right)= \\
& \left.-\pi+\frac{1}{\phi}+\frac{\log (0.992518)}{\pi}\right)
\end{aligned}
\]

\section*{Series representations:}
\(-\pi+\frac{1}{\phi}+8 \log _{0.992518}\left(\frac{1}{\left(\frac{1-\exp \left(-\frac{1}{2}(2 \pi)\right)}{1^{2}}-\frac{1-\exp \left(-\frac{1}{2}(3 \times 2 \pi)\right)}{3^{2}}+\frac{1-\exp \left(-\frac{1}{2}(5 \times 2 \pi)\right)}{5^{2}}\right)} 4\right)=\)
\[
\frac{1}{\phi}-\pi-\frac{8 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{225 \pi}{836-36 \exp (-5 \pi)+100 \exp (-3 \pi)-900 \exp (-\pi)}\right)^{k}}{k}}{\log (0.992518)}
\]
\[
\begin{aligned}
& -\pi+\frac{1}{\phi}+8 \log _{0.992518}\left(\frac{1}{\left(\frac{1-\exp \left(-\frac{1}{2}(2 \pi)\right)}{1^{2}}-\frac{1-\exp \left(-\frac{1}{2}(3 \times 2 \pi)\right)}{3^{2}}+\frac{1-\exp \left(-\frac{1}{2}(5 \times 2 \pi)\right)}{5^{2}}\right) 4}\right)= \\
& \frac{1}{\phi}-\pi-1065.16 \log \left(\frac{{ }^{\pi} 225 \pi}{836-36 \exp (-5 \pi)+100 \exp (-3 \pi)-900 \exp (-\pi)}\right)- \\
& 8 \log \left(\frac{225 \pi}{836-36 \exp (-5 \pi)+100 \exp (-3 \pi)-900 \exp (-\pi)}\right) \sum_{k=0}^{\infty}(-0.0074825)^{k} G(k) \\
& \text { for }\left(G(0)=0 \text { and } \frac{(-1)^{k} k}{2(1+k)(2+k)}+G(k)=\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right) \\
& \begin{array}{l}
-\pi+\frac{1}{\phi}+8 \log _{0.992518}\left(\frac{1}{\left(\frac{1-\exp \left(-\frac{1}{2}(2 \pi)\right)}{1^{2}}-\frac{1-\exp \left(-\frac{1}{2}(3 \times 2 \pi)\right)}{3^{2}}+\frac{1-\exp \left(-\frac{1}{2}(5 \times 2 \pi)\right)}{5^{2}}\right) 4}\right)= \\
\frac{\pi}{\phi}-\pi-1065.16 \log \left(\frac{1}{836-36 \exp (-5 \pi)+100 \exp (-3 \pi)-900 \exp (-\pi)}\right)-
\end{array} \\
& 8 \log \left(\frac{225 \pi}{836-36 \exp (-5 \pi)+100 \exp (-3 \pi)-900 \exp (-\pi)}\right) \sum_{k=0}^{\infty}(-0.0074825)^{k} G(k) \\
& \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
\]

8log base \(0.9925175498(0.8867702525937869923416726)+11+1 /\) golden ratio

\section*{Input interpretation:}
\(8 \log _{0.9925175498}(0.8867702525937869923416726)+11+\frac{1}{\phi}\)

\section*{Result:}
139.61803...
\(139.61803 \ldots\) result practically equal to the rest mass of Pion meson 139.57

\section*{Alternative representation:}
\(8 \log _{0.992518}(0.88677025259378699234167260000)+11+\frac{1}{\phi}=\) \(11+\frac{1}{\phi}+\frac{8 \log (0.88677025259378699234167260000)}{\log (0.992518)}\)

\section*{Series representations:}
\(8 \log _{0.992518}(0.88677025259378699234167260000)+11+\frac{1}{\phi}=\)
\[
11+\frac{1}{\phi}-\frac{8 \sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.11322974740621300765832740000)^{k}}{k}}{\log (0.992518)}
\]
\(8 \log _{0.992518}(0.88677025259378699234167260000)+11+\frac{1}{\phi}=\)
\[
\begin{aligned}
& 11+\frac{1}{\phi}-1065.17 \log (0.88677025259378699234167260000)- \\
& 8 \log (0.88677025259378699234167260000) \sum_{k=0}^{\infty}(-0.00748245)^{k} G(k) \\
& \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
\]

Page 286


For \(\theta=2\), we obtain
\(1 /(\sin (4))-2 /\left(\mathrm{Pi}^{*} \mathrm{sqrt} 3\right)+8\left(\left(\left((\cos (4)) /\left(\mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt} 3\right)+1\right)\right)\right)-\left(\left(2 \cos (8) /\left(\mathrm{e}^{\wedge}\left(2 \mathrm{Pi}^{*} \mathrm{sqrt} 3\right)-\right.\right.\right.\right.\) \(\left.1)))+\left(\left(3 \cos (12) /\left(\mathrm{e}^{\wedge}\left(3 \mathrm{Pi}^{*} \operatorname{sqrt} 3\right)+1\right)\right)\right)\right)\)

\section*{Input:}
\[
\frac{1}{\sin (4)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (4)}{e^{\pi \sqrt{3}}+1}-2 \times \frac{\cos (8)}{e^{2 \pi \sqrt{3}}-1}+3 \times \frac{\cos (12)}{e^{3 \pi \sqrt{3}}+1}\right)
\]

\section*{Exact result:}
\(-\frac{2}{\sqrt{3} \pi}+8\left(\frac{\cos (4)}{1+e^{\sqrt{3} \pi}}-\frac{2 \cos (8)}{e^{2 \sqrt{3} \pi}-1}+\frac{3 \cos (12)}{1+e^{3 \sqrt{3} \pi}}\right)+\csc (4)\)

\section*{Decimal approximation:}
\(-1.71141826977207431495212249989046523190355342445751537927 \ldots\)
\(-1.711418269772 \ldots\)

\section*{Alternate forms:}
\[
\begin{aligned}
& -\frac{2}{\sqrt{3} \pi}+\frac{8 \cos (4)}{1+e^{\sqrt{3} \pi}}-\frac{16 \cos (8)}{e^{2 \sqrt{3} \pi}-1}+\frac{24 \cos (12)}{1+e^{3 \sqrt{3} \pi}}-\frac{2 \sin (4)}{\cos (8)-1} \\
& -\frac{2}{\sqrt{3} \pi}+\frac{16 \sin ^{2}(4)}{e^{2 \sqrt{3} \pi}-1}+\frac{24 \cos ^{3}(4)}{1+e^{3 \sqrt{3} \pi}}-\frac{16 \cos ^{2}(4)}{e^{2 \sqrt{3} \pi}-1}+\frac{8 \cos (4)}{1+e^{\sqrt{3} \pi}}+\csc (4)-\frac{72 \sin ^{2}(4) \cos (4)}{1+e^{3 \sqrt{3} \pi}} \\
& -\frac{2}{\sqrt{3} \pi}+\left(8 \left(-\cos (4)+e^{3 \sqrt{3} \pi} \cos (4)-2 \cos (8)-2 e^{2 \sqrt{3} \pi}(\cos (4)+\cos (8))-\right.\right. \\
& \left.\left.3 \cos (12)+e^{\sqrt{3} \pi}(2 \cos (4)+2 \cos (8)+3 \cos (12))\right)\right) / \\
& \left(\left(e^{\sqrt{3} \pi}-1\right)\left(1+e^{\sqrt{3} \pi}\right)\left(1-e^{\sqrt{3} \pi}+e^{2 \sqrt{3} \pi}\right)\right)+\csc (4)
\end{aligned}
\]

\section*{Alternative representations:}
\[
\begin{aligned}
& \frac{1}{\sin (4)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (4)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (8)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (12)}{e^{3 \pi \sqrt{3}}+1}\right)= \\
& \frac{1}{\cos \left(-4+\frac{\pi}{2}\right)}+8\left(\frac{\cosh (-4 i)}{1+e^{\pi \sqrt{3}}}-\frac{2 \cosh (-8 i)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cosh (-12 i)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}} \\
& \frac{1}{\sin (4)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (4)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (8)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (12)}{e^{3 \pi \sqrt{3}}+1}\right)= \\
& \frac{1}{\cos \left(-4+\frac{\pi}{2}\right)}+8\left(\frac{\cosh (4 i)}{1+e^{\pi \sqrt{3}}}-\frac{2 \cosh (8 i)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cosh (12 i)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}} \\
& \frac{1}{\sin (4)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (4)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (8)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (12)}{e^{3 \pi \sqrt{3}}+1}\right)= \\
& -\frac{1}{\cos \left(4+\frac{\pi}{2}\right)}+8\left(\frac{\cosh (-4 i)}{1+e^{\pi \sqrt{3}}}-\frac{2 \cosh (-8 i)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cosh (-12 i)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}}
\end{aligned}
\]

\section*{Series representations:}
\(\frac{1}{\sin (4)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (4)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (8)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (12)}{e^{3 \pi \sqrt{3}}+1}\right)=\)

\[
\frac{1}{\sin (4)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (4)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (8)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (12)}{e^{3 \pi \sqrt{3}}+1}\right)=
\]
\[
-\frac{2 \sqrt{3}-12 \pi \sum_{k=-\infty}^{\infty} \frac{(-1)^{k}}{16-k^{2} \pi^{2}}-3 \pi \sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{3+4 k}\left(\frac{1}{\left.1+e^{\sqrt{3} \pi}-\frac{2^{1+2 k}}{-1+e^{2} \sqrt{3} \pi}+\frac{3^{1+2 k}}{1+e^{3} \sqrt{3} \pi}\right)}\right.}{(2 k)!}}{3 \pi}
\]
\[
\frac{1}{\sin (4)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (4)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (8)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (12)}{e^{3 \pi \sqrt{3}}+1}\right)=
\]
\[
-\frac{1}{3 \pi}\left(2 \sqrt{3}+6 i \pi \sum_{k=1}^{\infty} q^{-1+2 k}-\right.
\]
\[
\left.3 \pi \sum_{k=0}^{\infty}\left(\frac{(-1)^{k} 2^{3+4 k}}{\left(1+e^{\sqrt{3} \pi}\right)(2 k)!}+\frac{(-1)^{1+k} 2^{4+6 k}}{\left(-1+e^{2 \sqrt{3} \pi}\right)(2 k)!}+\frac{(-1)^{k} 2^{3+4 k} \times 3^{1+2 k}}{\left(1+e^{3 \sqrt{3} \pi}\right)(2 k)!}\right)\right)
\]
\[
\text { for } q=e^{4 i}
\]

\section*{Integral representations:}
\[
\begin{aligned}
& \frac{1}{\sin (4)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (4)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (8)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (12)}{e^{3 \pi \sqrt{3}}+1}\right)= \\
& \quad \frac{8}{1+e^{\pi \sqrt{3}}}-\frac{16}{-1+e^{2 \pi \sqrt{3}}}+\frac{24}{1+e^{3 \pi \sqrt{3}}}+\frac{1}{4 \int_{0}^{1} \cos (4 t) d t}+ \\
& \int_{0}^{1} 32\left(-\frac{\sin (4 t)}{1+e^{\pi \sqrt{3}}}+\frac{4 \sin (8 t)}{-1+e^{2 \pi \sqrt{3}}}-\frac{9 \sin (12 t)}{1+e^{3 \pi \sqrt{3}}}\right) d t-\frac{2}{\pi \sqrt{3}}
\end{aligned}
\]
\[
\begin{aligned}
& \frac{1}{\sin (4)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (4)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (8)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (12)}{e^{3 \pi \sqrt{3}}}\right)=\frac{8}{1+e^{\pi \sqrt{3}}}-\frac{16}{-1+e^{2 \pi \sqrt{3}}}+ \\
& \frac{24}{1+e^{3 \pi \sqrt{3}}}+\int_{0}^{1} 32\left(-\frac{\sin (4 t)}{1+e^{\pi \sqrt{3}}}+\frac{4 \sin (8 t)}{-1+e^{2 \pi \sqrt{3}}}-\frac{9 \sin (12 t)}{1+e^{3 \pi \sqrt{3}}}\right) d t- \\
& \frac{2 \pi}{\pi \sqrt{3}}+\frac{i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\mathcal{F}^{-4 / s+s}}{s^{3 / 2}} d s} \text { for } \gamma>0
\end{aligned}
\]
\[
\begin{aligned}
& \frac{1}{\sin (4)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (4)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (8)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (12)}{e^{3 \pi \sqrt{3}}+1}\right)= \\
& \left(-8 \int_{0}^{1} \cos (4 t) d t+\pi \sqrt{3}+4 \pi\left(\int_{0}^{1} \cos (4 t) d t\right)\right. \\
& \left(\int_{-i \infty+\gamma}^{i \infty+\gamma}\left(\frac{12 \mathcal{A}^{-36 / s+s} \sqrt{\pi}}{\left(1+e^{3 \pi \sqrt{3}}\right) i \pi \sqrt{s}}-\frac{8 \mathcal{A}^{-16 / s+s} \sqrt{\pi}}{\left(-1+e^{2 \pi \sqrt{3}}\right) i \pi \sqrt{s}}+\frac{4 \mathcal{A}^{-4 / s+s} \sqrt{\pi}}{\left(1+e^{\pi \sqrt{3}}\right) i \pi \sqrt{s}}\right)\right. \\
& d s) \sqrt{3}) /\left(4 \pi \sqrt{3} \int_{0}^{1} \cos (4 t) d t\right) \text { for } \gamma>0
\end{aligned}
\]

From which, we obtain:
\(-\left(\left(\left(\left(\left(1 /(\sin (4))-2 /(\operatorname{Pi} * s q r t 3)+8\left(\left(\left((\cos (4)) /\left(\mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt3}\right)+1\right)\right)\right)-\right.\right.\right.\right.\right.\right.\)
\(\left(\left(2 \cos (8) /\left(\mathrm{e}^{\wedge}\left(2 \mathrm{Pi}^{*} \mathrm{sqrt} 3\right)-1\right)\right)\right)+\left(\left(3 \cos (12) /\left(\mathrm{e}^{\wedge}\left(3 \mathrm{Pi}^{*}\right.\right.\right.\right.\) sqrt3 \(\left.\left.\left.\left.\left.\left.\left.\left.\left.)+1\right)\right)\right)\right)\right)\right)\right)\right)\right)^{\wedge} 9\)

\section*{Input:}
\(-\left(\frac{1}{\sin (4)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (4)}{e^{\pi \sqrt{3}}+1}-2 \times \frac{\cos (8)}{e^{2 \pi \sqrt{3}}-1}+3 \times \frac{\cos (12)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{9}\)

\section*{Exact result:}
\(-\left(-\frac{2}{\sqrt{3} \pi}+8\left(\frac{\cos (4)}{1+e^{\sqrt{3} \pi}}-\frac{2 \cos (8)}{e^{2 \sqrt{3} \pi}-1}+\frac{3 \cos (12)}{1+e^{3 \sqrt{3} \pi}}\right)+\csc (4)\right)^{\circ}\)

\section*{Decimal approximation:}
125.9521179602172728278532239067872220274166439341913080015...
\(125.9521179 \ldots\) result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for \(\mathrm{T}=0\) and to the Higgs boson mass 125.18

And:
\(-\left(\left(\left(\left(\left(1 /(\sin (4))-2 /\left(\mathrm{Pi}^{*}\right.\right.\right.\right.\right.\right.\) sqrt3) \(+8\left(\left(\left((\cos (4)) /\left(\mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*}\right.\right.\right.\right.\right.\) sqrt3)+1\(\left.\left.)\right)\right)-\) \(\left.\left.\left.\left.\left.\left(\left(2 \cos (8) /\left(\mathrm{e}^{\wedge}\left(2 \mathrm{Pi}^{*} \mathrm{sqrt} 3\right)-1\right)\right)\right)+\left(\left(3 \cos (12) /\left(\mathrm{e}^{\wedge}\left(3 \mathrm{Pi}^{*} \mathrm{sqrt} 3\right)+1\right)\right)\right)\right)\right)\right)\right)\right)^{\wedge} 9+11+\mathrm{Pi}-1 /\) golden ratio

\section*{Input:}
\(-\left(\frac{1}{\sin (4)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (4)}{e^{\pi \sqrt{3}}+1}-2 \times \frac{\cos (8)}{e^{2 \pi \sqrt{3}}-1}+3 \times \frac{\cos (12)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{9}+11+\pi-\frac{1}{\phi}\)
\(\phi\) is the golden ratio

\section*{Exact result:}
\(-\frac{1}{\phi}+11+\pi-\left(-\frac{2}{\sqrt{3} \pi}+8\left(\frac{\cos (4)}{1+e^{\sqrt{3} \pi}}-\frac{2 \cos (8)}{e^{2 \sqrt{3} \pi}-1}+\frac{3 \cos (12)}{1+e^{3 \sqrt{3} \pi}}\right)+\csc (4)\right)^{\circ}\)

\section*{Decimal approximation:}
139.4756766250571712181112804557010867938935041537606509603...
\(139.475676625 \ldots\) result practically equal to the rest mass of Pion meson 139.57

For \(\theta=3 / 2\), we obtain:
\(1 /(\sin (3))-2 /\left(\mathrm{Pi}^{*} \mathrm{sqrt} 3\right)+8\left(\left(\left((\cos (3)) /\left(\mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt} 3\right)+1\right)\right)\right)-\left(\left(2 \cos (6) /\left(\mathrm{e}^{\wedge}\left(2 \mathrm{Pi}^{*} \mathrm{sqrt} 3\right)-\right.\right.\right.\right.\)
\(\left.1)))+\left(\left(3 \cos (9) /\left(\mathrm{e}^{\wedge}\left(3 \mathrm{Pi}^{*} \mathrm{sqrt} 3\right)+1\right)\right)\right)\right)\)

\section*{Input:}
\[
\frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-2 \times \frac{\cos (6)}{e^{2 \pi \sqrt{3}}-1}+3 \times \frac{\cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)
\]

\section*{Exact result:}
\(-\frac{2}{\sqrt{3} \pi}+8\left(\frac{\cos (3)}{1+e^{\sqrt{3} \pi}}-\frac{2 \cos (6)}{e^{2 \sqrt{3} \pi}-1}+\frac{3 \cos (9)}{1+e^{3 \sqrt{3} \pi}}\right)+\csc (3)\)

\section*{Decimal approximation:}
6.684152177327028995705938987005415639180638709473686259969...
\(6.684152177327 .\).

Alternate forms:
\(-\frac{2}{\sqrt{3} \pi}+\frac{8 \cos (3)}{1+e^{\sqrt{3} \pi}}-\frac{16 \cos (6)}{e^{2 \sqrt{3} \pi}-1}+\frac{24 \cos (9)}{1+e^{3 \sqrt{3} \pi}}-\frac{2 \sin (3)}{\cos (6)-1}\)
\[
\begin{aligned}
& -\frac{2}{\sqrt{3} \pi}+\frac{16 \sin ^{2}(3)}{e^{2 \sqrt{3} \pi}-1}+\frac{24 \cos ^{3}(3)}{1+e^{3 \sqrt{3} \pi}}-\frac{16 \cos ^{2}(3)}{e^{2 \sqrt{3} \pi}-1}+\frac{8 \cos (3)}{1+e^{\sqrt{3} \pi}}+\csc (3)-\frac{72 \sin ^{2}(3) \cos (3)}{1+e^{3 \sqrt{3} \pi}} \\
& -\frac{2}{\sqrt{3} \pi}+\left(8 \left(-\cos (3)+e^{3 \sqrt{3} \pi} \cos (3)-2 \cos (6)-2 e^{2 \sqrt{3} \pi}(\cos (3)+\cos (6))-\right.\right. \\
& \left.\left.3 \cos (9)+e^{\sqrt{3} \pi}(2 \cos (3)+2 \cos (6)+3 \cos (9))\right)\right) / \\
& \left(\left(e^{\sqrt{3} \pi}-1\right)\left(1+e^{\sqrt{3} \pi}\right)\left(1-e^{\sqrt{3} \pi}+e^{2 \sqrt{3} \pi}\right)\right)+\csc (3)
\end{aligned}
\]

\section*{Alternative representations:}
\[
\begin{aligned}
& \frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)= \\
& \frac{1}{\cos \left(-3+\frac{\pi}{2}\right)}+8\left(\frac{\cosh (-3 i)}{1+e^{\pi \sqrt{3}}}-\frac{2 \cosh (-6 i)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cosh (-9 i)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}}
\end{aligned}
\]
\[
\begin{aligned}
& \frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)= \\
& \frac{1}{\cos \left(-3+\frac{\pi}{2}\right)}+8\left(\frac{\cosh (3 i)}{1+e^{\pi \sqrt{3}}}-\frac{2 \cosh (6 i)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cosh (9 i)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}}
\end{aligned}
\]
\[
\frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)=
\]
\[
-\frac{1}{\cos \left(3+\frac{\pi}{2}\right)}+8\left(\frac{\cosh (-3 i)}{1+e^{\pi \sqrt{3}}}-\frac{2 \cosh (-6 i)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cosh (-9 i)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}}
\]

\section*{Series representations:}
\[
\begin{aligned}
& \frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)= \\
& -\frac{\left.2 \sqrt{3}+6 i \pi \sum_{k=1}^{\infty} q^{-1+2 k}-3 \pi \sum_{k=0}^{\infty} \frac{8(-9)^{k}\left(\frac{1}{1+e^{3} \pi}-\frac{2^{1+2 k}}{-\left(e^{2 \sqrt{3} \pi}\right.}+\frac{3^{1+2 k}}{1+e^{3 \sqrt{3} \pi}}\right)}{3 \pi}\right)}{2 \pi} \\
& q=e^{3 i}
\end{aligned}
\]
\[
\begin{aligned}
& \frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)= \\
& -\frac{1}{3 \pi}\left(2 \sqrt{3}+6 i \pi \sum_{k=1}^{\infty} q^{-1+2 k}-\right. \\
& \left.\quad 3 \pi \sum_{k=0}^{\infty}\left(\frac{8(-1)^{k} 3^{2 k}}{\left(1+e^{\sqrt{3} \pi}\right)(2 k)!}+\frac{(-1)^{1+k} 2^{4+2 k} \times 3^{2 k}}{\left(-1+e^{2 \sqrt{3} \pi}\right)(2 k)!}+\frac{8(-1)^{k} 3^{1+4 k}}{\left(1+e^{3 \sqrt{3} \pi}\right)(2 k)!}\right)\right) \\
& \quad \text { for } q=e^{3 i}
\end{aligned}
\]
\[
\begin{aligned}
& \frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)= \\
& -\frac{1}{3 \pi}\left(2 \sqrt{3}-9 \pi \sum_{k=-\infty}^{\infty} \frac{(-1)^{k}}{9-k^{2} \pi^{2}}-\right. \\
& \left.\quad 3 \pi \sum_{k=0}^{\infty}\left(\frac{8(-1)^{k} 3^{2 k}}{\left(1+e^{\sqrt{3} \pi}\right)(2 k)!}+\frac{(-1)^{1+k} 2^{4+2 k} \times 3^{2 k}}{\left(-1+e^{2 \sqrt{3} \pi}\right)(2 k)!}+\frac{8(-1)^{k} 3^{1+4 k}}{\left(1+e^{3 \sqrt{3} \pi}\right)(2 k)!}\right)\right)
\end{aligned}
\]

\section*{Integral representations:}
\[
\begin{aligned}
& \frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)= \\
& \frac{8}{1+e^{\sqrt{3} \pi}}-\frac{16}{-1+e^{2 \sqrt{3} \pi}}+\frac{24}{1+e^{3 \sqrt{3} \pi}}-\frac{2}{\sqrt{3} \pi}+ \\
& \frac{1}{\pi} \int_{0}^{\infty} \frac{t^{3 / \pi}}{t+t^{2}} d t+\int_{0}^{1}\left(-\frac{24 \sin (3 t)}{1+e^{\sqrt{3} \pi}}+\frac{96 \sin (6 t)}{-1+e^{2 \sqrt{3} \pi}}-\frac{216 \sin (9 t)}{\left.1+e^{3 \sqrt{3} \pi}\right) d t}\right. \\
& \frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)= \\
& -\frac{1}{3 \pi}\left(2 \sqrt{3}-3 \pi \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{4 i e^{-9 /(4 s)+s}}{\left(1+e^{\sqrt{3} \pi}\right) \sqrt{\pi} \sqrt{s}}+\frac{8 i e^{-9 / s+s}}{\left(-1+e^{2 \sqrt{3} \pi}\right) \sqrt{\pi} \sqrt{s}}-\right.\right. \\
& \left.\left.\frac{12 i e^{-81 /(4 s)+s}}{\left(1+e^{3 \sqrt{3} \pi}\right) \sqrt{\pi} \sqrt{s}}\right) d s-3 \int_{0}^{\infty} \frac{t^{3 / \pi}}{t+t^{2}} d t\right) \text { for } \gamma>0
\end{aligned}
\]
\[
\begin{aligned}
& \frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)= \\
& -\frac{1}{3 \pi}\left(2 \sqrt{3}-3 \int_{0}^{\infty} \frac{t^{3 / \pi}}{t+t^{2}} d t-\right. \\
& 3 \pi \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{i 2^{2+2 s} \times 3^{-2 s} \Gamma(s)}{\left(1+e^{\sqrt{3} \pi}\right) \sqrt{\pi} \Gamma\left(\frac{1}{2}-s\right)}+\frac{8 i 3^{-2 s} \Gamma(s)}{\left(-1+e^{2 \sqrt{3} \pi}\right) \sqrt{\pi} \Gamma\left(\frac{1}{2}-s\right)}-\right. \\
& \left.\left.\frac{i 2^{2+2 s} \times 3^{1-4 s} \Gamma(s)}{\left(1+e^{3 \sqrt{3}} \pi\right) \sqrt{\pi} \Gamma\left(\frac{1}{2}-s\right)}\right) d s\right) \text { for } 0<\gamma<\frac{1}{2} \\
& \frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)=-\frac{1}{3 \pi} \\
& \left(2 \sqrt{3}-3 \int_{0}^{\infty} \frac{t^{3 / \pi}}{t+t^{2}} d t-3 \pi \int_{\frac{\pi}{2}}^{0}\left(-\frac{24 \sin (t)}{1+e^{3 \sqrt{3} \pi}}+\frac{1}{9-\frac{\pi}{2}}\left(3-\frac{\pi}{2}\right)\left(-\frac{8 \sin \left(\frac{-3 \pi-3 t+\frac{\pi t}{2}}{-9+\frac{\pi}{2}}\right)}{1+e^{\sqrt{3} \pi}}+\right.\right.\right. \\
& \left.\frac{16\left(6-\frac{\pi}{2}\right) \sin \left(\frac{\frac{3 \pi}{2}-\frac{6\left(-3 \pi-3 t+\frac{\pi t}{2}\right)}{-9+\frac{\pi}{2}}+\frac{\pi\left(-3 \pi-3 t+\frac{\pi t}{2}\right)}{2\left(-9+\frac{\pi}{2}\right)}}{-3+\frac{\pi}{2}}\right)}{\left(-1+e^{2 \sqrt{3} \pi}\right)\left(3-\frac{\pi}{2}\right)}\right) d t
\end{aligned}
\]

From which, we obtain:
\(\left(\left(\left(1 /(\sin (3))-2 /(\mathrm{Pi} * \mathrm{sqr} 3)+8\left(\left(\left((\cos (3)) /\left(\mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt3}\right)+1\right)\right)\right)-\left(\left(2 \cos (6) /\left(\mathrm{e}^{\wedge}\left(2 \mathrm{Pi}^{*} \mathrm{sqrt} 3\right)-\right.\right.\right.\right.\right.\right.\right.\) \(1)))^{\left.\left.\left.+\left(\left(3 \cos (9) /\left(\mathrm{e}^{\wedge}\left(3 \mathrm{Pi}^{*} \operatorname{sqrt3}\right)+1\right)\right)\right)\right)\right)\right)^{\wedge} \mathrm{Pi}+76+29}\)

Where 76 and 29 are Lucas numbers

\section*{Input:}
\[
\left(\frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-2 \times \frac{\cos (6)}{e^{2 \pi \sqrt{3}}-1}+3 \times \frac{\cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{\pi}+76+29
\]

\section*{Exact result:}
\(105+\left(-\frac{2}{\sqrt{3} \pi}+8\left(\frac{\cos (3)}{1+e^{\sqrt{3} \pi}}-\frac{2 \cos (6)}{e^{2 \sqrt{3} \pi}-1}+\frac{3 \cos (9)}{1+e^{3 \sqrt{3} \pi}}\right)+\csc (3)\right)^{\pi}\)

\section*{Decimal approximation:}
495.8044368195752677327442431600131432338288885915975845291
\(495.80443681 \ldots\) result very near to the rest mass of Kaon meson 497.614

\section*{Alternate forms:}
\(105+\left(-\frac{2}{\sqrt{3} \pi}+\frac{8 \cos (3)}{1+e^{\sqrt{3} \pi}}-\frac{16 \cos (6)}{e^{2 \sqrt{3} \pi}-1}+\frac{24 \cos (9)}{1+e^{3 \sqrt{3} \pi}}-\frac{2 \sin (3)}{\cos (6)-1}\right)^{\pi}\)
\[
105+\left(-\frac{2 i}{e^{-3 i}-e^{3 i}}+8\left(\frac{e^{-3 i}+e^{3 i}}{2\left(1+e^{\sqrt{3} \pi}\right)}-\frac{e^{-6 i}+e^{6 i}}{e^{2 \sqrt{3} \pi}-1}+\frac{3\left(e^{-9 i}+e^{9 i}\right)}{2\left(1+e^{3 \sqrt{3} \pi}\right)}\right)-\frac{2}{\sqrt{3} \pi}\right)^{\pi}
\]
\[
105+3^{-\pi / 2}\left(\left(e^{\sqrt{3} \pi}-1\right)\left(1+e^{\sqrt{3} \pi}\right)\right)^{-\pi}
\]
\[
\left((\csc (3)) e^{4 \sqrt{3} \pi}(\sqrt{3} \pi-2 \sin (3))+2 \sin (3)+e^{3 \sqrt{3} \pi}(2 \sin (3)+\sqrt{3} \pi\right.
\]
\[
(4 \sin (6)-1))-16 \sqrt{3} e^{2 \sqrt{3} \pi} \pi \sin (3)(\cos (3)+\cos (6))-
\]
\[
\sqrt{3} \pi(1+4 \sin (6)+8 \sin (3)(2 \cos (6)+3 \cos (9)))+e^{\sqrt{3} \pi}
\]
\[
(\sqrt{3} \pi(1+8 \sin (6)+8 \sin (3)(2 \cos (6)+3 \cos (9)))-2 \sin (3)))) /
\]
\[
\left.\left(\left(1-e^{\sqrt{3} \pi}+e^{2 \sqrt{3} \pi}\right) \pi\right)\right)^{\pi}
\]

\section*{Alternative representations:}
\[
\begin{aligned}
& \left(\frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{\pi}+76+29= \\
& 105+\left(\frac{1}{\cos \left(-3+\frac{\pi}{2}\right)}+8\left(\frac{\cosh (-3 i)}{1+e^{\pi \sqrt{3}}}-\frac{2 \cosh (-6 i)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cosh (-9 i)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}}\right)^{\pi}
\end{aligned}
\]
\[
\begin{aligned}
& \left(\frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{\pi}+76+29= \\
& 105+\left(-\frac{1}{\cos \left(3+\frac{\pi}{2}\right)}+8\left(\frac{\cosh (-3 i)}{1+e^{\pi \sqrt{3}}}-\frac{2 \cosh (-6 i)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cosh (-9 i)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}}\right)^{\pi}
\end{aligned}
\]
\[
\begin{aligned}
& \left(\frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{\pi}+76+29= \\
& \quad 105+\left(\frac{1}{\cos \left(-3+\frac{\pi}{2}\right)}+8\left(\frac{\cosh (3 i)}{1+e^{\pi \sqrt{3}}}-\frac{2 \cosh (6 i)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cosh (9 i)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}}\right)^{\pi}
\end{aligned}
\]

\section*{Series representations:}
\[
\begin{aligned}
& \left(\frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{\pi}+76+29= \\
& 105+\left(-\frac{2}{\sqrt{3} \pi}-2 i \sum_{k=1}^{\infty} q^{-1+2 k}+8 \sum_{k=0}^{\infty} \frac{(-9)^{k}\left(\frac{1}{1+e^{\sqrt{3} \pi}}-\frac{2^{1+2 k}}{-1+e^{2 \sqrt{3} \pi}}+\frac{3^{1+2 k}}{1+e^{3 \sqrt{3}} \pi}\right)}{(2 k)!}\right)^{\pi} \text { for } \\
& q=e^{3 i}
\end{aligned}
\]
\[
\left(\frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{\pi}+76+29=
\]
\[
105+\left(-\frac{2}{\sqrt{3} \pi}+3 \sum_{k=-\infty}^{\infty} \frac{(-1)^{k}}{9-k^{2} \pi^{2}}+8 \sum_{k=0}^{\infty} \frac{(-9)^{k}\left(\frac{1}{1+e^{\sqrt{3}} \pi}-\frac{2^{1+2 k}}{-1+e^{2} \sqrt{3} \pi}+\frac{3^{1+2 k}}{1+e^{3 \sqrt{3} \pi}}\right)}{(2 k)!}\right)^{\pi}
\]
\[
\left(\frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{\pi}+76+29=
\]
\[
105+\left(-\frac{2}{\sqrt{3} \pi}-2 i \sum_{k=1}^{\infty} q^{-1+2 k}+8 \sum_{k=0}^{\infty}\left(\frac{(-1)^{k} 3^{2 k}}{\left(1+e^{\sqrt{3} \pi}\right)(2 k)!}+\right.\right.
\]
\[
\left.\left.\frac{(-1)^{1+k} 2^{1+2 k} \times 3^{2 k}}{\left(-1+e^{2 \sqrt{3} \pi}\right)(2 k)!}+\frac{(-1)^{k} 3^{1+4 k}}{\left(1+e^{3 \sqrt{3}} \pi\right)(2 k)!}\right)\right)^{\pi} \text { for } q=e^{3 i}
\]

And:
\(1 / \mathrm{Pi}^{*}\left(\left(\left(\left(\left(\left(\left(1 /(\sin (3))-2 /\left(\mathrm{Pi}^{*} \mathrm{sqrt} 3\right)+8\left(\left(\left((\cos (3)) /\left(\mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt} 3\right)+1\right)\right)\right)-\right.\right.\right.\right.\right.\right.\right.\right.\)
\(\left.\left.\left.\left.\left.\left.\left.\left.\left(\left(2 \cos (6) /\left(\mathrm{e}^{\wedge}\left(2 \mathrm{Pi}^{*} \mathrm{sqrt} 3\right)-1\right)\right)\right)+\left(\left(3 \cos (9) /\left(\mathrm{e}^{\wedge}\left(3 \mathrm{Pi}^{*} \mathrm{sqrt} 3\right)+1\right)\right)\right)\right)\right)\right)\right)^{\wedge} \mathrm{Pi}+76+29\right)\right)\right)\right)-18\)
Where 18 is a Lucas number

\section*{Input:}
\[
\frac{1}{\pi}\left(\left(\frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-2 \times \frac{\cos (6)}{e^{2 \pi \sqrt{3}}-1}+3 \times \frac{\cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{\pi}+76+29\right)-18
\]

\section*{Exact result:}
\[
\frac{105+\left(-\frac{2}{\sqrt{3} \pi}+8\left(\frac{\cos (3)}{1+e^{\sqrt{3} \pi}}-\frac{2 \cos (6)}{e^{2 \sqrt{3} \pi}-1}+\frac{3 \cos (9)}{1+e^{3 \sqrt{3} \pi}}\right)+\csc (3)\right)^{\pi}}{\pi}-18
\]

\section*{Decimal approximation:}
139.8194538534574364349036686367006235538504921093483263622...
\(139.8194538 \ldots\) result practically equal to the rest mass of Pion meson 139.57

\section*{Alternate forms:}
\(\frac{105-18 \pi+\left(-\frac{2}{\sqrt{3} \pi}+8\left(\frac{\cos (3)}{1+e^{\sqrt{3} \pi}}-\frac{2 \cos (6)}{e^{2 \sqrt{3} \pi}-1}+\frac{3 \cos (9)}{1+e^{3 \sqrt{3} \pi}}\right)+\csc (3)\right)^{\pi}}{\pi}\)
\(-18+\frac{105}{\pi}+\frac{\left(-\frac{2}{\sqrt{3} \pi}+\frac{8 \cos (3)}{1+e^{\sqrt{3} \pi}}-\frac{16 \cos (6)}{e^{2 \sqrt{3} \pi}-1}+\frac{24 \cos (9)}{1+e^{3 \sqrt{3} \pi}}-\frac{2 \sin (3)}{\cos (6)-1}\right)^{\pi}}{\pi}\)
\(-18+\frac{105}{\pi}+\frac{\left(-\frac{2 i}{e^{-3 i}-e^{3 i}}+8\left(\frac{e^{-3 i}+e^{3 i}}{2\left(1+e^{\sqrt{3} \pi}\right)}-\frac{e^{-6 i}+e^{6 i}}{e^{2 \sqrt{3} \pi}-1}+\frac{3\left(e^{-9 i}+e^{9 i}\right)}{2\left(1+e^{3 \sqrt{3} \pi}\right)}\right)-\frac{2}{\sqrt{3} \pi}\right)^{\pi}}{\pi}\)

\section*{Alternative representations:}
\[
\frac{\left(\frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{\pi}+76+29}{\pi}-18=
\]
\[
\underline{\left(\frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{\pi}+76+29}-18=
\]
\[
-18+\frac{105+\left(-\frac{1}{\cos \left(3+\frac{\pi}{2}\right)}+8\left(\frac{\cosh (-3 i)}{1+e^{\pi \sqrt{3}}}-\frac{2 \cosh (-6 i)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cosh (-9 i)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}}\right)^{\pi}}{\pi}
\]
\[
\begin{aligned}
& \frac{\left(\frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{\pi}+76+29}{\pi}-18= \\
& -18+\frac{105+\left(\frac{1}{\cos \left(-3+\frac{\pi}{2}\right)}+8\left(\frac{\cosh (3 i)}{1+e^{\pi \sqrt{3}}}-\frac{2 \cosh (6 i)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cosh (9 i)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}}\right)^{\pi}}{\pi}
\end{aligned}
\]

\section*{Series representations:}
\[
\begin{aligned}
& \frac{\left(\frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{\pi}+76+29}{\pi}-18= \\
& -\frac{1}{\pi}\left(-105+18 \pi-\left(-\frac{2}{\sqrt{3} \pi}-2 i \sum_{k=1}^{\infty} q^{-1+2 k}+\right.\right. \\
& \left.8 \sum_{k=0}^{\infty} \frac{(-9)^{k}\left(\frac{1}{1+e^{\sqrt{3}} \pi}-\frac{2^{1+2 k}}{-1+e^{2 \sqrt{3} \pi}}+\frac{3^{1+2 k}}{1+e^{3 \sqrt{3} \pi}}\right)}{(2 k)!}\right)^{\pi} \text { for } q=e^{3 i} \\
& \frac{\left(\frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{\pi}+76+29}{\pi}-18= \\
& -\frac{1}{\pi}\left(-105+18 \pi-\left(-\frac{2}{\sqrt{3} \pi}-2 i \sum_{k=1}^{\infty} q^{-1+2 k}+8 \sum_{k=0}^{\infty}\left(\frac{(-1)^{k} 3^{2 k}}{\left(1+e^{\sqrt{3} \pi}\right)(2 k)!}+\right.\right.\right. \\
& \left.\left.\frac{(-1)^{1+k} 2^{1+2 k} \times 3^{2 k}}{\left(-1+e^{2 \sqrt{3} \pi}\right)(2 k)!}+\frac{(-1)^{k} 3^{1+4 k}}{\left(1+e^{3 \sqrt{3} \pi}\right)(2 k)!}\right)\right)^{\pi} \text { for } q=e^{3 i} \\
& \frac{\left(\frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{\pi}+76+29}{\pi}-18= \\
& -\frac{1}{\pi}\left(-105+18 \pi-\left(-\frac{2}{\sqrt{3} \pi}+3 \sum_{k=-\infty}^{\infty} \frac{(-1)^{k}}{9-k^{2} \pi^{2}}+\right.\right. \\
& \left.\left.8 \sum_{k=0}^{\infty}\left(\frac{(-1)^{k} 3^{2 k}}{\left(1+e^{\sqrt{3} \pi}\right)(2 k)!}+\frac{(-1)^{1+k} 2^{1+2 k} \times 3^{2 k}}{\left(-1+e^{2 \sqrt{3} \pi}\right)(2 k)!}+\frac{(-1)^{k} 3^{1+4 k}}{\left(1+e^{3 \sqrt{3} \pi}\right)(2 k)!}\right)\right)^{\pi}\right)
\end{aligned}
\]
\(1 / \mathrm{Pi}^{*}\left(\left(\left(\left(\left(\left(\left(1 /(\sin (3))-2 /\left(\mathrm{Pi}^{*} \mathrm{sqrt} 3\right)+8\left(\left(\left((\cos (3)) /\left(\mathrm{e}^{\wedge}\left(\mathrm{Pi}{ }^{*} \mathrm{sqrt} 3\right)+1\right)\right)\right)-\right.\right.\right.\right.\right.\right.\right.\right.\)
\(\left.\left.\left.\left.\left.\left.\left.\left.\left(\left(2 \cos (6) /\left(\mathrm{e}^{\wedge}\left(2 \mathrm{Pi}^{*} \operatorname{sqrt} 3\right)-1\right)\right)\right)+\left(\left(3 \cos (9) /\left(\mathrm{e}^{\wedge}\left(3 \mathrm{Pi}^{*} \operatorname{sqrt} 3\right)+1\right)\right)\right)\right)\right)\right)\right)^{\wedge} \mathrm{Pi}+47\right)\right)\right)\right)\)-11-golden ratio^2

Where 11 and 47 are Lucas numbers

\section*{Input:}
\(\frac{1}{\pi}\left(\left(\frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-2 \times \frac{\cos (6)}{e^{2 \pi \sqrt{3}}-1}+3 \times \frac{\cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{\pi}+47\right)-11-\phi^{2}\)

\section*{Exact result:}
\(-\phi^{2}-11+\frac{47+\left(-\frac{2}{\sqrt{3} \pi}+8\left(\frac{\cos (3)}{1+e^{3} \pi}-\frac{2 \cos (6)}{e^{2 \sqrt{3} \pi}-1}+\frac{3 \cos (9)}{1+e^{3 \sqrt{3} \pi}}\right)+\csc (3)\right)^{\pi}}{\pi}\)

\section*{Decimal approximation:}
125.7394464660476826375085652511233194401328640236496154453...
125.739446466... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for \(\mathrm{T}=0\) and to the Higgs boson mass 125.18

\section*{Alternate forms:}
\(-\frac{-94+25 \pi+\sqrt{5} \pi-2\left(-\frac{2}{\sqrt{3} \pi}+8\left(\frac{\cos (3)}{1+e^{3} \pi}-\frac{2 \cos (6)}{\left.\left.e^{2 \sqrt{3} \pi_{-1}}+\frac{3 \cos (9)}{1+e^{3 \sqrt{3} \pi}}\right)+\csc (3)\right)^{\pi}}\right.\right.}{2 \pi}\)
\(-\frac{25}{2}-\frac{\sqrt{5}}{2}+\frac{47}{\pi}+\frac{\left(-\frac{2}{\sqrt{3} \pi}+\frac{8 \cos (3)}{1+e^{3} \pi}-\frac{16 \cos (6)}{e^{2 \sqrt{3}} \pi-1}+\frac{24 \cos (9)}{1+e^{3 \sqrt{3}} \pi}-\frac{2 \sin (3)}{\cos (6)-1}\right)^{\pi}}{\pi}\)
\(-\phi^{2}-11+\frac{47}{\pi}+\frac{\left.\left(-\frac{2 i}{e^{-3 i}-e^{3 i}}+8\left(\frac{e^{-3 i}+e^{3 i}}{2\left(1+e^{3} \pi\right.}\right)-\frac{e^{-6 i}+e^{6 i}}{e^{2 \sqrt{3} \pi}-1}+\frac{3\left(e^{-9 i}+e^{9 i}\right)}{2\left(1+e^{3 \sqrt{3}} \pi\right)}\right)-\frac{2}{\sqrt{3} \pi}\right)^{\pi}}{\pi}\)

\section*{Expanded form:}
\(-\frac{25}{2}-\frac{\sqrt{5}}{2}+\frac{47}{\pi}+\frac{\left(-\frac{2}{\sqrt{3} \pi}+8\left(\frac{\cos (3)}{1+e^{3} \pi}-\frac{2 \cos (6)}{\left.\left.e^{2 \sqrt{3} \pi_{-1}}+\frac{3 \cos (9)}{1+e^{3 \sqrt{3}} \pi}\right)+\csc (3)\right)^{\pi}}\right.\right.}{\pi}\)

\section*{Alternative representations:}
\[
\begin{aligned}
& \frac{\left(\frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{\pi}+47}{\pi}-11-\phi^{2}= \\
& -11-\phi^{2}+\frac{47+\left(\frac{1}{\cos \left(-3+\frac{\pi}{2}\right)}+8\left(\frac{\cosh (-3 i)}{1+e^{\pi \sqrt{3}}}-\frac{2 \cosh (-6 i)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cosh (-9 i)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}}\right)^{\pi}}{\pi}
\end{aligned}
\]
\[
\frac{\left(\frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{\pi}+47}{\pi}-11-\phi^{2}={ }^{\pi}-17+\left(-\frac{1}{\cos \left(3+\frac{\pi}{2}\right)}+8\left(\frac{\cosh (-3 i)}{1+e^{\pi \sqrt{3}}}-\frac{2 \cosh (-6 i)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cosh (-9 i)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}}\right)^{\pi} \phi^{2}+\frac{\pi}{-11}
\]
\[
\frac{\left(\frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{\pi}+47}{\pi}-11-\phi^{2}=
\]
\[
-11-\phi^{2}+\frac{47+\left(\frac{1}{\cos \left(-3+\frac{\pi}{2}\right)}+8\left(\frac{\cosh (3 i)}{1+e^{\pi \sqrt{3}}}-\frac{2 \cosh (6 i)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cosh (9 i)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}}\right)^{\pi}}{\pi}
\]

\section*{Series representations:}
\[
\begin{aligned}
& \frac{\left(\frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{\pi}+47}{\pi}-11-\phi^{2}= \\
& -\frac{1}{2 \pi}(-94+25 \pi+\sqrt{5} \pi- \\
& 2\left(-\frac{2}{\sqrt{3} \pi}-2 i \sum_{k=1}^{\infty} q^{-1+2 k}+8 \sum_{k=0}^{\infty}\left(\frac{(-1)^{k} 3^{2 k}}{\left(1+e^{\sqrt{3} \pi}\right)(2 k)!}+\frac{(-1)^{1+k} 2^{1+2 k} \times 3^{2 k}}{\left(-1+e^{2 \sqrt{3} \pi}\right)(2 k)!}+\right.\right. \\
& \\
& \left.\left.\left.\left.\frac{(-1)^{k} 3^{1+4 k}}{\left(1+e^{3 \sqrt{3} \pi}\right)(2 k)!}\right)\right)\right)^{\pi}\right) \text { for } q=e^{3 i}
\end{aligned}
\]
\[
\begin{aligned}
& \frac{\left(\frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{\pi}+47}{\pi}-11-\phi^{2}= \\
& -\frac{1}{2 \pi}(-94+25 \pi+\sqrt{5} \pi- \\
& 2\left(-\frac{2}{\sqrt{3} \pi}+3 \sum_{k=-\infty}^{\infty} \frac{(-1)^{k}}{9-k^{2} \pi^{2}}+8 \sum_{k=0}^{\infty}\left(\frac{(-1)^{k} 3^{2 k}}{\left(1+e^{\sqrt{3} \pi}\right)(2 k)!}+\frac{(-1)^{1+k} 2^{1+2 k} \times 3^{2 k}}{\left(-1+e^{2 \sqrt{3} \pi}\right)(2 k)!}+\right.\right. \\
& \left.\left.\left.\frac{(-1)^{k} 3^{1+4 k}}{\left(1+e^{3 \sqrt{3} \pi}\right)(2 k)!}\right)\right)^{\pi}\right) \\
& \frac{\left(\frac{1}{\sin (3)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (3)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (6)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (9)}{e^{3 \pi} \sqrt{3}+1}\right)\right)^{\pi}+47}{\pi}-11-\phi^{2}= \\
& -\frac{1}{2 \pi}\left(-94+25 \pi+\sqrt{5} \pi-2\left(-\frac{2}{\sqrt{3} \pi}-2 i \sum_{k=1}^{\infty} q^{-1+2 k}+\right.\right. \\
& 8 \sum_{k=0}^{\infty}\left(\frac{(-1)^{-1+k}\left(3-\frac{\pi}{2}\right)^{1+2 k}}{\left(1+e^{\sqrt{3} \pi}\right)(1+2 k)!}-\frac{2(-1)^{-1+k}\left(6-\frac{\pi}{2}\right)^{1+2 k}}{\left(-1+e^{2 \sqrt{3} \pi}\right)(1+2 k)!}+\right. \\
& \left.\left.\left.\frac{3(-1)^{-1+k}\left(9-\frac{\pi}{2}\right)^{1+2 k}}{\left(1+e^{3 \sqrt{3} \pi}\right)(1+2 k)!}\right)\right)^{\pi}\right) \text { for } q=e^{3 i}
\end{aligned}
\]

For \(\theta=2.399963\), (that is the "golden angle" in radians) we obtain:
\(1 /(\sin (2 * 2.399963))-2 /\left(\mathrm{Pi}^{*} \operatorname{sqrt} 3\right)+8\left(\left(\left((\cos (2 * 2.399963)) /\left(\mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \operatorname{sqrt} 3\right)+1\right)\right)\right)-\right.\)
\(\left.\left(\left(2 \cos (4 * 2.399963) /\left(\mathrm{e}^{\wedge}\left(2 \mathrm{Pi}^{*} \operatorname{sqrt} 3\right)-1\right)\right)\right)+\left(\left(3 \cos \left(6^{*} 2.399963\right) /\left(\mathrm{e}^{\wedge}\left(3 \mathrm{Pi}^{*} \operatorname{sqrt} 3\right)+1\right)\right)\right)\right)\)

\section*{Input interpretation:}
\[
\begin{aligned}
& \frac{1}{\sin (2 \times 2.399963)}-\frac{2}{\pi \sqrt{3}}+ \\
& 8\left(\frac{\cos (2 \times 2.399963)}{e^{\pi \sqrt{3}}+1}-2 \times \frac{\cos (4 \times 2.399963)}{e^{2 \pi \sqrt{3}}-1}+3 \times \frac{\cos (6 \times 2.399963)}{e^{3 \pi \sqrt{3}}+1}\right)
\end{aligned}
\]

\section*{Result:}
-1.368083...
-1.368083...

\section*{Alternative representations:}
\[
\begin{aligned}
& \frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+ \\
& \quad 8\left(\frac{\cos (2 \times 2.39996)}{\frac{e^{\pi \sqrt{3}}}{1}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)= \\
& \frac{\cos \left(-4.79993+\frac{\pi}{2}\right)}{2}+ \\
& 8\left(\frac{\cosh (4.79993 i)}{1+e^{\pi \sqrt{3}}}-\frac{2 \cosh (9.59985 i)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cosh (14.3998 i)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}}
\end{aligned}
\]
\[
\begin{aligned}
& \frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+ \\
& \frac{8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)=}{\cos \left(-4.79993+\frac{\pi}{2}\right)}+ \\
& 8\left(\frac{\cosh (-4.79993 i)}{1+e^{\pi \sqrt{3}}}-\frac{2 \cosh (-9.59985 i)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cosh (-14.3998 i)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}}
\end{aligned}
\]
\[
\begin{aligned}
& \frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+ \\
& 8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)= \\
& -\frac{1}{\cos \left(4.79993+\frac{\pi}{2}\right)}+ \\
& \quad 8\left(\frac{\cosh (-4.79993 i)}{1+e^{\pi \sqrt{3}}}-\frac{2 \cosh (-9.59985 i)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cosh (-14.3998 i)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}}
\end{aligned}
\]

\section*{Series representations:}
\[
\begin{aligned}
& \frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+ \\
& 8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)= \\
& 8 \sum_{k=0}^{\infty} \frac{(-1)^{k} e^{3.1372 k}}{(2 k)!} \\
& 1+\exp \left(\pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& 16 \sum_{k=0}^{\infty} \frac{(-1)^{k} e^{4.5235} k}{(2 k)!} \\
& -1+\exp \left(2 \pi \exp \left(i \pi\left[\frac{\arg (3-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)+ \\
& \frac{24 \sum_{k=0}^{\infty} \frac{(-1)^{k} e^{5.33443 k}}{(2 k)!}}{1+\exp \left(3 \pi \exp \left(i \pi\left\lfloor\frac{\operatorname{agg}(3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}+ \\
& \frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k} 4.79993^{1+2 k}}{(1+2 k)!}}- \\
& \pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!} \\
& \frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+ \\
& 8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)= \\
& \begin{array}{r}
\frac{1}{2 \sum_{k=0}^{\infty}(-1)^{k} J_{1+2 k}(4.79993)}+ \\
8 \sum_{k=0}^{\infty} \frac{(-1)^{k} e^{3.1372 k}}{(2 k)!}
\end{array} \\
& 1+\exp \left(\pi \exp \left(i \pi\left\lfloor\frac{\operatorname{agg}(3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& 16 \sum_{k=0}^{\infty} \frac{(-1)^{k} e^{4.5235} k}{(2 k)!} \\
& -1+\exp \left(2 \pi \exp \left(i \pi\left[\frac{\arg (3-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)+ \\
& 24 \sum_{k=0}^{\infty} \frac{(-1)^{k} e^{5.33443 k}}{(2 k)!} \\
& 1+\exp \left(3 \pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \frac{2}{\pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}} \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
\]
\[
\begin{aligned}
& \frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+ \\
& 8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)= \\
& 8 \sum_{k=0}^{\infty} \frac{(-1)^{k} e^{3.1372 k}}{(2 k)!} \\
& 1+\exp \left(\pi\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{k}}{k!}\right) \\
& 16 \sum_{k=0}^{\infty} \frac{(-1)^{k} e^{4.5235} k}{(2 k)!} \\
& -1+\exp \left(2 \pi\left(\frac{1}{z_{0}}\right)^{\left.1 / 2 \arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(1+\arg \left(3-z_{0}\right) /(2 \pi)\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0} k^{k} z_{0}^{-k}\right.}{k!}\right)+ \\
& 24 \sum_{k=0}^{\infty} \frac{(-1)^{k} e^{5.33443 k}}{(2 k)!} \\
& 1+\exp \left(3 \pi\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)+ \\
& \frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k} 4.70993^{1+2 k}}{(1+2 k)!}}-\frac{2\left(\frac{1}{z_{0}}\right)^{\left.-1 / 2 \operatorname{larg}\left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2(-1-\operatorname{lag}(3-}}{\pi \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{k}}{k!}}
\end{aligned}
\]

\section*{Integral representations:}
```

$\frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+$
$8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)=$
$\frac{8}{1+e^{\pi \sqrt{3}}}-\frac{16}{-1+e^{2 \pi \sqrt{3}}}+\frac{24}{1+e^{3 \pi \sqrt{3}}}+\frac{0.208337}{\int_{0}^{1} \cos (4.79993 t) d t}+$
$\int_{0}^{1}\left(-\frac{38.3994 \sin (4.79993 t)}{2_{2}^{1+e^{\pi \sqrt{3}}}}+\frac{153.598 \sin (9.59985 t)}{-1+e^{2 \pi \sqrt{3}}}-\frac{345.595 \sin (14.3998 t)}{1+e^{3 \pi \sqrt{3}}}\right)$

$$
d t-\frac{2}{\pi \sqrt{3}}
$$

```
\[
\begin{aligned}
& \frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+ \\
& 8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)= \\
& \frac{8}{1+e^{\pi \sqrt{3}}}-\frac{16}{-1+e^{2 \pi \sqrt{3}}}+\frac{24}{1+e^{3 \pi \sqrt{3}}}+\int_{0}^{1}\left(-\frac{38.3994 \sin (4.79993 t)}{1+e^{\pi \sqrt{3}}}+\right. \\
& \left.\frac{153.598 \sin (9.59985 t)}{-1+e^{2 \pi \sqrt{3}}}-\frac{345.595 \sin (14.3998 t)}{1+e^{3 \pi \sqrt{3}}}\right) d t- \\
& \frac{2}{\pi \sqrt{3}}+\frac{0.833346 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{q^{-5.75982 / s+s}}{s^{3 / 2}} d s} \text { for } \gamma>0
\end{aligned}
\]
\[
\left.\begin{array}{l}
\frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+ \\
8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)= \\
\left(-2 \int_{0}^{1} \cos (4.79993 t) d t+0.208337 \pi \sqrt{3}+\right. \\
\pi\left(\int_{0}^{1} \cos (4.79993 t) d t\right)\left(\int _ { - i \infty + \gamma } ^ { i \infty + \gamma } \left(\frac{12 \mathcal{A}^{-51.8384 / s+s} \sqrt{\pi}}{\left(1+e^{3 \pi \sqrt{3}}\right) i \pi \sqrt{s}}-\right.\right. \\
\left.\frac{8 \mathcal{A}^{-23.0393 / s+s} \sqrt{\pi}}{\left(-1+e^{2 \pi \sqrt{3}}\right) i \pi \sqrt{s}}+\frac{4 \mathcal{A}^{-5.75982 / s+s} \sqrt{\pi}}{\left(1+e^{\pi \sqrt{3}}\right) i \pi \sqrt{s}}\right) d s
\end{array}\right) .
\]

And:
\(-1 /\left(\left(\left(1 /(\sin (2 * 2.399963))-2 /\left(\mathrm{Pi}^{*} \operatorname{sqrt3}\right)+8\left(\left(\left((\cos (2 * 2.399963)) /\left(\mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt3}\right)+1\right)\right)\right)-\right.\right.\right.\right.\) ((2cos( \(4 * 2.399963) /\left(\mathrm{e}^{\wedge}\left(2 \mathrm{Pi}{ }^{*} \mathrm{sqrt3}\right)\right.\) -
\(\left.\left.\left.\left.1)))+\left(\left(3 \cos (6 * 2.399963) /\left(\mathrm{e}^{\wedge}(3 \mathrm{Pi} * \mathrm{sqr} 33)+1\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 32\)

\section*{Input interpretation:}

1
\[
\sqrt[32]{\frac{1}{\sin (2 \times 2.399963)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (2 \times 2.309963)}{e^{\pi \sqrt{3}}+1}-2 \times \frac{\cos (4 \times 2.399963)}{e^{2 \pi \sqrt{3}}-1}+3 \times \frac{\cos (6 \times 2.309963)}{e^{3 \pi \sqrt{3}}+1}\right)}
\]

\section*{Result:}
- 0.98548538... +
\(0.097061838 \ldots i\)

\section*{Polar coordinates:}
\(r=0.990254\) (radius), \(\theta=174.375^{\circ}\) (angle)
0.990254 result very near to the value of the following Rogers-Ramanujan continued fraction:
\[
\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684
\]
and to the dilaton value \(\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}\)

\section*{Series representations:}


\[
\begin{aligned}
& \sqrt[32]{\frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.30996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)} \\
& -1 / /\left(\int \left(\frac{J_{0}(4.79993)+2 \sum_{k=1}^{\infty}(-1)^{k} J_{2 k}(4.79993)}{1+\exp \left(\pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}-\right.\right. \\
& \frac{2\left(J_{0}(9.59985)+2 \sum_{k=1}^{\infty}(-1)^{k} J_{2 k}(9.59985)\right)}{-1+\exp \left(2 \pi \exp \left(i \pi\left[\frac{\arg (3-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}+ \\
& \frac{3\left(J_{0}(14.3998)+2 \sum_{k=1}^{\infty}(-1)^{k} J_{2 k}(14.3998)\right)}{1+\exp \left(3 \pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}\right)}{k!}\right)}+ \\
& \frac{1}{2 \sum_{k=0}^{\infty}(-1)^{k} J_{1+2 k}(4.79993)}- \\
& \left.\frac{2}{\left.\pi \exp \left(i \pi\left\lfloor\frac{\operatorname{agg}(3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}\right) \\
& \text { (1/32) for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
\]

\section*{Integral representations:}
\[
\begin{aligned}
& -\frac{1}{\sqrt[32]{\frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)}}= \\
& -\left(1 /\left(\left(\frac{0.208337}{\int_{0}^{1} \cos (4.79993 t) d t}+8\left(\frac{1-4.79993 \int_{0}^{1} \sin (4.79993 t) d t}{1+e^{\pi \sqrt{3}}}-\right.\right.\right.\right. \\
& \frac{2\left(1-9.59985 \int_{0}^{1} \sin (9.59985 t) d t\right)}{-1+e^{2 \pi \sqrt{3}}}+ \\
& \left.\left.\left.\left.\frac{3\left(1-14.3998 \int_{0}^{1} \sin (14.3998 t) d t\right)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}}\right) \wedge(1 / 32)\right)\right)
\end{aligned}
\]
\[
\begin{aligned}
& \sqrt[32]{\frac{1}{\frac{\sin (2 \times 2.39996)}{}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)}}= \\
& -\left(1 /\left(\int \frac{0.208337}{\int_{0}^{1} \cos (4.79993 t) d t}+\right.\right. \\
& \quad 8 \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(\frac{3 \mathcal{A}^{-51.8384 / s+5} \sqrt{\pi}}{2\left(1+e^{3 \pi \sqrt{3}}\right) i \pi \sqrt{s}}-\frac{\mathcal{A}^{-23.0393 / s+s} \sqrt{\pi}}{\left(-1+e^{2 \pi \sqrt{3}}\right) i \pi \sqrt{s}}+\right. \\
& \left.\left.\left.\quad \frac{\mathcal{A}^{-5.75982 / s+s} \sqrt{\pi}}{2\left(1+e^{\pi \sqrt{3}}\right) i \pi \sqrt{s}}\right) d s-\frac{2}{\pi \sqrt{3}}\right) \wedge(1 / 32)\right) \text { for } \gamma>0
\end{aligned}
\]
\[
\begin{aligned}
& \sqrt[32]{\frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)} \\
& -\left(1 /\left(\left(\frac{0.208337}{\int_{0}^{1} \cos (4.79993 t) d t}+8 \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(\frac{2.39996^{-2 s} \Gamma(s) \sqrt{\pi}}{2\left(1+e^{\pi \sqrt{3}}\right) i \pi \Gamma\left(\frac{1}{2}-s\right)}-\right.\right.\right.\right. \\
& \frac{4.79993^{-2 s} \Gamma(s) \sqrt{\pi}}{\left(-1+e^{2 \pi \sqrt{3}}\right) i \pi \Gamma\left(\frac{1}{2}-s\right)}+\frac{3 \times 7.19989^{-2 s} \Gamma(s) \sqrt{\pi}}{\left.2\left(1+e^{3 \pi \sqrt{3}}\right) i \pi \Gamma\left(\frac{1}{2}-s\right)\right)} \\
& \left.\left.d s-\frac{2}{\pi \sqrt{3}}\right) \wedge(1 / 32)\right) \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
\]

4log base \(0.990254\left(\left(\left(-1 /\left(\left(\left(1 /(\sin (2 * 2.399963))-2 /\left(\mathrm{Pi}^{*} \mathrm{sqrt3}\right)+\right.\right.\right.\right.\right.\right.\) \(8\left(\left(\left((\cos (2 * 2.399963)) /\left(\mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt} 3\right)+1\right)\right)\right)-\left(\left(2 \cos \left(4^{*} 2.399963\right) /\left(\mathrm{e}^{\wedge}\left(2 \mathrm{Pi}{ }^{*} \mathrm{sqrt} 3\right)-\right.\right.\right.\right.\) \(1)))+\left(\left(3 \cos (6 * 2.399963) /\left(\mathrm{e}^{\wedge}\left(3 \mathrm{Pi}^{*}\right.\right.\right.\right.\) sqrt3) +1\(\left.\left.\left.\left.\left.\left.\left.\left.\left.)\right)\right)\right)\right)\right)\right)\right)\right)\right)\)

\section*{Input interpretation:}
\[
\begin{aligned}
4 \log _{0.990254}( \\
\left.-\frac{1}{\frac{1}{\sin (2 \times 2.399963)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (2 \times 2.309963)}{e^{\pi \sqrt{3}}+1}-2 \times \frac{\cos (4 \times 2.399963)}{e^{2 \pi \sqrt{3}}-1}+3 \times \frac{\cos (6 \times 2.399963)}{e^{3 \pi \sqrt{3}}+1}\right)}\right)
\end{aligned}
\]

\section*{Result:}
128.004...
128.004...

\section*{Alternative representations:}
\(4 \log _{0.990254}\)

\(4 \log _{0.990254}\)
\[
\left.-\frac{1}{\frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (2 \times 2.30966)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.30996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)}\right)=4
\]
\(\log _{0.090254}\)
\[
\left.-\frac{1}{\frac{1}{\cos \left(-4.79093+\frac{\pi}{2}\right)}+8\left(\frac{\cosh (-4.79903 i)}{1+e^{\pi \sqrt{3}}}-\frac{2 \cosh (-9.59985 i)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cosh (-14.3998 i)}{1+e^{3 \pi} \sqrt{3}}\right)-\frac{2}{\pi \sqrt{3}}}\right)
\]
\(4 \log _{0.990254}\)
\[
\begin{aligned}
& \left.-\frac{1}{\frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)}\right)=4 \\
& \log _{0.990254( } \\
& -\frac{1}{1+\frac{1}{\cos \left(4.79993+\frac{\pi}{2}\right)}+8\left(\frac{\cosh (-4.799993 i)}{1+\sqrt{3}}-\frac{2 \cosh (-9.59985 i)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cosh (-14.3998 i)}{\left.1+e^{3 \pi \sqrt{3}}\right)-\frac{2}{\pi \sqrt{3}}}\right)}
\end{aligned}
\]

\section*{Series representations:}
\[
\begin{aligned}
& 4 \log _{0.990254} \\
& \begin{array}{l}
-\frac{1}{\frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)} \\
-\frac{(-1)^{k}\left(-1-\frac{1}{\left.8\left(\frac{\cos (4.79993)}{1+e^{\pi \sqrt{3}}}-\frac{2 \cos (9.59985)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cos (14.3998)}{1+e^{3 \pi \sqrt{3}}}\right)+\frac{1}{\sin (4.79993)}-\frac{2}{\pi \sqrt{3}}\right)}\right.}{4 \sum_{k=1}^{\infty} \frac{\log (0.990254)}{k}}
\end{array}
\end{aligned}
\]
\(4 \log _{0.990254}\)
\[
\begin{aligned}
& \left.-\frac{1}{\frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)}\right)= \\
& 4 \log _{0.990254}\left(-\left(1 /\left(\frac{1}{2 \sum_{k=0}^{\infty}(-1)^{k} J_{1+2 k}(4.79993)}+\right.\right.\right. \\
& 8\left(\frac{\sum_{k=0}^{\infty} \frac{(-1)^{k} 4.79993^{2 k}}{(2 k)!}}{1+\exp \left(\pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}-\right. \\
& 2 \sum_{k=0}^{\infty} \frac{(-1)^{k} 9.59985^{2 k}}{(2 k)!} \\
& -1+\exp \left(2 \pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)+ \\
& 3 \sum_{k=0}^{\infty} \frac{(-1)^{k} 14.3998^{2 k}}{(2 k)!} \\
& 1+\exp \left(3 \pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)- \\
& 2 \\
& \left.\left.\left.\pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right\rfloor\right)\right) \\
& \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
\]
\(4 \log _{0.990254}\)
\[
\begin{aligned}
& \left.-\frac{1}{\frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)}\right)= \\
& 4 \log _{0.990254}\left(-\left(1 / \int 8\left(\frac{\sum_{k=0}^{\infty} \frac{(-1)^{k} 4.79993^{2 k}}{(2 k)!}}{1+\exp \left(\pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}-\right.\right.\right. \\
& 2 \sum_{k=0}^{\infty} \frac{(-1)^{k} 9.59985^{2 k}}{(2 k)!} \\
& -1+\exp \left(2 \pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)+ \\
& \left.\frac{3 \sum_{k=0}^{\infty} \frac{(-1)^{k} 14.3998^{2 k}}{(2 k)!}}{1+\exp \left(3 \pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}\right)+ \\
& \frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k} 4.79993^{1+2 k}}{(1+2 k)!}}- \\
& 2 \\
& \left.\left.\pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \mid\right)
\end{aligned}
\]

\section*{Integral representations:}
\(4 \log _{0.900254}\)
\[
\begin{gathered}
\left.-\frac{1}{\frac{1}{\sin (2 \times 2.39096)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (22.239966)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)}\right)= \\
4 \log _{0.090254\left(-\left(1 /\left(\frac{0.208337}{\int_{0}^{1} \cos (4.79993 t) d t}+8\left(\frac{1-4.79993 \int_{0}^{1} \sin (4.79993 t) d t}{1+e^{\pi \sqrt{3}}}-\right.\right.\right.\right.} \begin{array}{l}
\frac{2\left(1-9.59985 \int_{0}^{1} \sin (9.59985 t) d t\right)}{-1+e^{2 \pi \sqrt{3}}}+ \\
\\
\left.\left.\left.\left.\frac{3\left(1-14.3998 \int_{0}^{1} \sin (14.3998 t) d t\right)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}}\right)\right)\right)
\end{array}
\end{gathered}
\]
\(4 \log _{0.990254}\)
\[
\begin{aligned}
&\left.-\frac{1}{\frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)}\right)= \\
& 4 \log _{0.990254}\left(-\left(1 /\left(\frac{0.208337}{\int_{0}^{1} \cos (4.79993 t) d t}+\right.\right.\right. \\
& 8 \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(\frac{3 \mathcal{A}^{-51.8384 / s+s} \sqrt{\pi}}{2\left(1+e^{3 \pi \sqrt{3}}\right) i \pi \sqrt{s}}\right.-\frac{\mathcal{A}^{-23.0393 / s+s} \sqrt{\pi}}{\left(-1+e^{2 \pi \sqrt{3}}\right) i \pi \sqrt{s}}+ \\
&\left.\left.\left.\left.\frac{\mathcal{A}^{-5.75982 / s+s} \sqrt{\pi}}{2\left(1+e^{\pi \sqrt{3}}\right) i \pi \sqrt{s}}\right) d s-\frac{2}{\pi \sqrt{3}}\right)\right)\right) \text { for } \gamma>0
\end{aligned}
\]
\(4 \log _{0.990254}(\)
\[
\begin{array}{r}
\left.-\frac{1}{\frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)}\right)= \\
4 \log _{0.990254\left(-\left(1 /\left(\frac{0.208337}{\int_{0}^{1} \cos (4.79993 t) d t}+\right.\right.\right.}^{8 \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(\frac{2.39996^{-2 s} \Gamma(s) \sqrt{\pi}}{2\left(1+e^{\pi \sqrt{3}}\right) i \pi \Gamma\left(\frac{1}{2}-s\right)}-\frac{4.79993^{-2 s} \Gamma(s) \sqrt{\pi}}{\left(-1+e^{2 \pi \sqrt{3}}\right) i \pi \Gamma\left(\frac{1}{2}-s\right)}+\right.} \begin{array}{r}
\frac{3 \times 7.19989^{-2 s} \Gamma(s) \sqrt{\pi}}{\left.\left.\left.\left.2\left(1+e^{3 \pi \sqrt{3}}\right) i \pi \Gamma\left(\frac{1}{2}-s\right)\right) d s-\frac{2}{\pi \sqrt{3}}\right)\right)\right) \text { for } 0<\gamma<\frac{1}{2}}+
\end{array}=
\end{array}
\]

From which:
(128.00363329482) \(-\mathrm{Pi}+1 /\) golden ratio

\section*{Input interpretation:}
\(128.00363329482-\pi+\frac{1}{\phi}\)

\section*{Result:}
125.48007462998
125.48007462998... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for \(\mathrm{T}=0\) and to the Higgs boson mass 125.18

\section*{Alternative representations:}
\(128.003633294820000-\pi+\frac{1}{\phi}=128.003633294820000-\pi+-\frac{1}{2 \cos \left(216^{\circ}\right)}\)
\(128.003633294820000-\pi+\frac{1}{\phi}=128.003633294820000-180^{\circ}+-\frac{1}{2 \cos \left(216^{\circ}\right)}\)
\(128.003633294820000-\pi+\frac{1}{\phi}=128.003633294820000-\pi+\frac{1}{2 \cos \left(\frac{\pi}{5}\right)}\)

\section*{Series representations:}
\(128.003633294820000-\pi+\frac{1}{\phi}=128.003633294820000+\frac{1}{\phi}-4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\)
\(128.003633294820000-\pi+\frac{1}{\phi}=130.003633294820000+\frac{1}{\phi}-2 \sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}}\)
\(128.003633294820000-\pi+\frac{1}{\phi}=128.003633294820000+\frac{1}{\phi}-\sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}\)

\section*{Integral representations:}
\(128.003633294820000-\pi+\frac{1}{\phi}=128.003633294820000+\frac{1}{\phi}-2 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t\)
\(128.003633294820000-\pi+\frac{1}{\phi}=128.003633294820000+\frac{1}{\phi}-4 \int_{0}^{1} \sqrt{1-t^{2}} d t\)
\(128.003633294820000-\pi+\frac{1}{\phi}=128.003633294820000+\frac{1}{\phi}-2 \int_{0}^{\infty} \frac{\sin (t)}{t} d t\)
and, we obtain also:
\((128.00363329482)+11+1 /\) golden ratio

\section*{Input interpretation:}
\(128.00363329482+11+\frac{1}{\phi}\)

\section*{Result:}
139.62166728357...
\(139.62166728357 \ldots\) result practically equal to the rest mass of Pion meson 139.57

\section*{Alternative representations:}
\(128.003633294820000+11+\frac{1}{\phi}=139.003633294820000+\frac{1}{2 \sin \left(54^{\circ}\right)}\)
\(128.003633294820000+11+\frac{1}{\phi}=139.003633294820000+-\frac{1}{2 \cos \left(216^{\circ}\right)}\)
\(128.003633294820000+11+\frac{1}{\phi}=139.003633294820000+-\frac{1}{2 \sin \left(666^{\circ}\right)}\)
\(\left[\left(\left(\left(\left(1 /(\sin (2 * 2.399963))-2 /\left(\mathrm{Pi}^{*} \mathrm{sqrt} 3\right)+8\left(\left(\left((\cos (2 * 2.399963)) /\left(\mathrm{e}^{\wedge}(\mathrm{Pi} * \mathrm{sqrt} 3)+1\right)\right)\right)-\right.\right.\right.\right.\right.\right.\) ( \(\left(2 \cos (4 * 2.399963) /\left(\mathrm{e}^{\wedge}(2 \mathrm{Pi} *\right.\right.\) sqrt 3\()-\)
\(\left.\left.\left.\left.\left.\left.\left.1)))+\left(\left(3 \cos \left(6^{*} 2.399963\right) /\left(\mathrm{e}^{\wedge}\left(3 \mathrm{Pi}{ }^{*} \mathrm{sqrt} 3\right)+1\right)\right)\right)\right)\right)\right)\right)\right)\right)^{\wedge} 24\right]-123+4\)
Where 123 and 4 are Lucas numbers

\section*{Input interpretation:}
\[
\begin{aligned}
& \left(\frac{1}{\sin (2 \times 2.399963)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (2 \times 2.399963)}{e^{\pi \sqrt{3}}+1}-\right.\right. \\
& \left.\left.2 \times \frac{\cos (4 \times 2.399963)}{e^{2 \pi \sqrt{3}}-1}+3 \times \frac{\cos (6 \times 2.399963)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{24}-123+4
\end{aligned}
\]

\section*{Result:}
1728.990823828231211872517029996733892568456096332092594682...
1728.990823...

This result is very near to the mass of candidate glueball \(\mathrm{f}_{0}(1710)\) meson. Furthermore, 1728 occurs in the algebraic formula for the \(j\)-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

\section*{Alternative representations:}
\[
\begin{aligned}
& \left(\frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+\right. \\
& \left.\quad 8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{24}- \\
& 123+4=-119+\left(\frac{1}{\cos \left(-4.79993+\frac{\pi}{2}\right)}+\right. \\
& \left.\quad 8\left(\frac{\cosh (4.79993 i)}{1+e^{\pi \sqrt{3}}}-\frac{2 \cosh (9.59985 i)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cosh (14.3998 i)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}}\right)^{24}
\end{aligned}
\]
\[
\begin{aligned}
& \left(\frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+\right. \\
& \left.\quad 8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{24}-
\end{aligned}
\]
\[
123+4=-119+\left(\frac{1}{\cos \left(-4.79993+\frac{\pi}{2}\right)}+8\left(\frac{\cosh (-4.79993 i)}{1+e^{\pi \sqrt{3}}}-\right.\right.
\]
\[
\left.\left.\frac{2 \cosh (-9.59985 i)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cosh (-14.3998 i)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}}\right)^{24}
\]
\[
\begin{gathered}
\left(\frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+\right. \\
\left.8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{24}- \\
123+4=-119+\left(-\frac{1}{\cos \left(4.79993+\frac{\pi}{2}\right)}+8\left(\frac{\cosh (-4.79993 i)}{1+e^{\pi \sqrt{3}}}-\right.\right. \\
\left.\left.\frac{2 \cosh (-9.59985 i)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cosh (-14.3998 i)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}}\right)^{24}
\end{gathered}
\]

\section*{Series representations:}
\[
\begin{aligned}
& \left(\frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+\right. \\
& \left.8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{24}- \\
& 123+4=-119+\left(\frac{1}{2 \sum_{k=0}^{\infty}(-1)^{k} J_{1+2 k}(4.79993)}+\right. \\
& 8\left(\frac{\sum_{k=0}^{\infty} \frac{(-1)^{k} 4.79993^{2 k}}{(2 k)!}}{1+\exp \left(\pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}-\right. \\
& 2 \sum_{k=0}^{\infty} \frac{(-1)^{k} 9.59985^{2 k}}{(2 k)!} \\
& -1+\exp \left(2 \pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+\right. \\
& 3 \sum_{k=0}^{\infty} \frac{(-1)^{k} 14.3998^{2 k}}{(2 k)!} \\
& 1+\exp \left(3 \pi \exp \left(i \pi\left[\frac{\arg (3-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)- \\
& \left.\pi \exp \left(i \pi\left[\frac{\arg (3-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right]
\end{aligned}
\]
for \((x \in \mathbb{R}\) and \(x<0)\)
\[
\begin{aligned}
& \left(\frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+\right. \\
& \begin{array}{c}
\left.8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{24}- \\
123+4=-119+\left(8 \left(\frac{\sum_{k=0}^{\infty} \frac{(-1)^{k} 4.79993^{2 k}}{(2 k)!}}{1+\exp \left(\pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}-\right.\right.
\end{array} \\
& 2 \sum_{k=0}^{\infty} \frac{(-1)^{k} 9.59985^{2 k}}{(2 k)!} \\
& -1+\exp \left(2 \pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+\right. \\
& \left.\frac{3 \sum_{k=0}^{\infty} \frac{(-1)^{k} 14.3998^{2 k}}{(2 k)!}}{1+\exp \left(3 \pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}\right)+ \\
& \frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k} 4.79993^{1+2 k}}{(1+2 k)!}}- \\
& \left.\frac{2}{\pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right)^{24}
\end{aligned}
\]
for \((x \in \mathbb{R}\) and \(x<0)\)
\[
\begin{aligned}
& \left(\frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+\right. \\
& \left.8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{24}- \\
& 123+4=-119+8\left(\frac{J_{0}(4.79993)+2 \sum_{k=1}^{\infty}(-1)^{k} J_{2 k}(4.79993)}{1+\exp \left(\pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}-\right. \\
& \quad \frac{2\left(J_{0}(9.59985)+2 \sum_{k=1}^{\infty}(-1)^{k} J_{2 k}(9.59985)\right)}{-1+\exp \left(2 \pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}+ \\
& \left.\quad \frac{3\left(J_{0}(14.3998)+2 \sum_{k=1}^{\infty}(-1)^{k} J_{2 k}(14.3998)\right)}{1+\exp \left(3 \pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}\right)+ \\
& \frac{1}{2 \sum_{k=0}^{\infty}(-1)^{k} J_{1+2 k}(4.79993)}- \\
& \quad \frac{2}{\left.\pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)\right)_{k}}{k!}\right)} \\
& \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
\]

We have also:
1/13* \(\left(\left(\left(\left(\left[\left(()\left((1 /(\sin (2 * 2.399963)))-2 /\left(\mathrm{Pi}^{*} \mathrm{sqrt} 3\right)+\right.\right.\right.\right.\right.\right.\right.\)
\(8\left(\left(\left((\cos (2 * 2.399963)) /\left(\mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt} 3\right)+1\right)\right)\right)-\left(\left(2 \cos (4 * 2.399963) /\left(\mathrm{e}^{\wedge}(2 \mathrm{Pi} * \mathrm{sqrt3})-\right.\right.\right.\right.\)
\(\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.1)))+\left(\left(3 \cos \left(6^{*} 2.399963\right) /\left(\mathrm{e}^{\wedge}\left(3 \mathrm{Pi}^{*} \operatorname{sqrt} 3\right)+1\right)\right)\right)\right)\right)\right)\right)\right)\right)^{\wedge} 24\right]-123+4\right)\right)\right)\right)+2 \mathrm{Pi}\)

\section*{Input interpretation:}
\[
\begin{gathered}
\frac{1}{13}\left(\left(\frac{1}{\sin (2 \times 2.399963)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (2 \times 2.399963)}{e^{\pi \sqrt{3}}+1}-2 \times \frac{\cos (4 \times 2.399963)}{e^{2 \pi \sqrt{3}}-1}+\right.\right.\right. \\
\left.\left.\left.3 \times \frac{\cos (6 \times 2.399963)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{24}-123+4\right)+2 \pi
\end{gathered}
\]

\section*{Result:}
139.282...
\(139.282 \ldots\) result practically equal to the rest mass of Pion meson 139.57

\section*{Alternative representations:}
\[
\begin{aligned}
& \frac{1}{13}\left(\left(\frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\right.\right.\right. \\
& \left.\left.\left.\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{24}-123+4\right)+2 \pi= \\
& 2 \pi+\frac{1}{13}\left(-119+\left(\frac{1}{\cos \left(-4.79993+\frac{\pi}{2}\right)}+8\left(\frac{\cosh (4.79993 i)}{1+e^{\pi \sqrt{3}}}-\frac{2 \cosh (9.59985 i)}{-1+e^{2 \pi \sqrt{3}}}+\right.\right.\right. \\
& \left.\left.\left.\frac{3 \cosh (14.3998 i)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}}\right)^{24}\right)
\end{aligned}
\]
\[
\frac{1}{13} \int\left(\frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\right.\right.
\]
\[
\left.\left.\left.\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{24}-123+4\right)+2 \pi=
\]
\[
2 \pi+\frac{1}{13}\left(-119+\left(\frac{1}{\cos \left(-4.79993+\frac{\pi}{2}\right)}+8\left(\frac{\cosh (-4.79993 i)}{1+e^{\pi \sqrt{3}}}-\right.\right.\right.
\]
\[
\left.\left.\left.\frac{2 \cosh (-9.59985 i)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cosh (-14.3998 i)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}}\right)^{24}\right)
\]
\[
\frac{1}{13} \int\left(\frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\right.\right.
\]
\[
\left.\left.\left.\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{24}-123+4\right)+2 \pi=
\]
\[
2 \pi+\frac{1}{13}\left(-119+\left(-\frac{1}{\cos \left(4.79993+\frac{\pi}{2}\right)}+8\left(\frac{\cosh (-4.79993 i)}{1+e^{\pi \sqrt{3}}}-\right.\right.\right.
\]
\[
\left.\left.\left.\frac{2 \cosh (-9.59985 i)}{-1+e^{2 \pi \sqrt{3}}}+\frac{3 \cosh (-14.3998 i)}{1+e^{3 \pi \sqrt{3}}}\right)-\frac{2}{\pi \sqrt{3}}\right)^{24}\right)
\]

\section*{Series representations:}
\[
\begin{aligned}
& \frac{1}{13}\left(\left(\frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\right.\right.\right. \\
& \begin{array}{l}
\left.2 \pi=2 \pi+\frac{1}{13}\left(-119+\left(\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{+1}-123+4\right)^{e^{24}}+ \\
8\left(\frac{1}{2 \sum_{k=0}^{\infty}(-1)^{k} J_{1+2 k}(4.79993)}+\right. \\
1+\exp \left(\pi \exp \left(i \pi\left\lfloor\frac{e^{2 r g(3-x)}}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k} 4.70993^{2 k}}{(2 k)!}\right.
\end{array} \\
& \left(2 \sum_{k=0}^{\infty} \frac{(-1)^{k} 9.59985^{2 k}}{(2 k)!}\right) / \\
& \left(-1+\exp \left(2 \pi \exp \left(i \pi\left[\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x}\right.\right. \\
& \left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right)+ \\
& 3 \sum_{k=0}^{\infty} \frac{(-1)^{k} 14.3908^{2 k}}{(2 k)!} \\
& \left.1+\exp \left(3 \pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right)
\end{aligned}
\]
and \(x<0\) )
\[
\begin{aligned}
& \frac{1}{13}\left(\left(\frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\right.\right.\right. \\
& \left.\left.\left.\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{24}-123+4\right)^{e^{2 \pi}}+2 \pi= \\
& 2 \pi+\frac{1}{13}\left(-119+\left(8 \left(\frac{\sum_{k=0}^{\infty} \frac{(-1)^{k} 4.70903^{2 k}}{(2 k)!}}{1+\exp \left(\pi \exp \left(i \pi\left[\frac{\arg (3-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}-\right.\right.\right. \\
& \left(2 \sum_{k=0}^{\infty} \frac{(-1)^{k} 9.59985^{2 k}}{(2 k)!}\right) / \\
& \left(-1+\exp \left(2 \pi \exp \left(i \pi\left[\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x}\right.\right. \\
& \left.\sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)+ \\
& 3 \sum_{k=0}^{\infty} \frac{(-1)^{k} 14.3998^{2 k}}{(2 k)!} \\
& \left.1+\exp \left(3 \pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}\right)}{k!}\right)\right) \\
& +\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k} 4.70903^{1+2 k}}{(1+2 k)!}}- \\
& 2 \\
& \left.\pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
\end{aligned}
\]
\[
\text { and } x<0 \text { ) }
\]

Page 289


For \(\theta=2.399963\), (that is the "golden angle" in radians) we obtain:
\[
\begin{aligned}
& \frac{1}{13}\left(\left(\frac{1}{\sin (2 \times 2.39996)}-\frac{2}{\pi \sqrt{3}}+8\left(\frac{\cos (2 \times 2.39996)}{e^{\pi \sqrt{3}}+1}-\frac{2 \cos (4 \times 2.39996)}{e^{2 \pi \sqrt{3}}-1}+\right.\right.\right. \\
& \left.\left.\left.\frac{3 \cos (6 \times 2.39996)}{e^{3 \pi \sqrt{3}}+1}\right)\right)^{24}-123+4\right)^{e^{2}}+2 \pi= \\
& 2 \pi+\frac{1}{13}\left(-119+\left(8 \left(\frac{J_{0}(4.79993)+2 \sum_{k=1}^{\infty}(-1)^{k} J_{2 k}(4.79993)}{1+\exp \left(\pi \exp \left(i \pi\left[\frac{\arg (3-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}-\right.\right.\right. \\
& \left(2\left(J_{0}(9.59985)+2 \sum_{k=1}^{\infty}(-1)^{k} J_{2 k}(9.59985)\right)\right) / \\
& \left(-1+\exp \left(2 \pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x}\right.\right. \\
& \left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right)+ \\
& \frac{3\left(J_{0}(14.3998)+2 \sum_{k=1}^{\infty}(-1)^{k} J_{2 k}(14.3998)\right)}{1+\exp \left(3 \pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}\right)}{k!}\right)} \\
& +\frac{1}{2 \sum_{k=0}^{\infty}(-1)^{k} J_{1+2 k}(4.79993)}- \\
& 2 \\
& \left.\pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \quad \text { for }(x \in \mathbb{R}
\end{aligned}
\]
\(\cos (2.399963) / \cosh (\mathrm{Pi} / 2)-\cos (3 * 2.399963) /((3 \cosh (3 * \mathrm{Pi} / 2)))\)
Input interpretation:
\(\frac{\cos (2.399963)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.399963)}{3 \cosh \left(3 \times \frac{\pi}{2}\right)}\)
\(\cosh (x)\) is the hyperbolic cosine function

\section*{Result:}
-0.2975121...
\(-0.2975121 \ldots\)

\section*{Alternative representations:}
\[
\begin{aligned}
& \frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}=\frac{\cosh (-2.39996 i)}{\cos \left(\frac{i \pi}{2}\right)}-\frac{\cosh (-7.19989 i)}{3 \cos \left(\frac{3 i \pi}{2}\right)} \\
& \frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}=\frac{e^{-2.39996 i}+e^{2.39996 i}}{2 \cos \left(\frac{i \pi}{2}\right)}-\frac{e^{-7.19989 i}+e^{7.19989 i}}{2\left(3 \cos \left(\frac{3 i \pi}{2}\right)\right)} \\
& \frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}=\frac{\cosh (2.39996 i)}{\cos \left(-\frac{i \pi}{2}\right)}-\frac{\cosh (7.19989 i)}{3 \cos \left(-\frac{3 i \pi}{2}\right)}
\end{aligned}
\]

\section*{Series representations:}
\[
\begin{aligned}
& \frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}= \\
& -\frac{-3 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}}\left(\frac{9}{4}\right)^{k_{2}} e^{1.75091} k_{1} \pi^{2} k_{2}}{\left(2 k_{1}\right)!\left(2 k_{2}\right)!}+\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}} 4^{-k_{2}} e^{3.94813 k_{1} \pi^{2} k_{2}}}{\left(2 k_{1}\right)!\left(2 k_{2}\right)!}}{3\left(\sum_{k=0}^{\infty} \frac{\left(\frac{9}{4}\right)^{k} \pi^{2 k}}{(2 k)!}\right) \sum_{k=0}^{\infty} \frac{4^{-k} \pi^{2 k}}{(2 k)!!}}
\end{aligned}
\]
\[
\begin{aligned}
& \frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}=\left(-\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}} e^{3.94813 k_{1}}\left(\frac{\pi}{2}-\frac{i \pi}{2}\right)^{1+2 k_{2}}}{\left(2 k_{1}\right)!\left(1+2 k_{2}\right)!}+\right. \\
& \left.3 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}} e^{1.75091 k_{1}}\left(\frac{3 \pi}{2}-\frac{i \pi}{2}\right)^{1+2 k_{2}}}{\left(2 k_{1}\right)!\left(1+2 k_{2}\right)!}\right) / \\
& \left(3 i\left(\sum_{k=0}^{\infty} \frac{\left(\frac{\pi}{2}-\frac{i \pi}{2}\right)^{1+2 k}}{(1+2 k)!}\right) \sum_{k=0}^{\infty} \frac{\left(\frac{3 \pi}{2}-\frac{i \pi}{2}\right)^{1+2 k}}{(1+2 k)!}\right)
\end{aligned}
\]
\[
\begin{aligned}
& \frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}= \\
& -\left(\left(-3 J_{0}(2.39996) \sum_{k=0}^{\infty} \frac{\left(\frac{9}{4}\right)^{k} \pi^{2 k}}{(2 k)!}+J_{0}(7.19989) \sum_{k=0}^{\infty} \frac{4^{-k} \pi^{2 k}}{(2 k)!}-\right.\right. \\
& 6 \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}}\left(\frac{9}{4}\right)^{k_{2}} \pi^{2 k_{2}} J_{2 k_{1}}(2.39996)}{\left(2 k_{2}\right)!}+ \\
& \left.2 \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}} 4^{-k_{2}} \pi^{2 k_{2}} J_{2 k_{1}}(7.19989)}{\left(2 k_{2}\right)!}\right) / \\
& \left.\left(3\left(\sum_{k=0}^{\infty} \frac{\left(\frac{9}{4}\right)^{k} \pi^{2 k}}{(2 k)!}\right) \sum_{k=0}^{\infty} \frac{4^{-k} \pi^{2 k}}{(2 k)!}\right)\right)
\end{aligned}
\]

\section*{Integral representations:}
\[
\begin{aligned}
& \frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}= \\
& e^{s}\left(\frac{3 e^{-1.43996 / s}}{\frac{\pi}{2}}-\frac{e^{-12.9596 / s}}{\frac{3 \pi}{2}}\right) \sqrt{\pi} \\
& \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\int_{i \pi}^{2} \sinh (t) d t}{2} \frac{2}{2} \\
& 6 i \pi \sqrt{s}
\end{aligned} d s \text { for } \gamma>0
\]
\[
\left.\left.\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}=\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(s)\left(\frac{3 e^{-0.364612 s}}{\frac{\pi}{2}}-\frac{e^{-2.56184 s}}{\frac{3 \pi}{2} \sinh (t) d t} \frac{\int_{i \pi}^{2}}{2} \sinh (t) d t\right.}{2}\right) \sqrt{\pi}\right) ~ 6 i \pi \Gamma\left(\frac{1}{2}-s\right) \quad d s
\]
\[
\text { for } 0<\gamma<\frac{1}{2}
\]
\[
\begin{aligned}
& \frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}= \\
& \quad \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(\frac{e^{-1.43966 / s+s} \sqrt{\pi}}{2 i \pi \sqrt{s}\left(1+\frac{\pi}{2} \int_{0}^{1} \sinh \left(\frac{\pi t}{2}\right) d t\right)}-\frac{e^{-12.9596 / s+s} \sqrt{\pi}}{6 i \pi \sqrt{s}\left(1+\frac{3 \pi}{2} \int_{0}^{1} \sinh \left(\frac{3 \pi t}{2}\right) d t\right)}\right) d s \text { for } \\
& \gamma>0
\end{aligned}
\]

From which:
\(-\mathrm{Pi}^{*}\left(\left(\left(\left(\cos (2.399963) / \cosh (\mathrm{Pi} / 2)-\cos \left(3^{*} 2.399963\right) /\left(\left(3 \cosh \left(3^{*} \mathrm{Pi} / 2\right)\right)\right)\right)\right)\right)\right)\)

\section*{Input interpretation:}
\(-\pi\left(\frac{\cos (2.399963)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.399963)}{3 \cosh \left(3 \times \frac{\pi}{2}\right)}\right)\)

\section*{Result:}
0.9346620...
\(0.9346620 \ldots\) result very near to the spectral index \(\mathrm{n}_{\mathrm{s}}\), to the mesonic Regge slope, to the inflaton value at the end of the inflation 0.9402 (see Appendix) and to the value of the following Rogers-Ramanujan continued fraction:
\[
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
\]

From:

Astronomy \& Astrophysics manuscript no. ms c ESO 2019 - September 24, 2019 Planck 2018 results. VI. Cosmological parameters

The primordial fluctuations are consistent with Gaussian purely adiabatic scalar perturbations characterized by a power spectrum with a spectral index \(n_{s}=0.965 \pm\) 0.004, consistent with the predictions of slow-roll, single-field, inflation.

We know that \(\alpha^{\prime}\) is the Regge slope (string tension). With regard the Omega mesons, the values are:
\[
\begin{array}{r|c|c}
\omega|6| m_{u / d}=0-60 & 0.910-0.918 \\
\omega / \omega_{3}|5+3| m_{u / d}=255-390 & 0.988-1.18 \\
\omega / \omega_{3}|5+3| m_{u / d}=240-345 & 0.937-1.000
\end{array}
\]

\section*{Input interpretation:}

938 MeV (megaelectronvolts)

\section*{Unit conversions:}
0.938 GeV (gigaelectronvolts)
0.938 GeV result practically equal to the proton mass in GeV

\section*{Alternative representations:}
\[
\begin{aligned}
& -\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)=-\pi\left(\frac{\cosh (-2.39996 i)}{\cos \left(\frac{i \pi}{2}\right)}-\frac{\cosh (-7.19989 i)}{3 \cos \left(\frac{3 i \pi}{2}\right)}\right) \\
& -\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)= \\
& -\pi\left(\frac{e^{-2.39996 i}+e^{2.39996 i}}{2 \cos \left(\frac{i \pi}{2}\right)}-\frac{e^{-7.19989 i}+e^{7.19989 i}}{2\left(3 \cos \left(\frac{3 i \pi}{2}\right)\right)}\right) \\
& -\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)=-\pi\left(\frac{\cosh (2.39996 i)}{\cos \left(-\frac{i \pi}{2}\right)}-\frac{\cosh (7.19989 i)}{3 \cos \left(-\frac{3 i \pi}{2}\right)}\right)
\end{aligned}
\]

\section*{Series representations:}
\[
\begin{aligned}
& -\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)= \\
& \frac{\pi\left(-3 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}}\left(\frac{9}{4}\right)^{k_{2}} e^{1.75091 k_{1}} \pi^{2 k_{2}}}{\left(2 k_{1}\right)!\left(2 k_{2}\right)!}+\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}} 4^{-k_{2}} e^{3.94813 k_{1}} \pi^{2 k_{2}}}{\left(2 k_{1}\right)!\left(2 k_{2}\right)!}\right)}{3\left(\sum_{k=0}^{\infty} \frac{\left(\frac{9}{4}\right)^{k} \pi^{2 k}}{(2 k)!}\right) \sum_{k=0}^{\infty} \frac{4^{-k} \pi^{2 k}}{(2 k)!}}
\end{aligned}
\]
\[
\begin{aligned}
& -\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)= \\
& -\left(\left(\pi \left(-\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}} e^{3.94813 k_{1}}\left(\frac{\pi}{2}-\frac{i \pi}{2}\right)^{1+2 k_{2}}}{\left(2 k_{1}\right)!\left(1+2 k_{2}\right)!}+\right.\right.\right. \\
& \left.3 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left.(-1)^{k_{1}} e^{1.75091 k_{1}\left(\frac{3 \pi}{2}-\frac{i \pi}{2}\right)^{1+2 k_{2}}}\right)}{\left(2 k_{1}\right)!\left(1+2 k_{2}\right)!}\right) / \\
& \left.\left(3 i\left(\sum_{k=0}^{\infty} \frac{\left(\frac{\pi}{2}-\frac{i \pi}{2}\right)^{1+2 k}}{(1+2 k)!}\right) \sum_{k=0}^{\infty} \frac{\left(\frac{3 \pi}{2}-\frac{i \pi}{2}\right)^{1+2 k}}{(1+2 k)!}\right)\right)
\end{aligned}
\]
\[
-\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)=
\]
\[
\left(\pi \left(-3 J_{0}(2.39996) \sum_{k=0}^{\infty} \frac{\left(\frac{9}{4}\right)^{k} \pi^{2 k}}{(2 k)!}+J_{0}(7.19989) \sum_{k=0}^{\infty} \frac{4^{-k} \pi^{2 k}}{(2 k)!}-\right.\right.
\]
\[
6 \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}}\left(\frac{3}{2}\right)^{2 k_{2}} \pi^{2 k_{2}} J_{2 k_{1}}(2.39996)}{\left(2 k_{2}\right)!}+
\]
\[
\left.\left.2 \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}} 2^{-2 k_{2}} \pi^{2 k_{2}} J_{2 k_{1}}(7.19989)}{\left(2 k_{2}\right)!}\right)\right) /
\]
\[
\left(3\left(\sum_{k=0}^{\infty} \frac{\left(\frac{9}{4}\right)^{k} \pi^{2 k}}{(2 k)!}\right) \sum_{k=0}^{\infty} \frac{4^{-k} \pi^{2 k}}{(2 k)!}\right)
\]

\section*{Integral representations:}
\[
\begin{aligned}
& -\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)= \\
& \left.\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{s}\left(-\frac{3 e^{-1.43996 / s}}{\frac{\pi}{2}}+\frac{e^{-12.9596 / s}}{\frac{3 \pi}{2} \sinh (t) d t}\right.}{\frac{\int_{i \pi}^{2}}{2} \sinh (t) d t}\right) \sqrt{\pi} \\
& -\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)= \\
& \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{e^{-1.43996 / s+s} \sqrt{\pi}}{2 i \sqrt{s}\left(1+\frac{\pi}{2} \int_{0}^{1} \sinh \left(\frac{\pi t}{2}\right) d t\right)}+\frac{e^{-12.9596 / s+s} \sqrt{\pi}}{6 i \sqrt{s}\left(1+\frac{3 \pi}{2} \int_{0}^{1} \sinh \left(\frac{3 \pi t}{2}\right) d t\right)}\right) d s \text { for } \\
& \gamma>0 \\
& -\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)= \\
& \left.\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(s)\left(-\frac{3 e^{-0.364612 s}}{\frac{\pi}{2}}+\frac{e^{-2.56184 s}}{\int_{i \frac{\pi}{2}}^{2} \sinh (t) d t} \frac{\int_{i \pi}^{2}}{\frac{3 \pi}{2}} \sinh (t) d t\right.}{2}\right) \sqrt{\pi} d s \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
\]
and:
\(\left(\left(\left(-\mathrm{Pi}^{*}((((\cos (2.399963) / \cosh (\mathrm{Pi} / 2)-\cos (3 * 2.399963) /((3 \cosh \right.\right.\right.\) \((3 * \operatorname{Pi} / 2))))))))))^{\wedge} 1 / 8\)

\section*{Input interpretation:}
\(\sqrt[8]{-\pi\left(\frac{\cos (2.399963)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.399963)}{3 \cosh \left(3 \times \frac{\pi}{2}\right)}\right)}\)

\section*{Result:}
0.99158928...
\(0.99158928 .\). result very near to the value of the following Rogers-Ramanujan continued fraction:
\[
\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684
\]
and to the dilaton value \(\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}\)

We obtain:
\(16 \log\) base \(0.99158928\left(\left(\left(-\mathrm{Pi}^{*}((((\cos (2.399963) / \cosh (\mathrm{Pi} / 2)-\cos (3 * 2.399963) /\right.\right.\right.\) \(((3 \cosh (3 * \mathrm{Pi} / 2))))))))))-\mathrm{Pi}+1 /\) golden ratio

\section*{Input interpretation:}
\(16 \log _{0.99158928}\left(-\pi\left(\frac{\cos (2.399963)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.399963)}{3 \cosh \left(3 \times \frac{\pi}{2}\right)}\right)\right)-\pi+\frac{1}{\phi}\)

\section*{Result:}
125.476 .
125.476... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for \(\mathrm{T}=0\) and to the Higgs boson mass 125.18

\section*{Alternative representations:}
\[
\begin{aligned}
& 16 \log _{0.991589}\left(-\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)\right)-\pi+\frac{1}{\phi}= \\
& -\pi+\frac{1}{\phi}+\frac{16 \log \left(-\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (7.19089)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)\right)}{\log (0.991589)}
\end{aligned}
\]
\[
\begin{aligned}
& 16 \log _{0.991589}\left(-\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)\right)-\pi+\frac{1}{\phi}= \\
& -\pi+16 \log _{0.991589}\left(-\pi\left(\frac{\cosh (-2.39996 i)}{\cos \left(\frac{i \pi}{2}\right)}-\frac{\cosh (-7.19989 i)}{3 \cos \left(\frac{3 i \pi}{2}\right)}\right)\right)+\frac{1}{\phi}
\end{aligned}
\]
\(16 \log _{0.991589}\left(-\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)\right)-\pi+\frac{1}{\phi}=\)
\[
-\pi+16 \log _{0.991589}\left(-\pi\left(\frac{e^{-2.39996 i}+e^{2.30996 i}}{2 \cos \left(\frac{i \pi}{2}\right)}-\frac{e^{-7.19989 i}+e^{7.19989 i}}{2\left(3 \cos \left(\frac{3 i \pi}{2}\right)\right)}\right)\right)+\frac{1}{\phi}
\]

\section*{Series representations:}
\[
\begin{aligned}
& 16 \log _{0.991589}\left(-\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)\right)-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\pi-\frac{16 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1-\frac{\pi \cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}+\frac{\pi \cos (7.19989)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)^{k}}{k}}{\log (0.991589)} \\
& 16 \log _{0.991589}\left(-\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)\right)-\pi+\frac{1}{\phi}= \\
& -1+\phi \pi-16 \phi \log _{0.991589}\left(\frac{\pi \sum_{k=0}^{\infty} \frac{(-1)^{k} e^{3.94813 k}}{(2 k)!}}{3 \sum_{k=0}^{\infty} \frac{\left(\frac{2}{4} \pi^{k} \pi^{2 k}\right.}{(2 k)!}}-\frac{\pi \sum_{k=0}^{\infty} \frac{(-1)^{k} e^{1.75091 k}}{(2 k)!}}{\sum_{k=0}^{\infty} \frac{4^{k} \pi^{2 k}}{(2 k)!}}\right) \\
& -\frac{1}{}
\end{aligned}
\]
\(16 \log _{0.991589}\left(-\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)\right)-\pi+\frac{1}{\phi}=\)
\[
-\frac{-1+\phi \pi-16 \phi \log _{0.991589}\left(-\pi\left(\frac{\sum_{k=0}^{\infty} \frac{(-1)^{k} e^{1.75091 k}}{(2 k)!}}{i \sum_{k=0}^{\infty} \frac{\left(\frac{\pi}{2}-\frac{i \pi}{2}\right)^{1+2 k}}{(1+2 k)!}}-\frac{\sum_{k=0}^{\infty} \frac{(-1)^{k} e^{3.94813 k}}{(2 k)!}}{3^{1} \sum_{k=0}^{\infty} \frac{\left(\frac{3 \pi}{2}-\frac{i \pi}{2}\right)^{1+2 k}}{(1+2 k)!}}\right)\right)}{\phi}
\]

\section*{Integral representations:}
\(16 \log _{0.991589}\left(-\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)\right)-\pi+\frac{1}{\phi}=\)

\(16 \log _{0.991589}\left(-\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)\right)-\pi+\frac{1}{\phi}=\)

\(\phi\)
\(16 \log _{0.991589}\left(-\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)\right)-\pi+\frac{1}{\phi}=\)


And:

16log base \(0.99158928\left(\left(\left(-\mathrm{Pi}^{*}((((\cos (2.399963) / \cosh (\mathrm{Pi} / 2)-\cos (3 * 2.399963) /\right.\right.\right.\) \(((3 \cosh (3 * \mathrm{Pi} / 2))))))))))+11+1 /\) golden ratio

\section*{Input interpretation:}
\(16 \log _{0.99158928}\left(-\pi\left(\frac{\cos (2.399963)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.399963)}{3 \cosh \left(3 \times \frac{\pi}{2}\right)}\right)\right)+11+\frac{1}{\phi}\)

\section*{Result:}
139.618...
139.618... result practically equal to the rest mass of Pion meson 139.57

\section*{Alternative representations:}
\[
\begin{aligned}
& 16 \log _{0.991589}\left(-\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)\right)+11+\frac{1}{\phi}= \\
& 11+\frac{1}{\phi}+\frac{16 \log \left(-\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (7.19989)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)\right)}{\log (0.991589)}
\end{aligned}
\]
\[
\begin{aligned}
& 16 \log _{0.991589}\left(-\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)\right)+11+\frac{1}{\phi}= \\
& 11+16 \log _{0.991589}\left(-\pi\left(\frac{\cosh (-2.39996 i)}{\cos \left(\frac{i \pi}{2}\right)}-\frac{\cosh (-7.19989 i)}{3 \cos \left(\frac{3 i \pi}{2}\right)}\right)\right)+\frac{1}{\phi}
\end{aligned}
\]
\(16 \log _{0.991589}\left(-\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)\right)+11+\frac{1}{\phi}=\)
\[
11+16 \log _{0.991589}\left(-\pi\left(\frac{e^{-2.39996 i}+e^{2.30996 i}}{2 \cos \left(\frac{i \pi}{2}\right)}-\frac{e^{-7.19089 i}+e^{7.19989 i}}{2\left(3 \cos \left(\frac{3 i \pi}{2}\right)\right)}\right)\right)+\frac{1}{\phi}
\]

\section*{Series representations:}
\[
\begin{aligned}
& 16 \log _{0.991589}\left(-\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)\right)+11+\frac{1}{\phi}= \\
& 11+\frac{1}{\phi}-\frac{16 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1-\frac{\pi \cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}+\frac{\pi \cos (7.19989)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)^{k}}{k}}{\log (0.991589)}
\end{aligned}
\]
\(16 \log _{0.991589}\left(-\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)\right)+11+\frac{1}{\phi}=\)
\(1+11 \phi+16 \phi \log _{0.991589}\left(\frac{\pi \sum_{k=0}^{\infty} \frac{(-1)^{k} e^{3.94813 k}}{(2 k)!}}{3 \sum_{k=0}^{\infty} \frac{\left(\frac{2}{4}\right)^{k} \pi^{2 k}}{(2 k)!}}-\frac{\pi \sum_{k=0}^{\infty} \frac{(-1)^{k} e^{1.75091 k}}{(2 k)!}}{\sum_{k=0}^{\infty} \frac{4^{-k} \pi^{2} k}{(2 k)!}}\right)\)
\(16 \log _{0.991589}\left(-\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)\right)+11+\frac{1}{\phi}=\)
\(\frac{1+11 \phi+16 \phi \log _{0.991589}\left(-\pi\left(\frac{\sum_{k=0}^{\infty} \frac{(-1)^{k} e^{1.75091 k}}{(2 k)!}}{i \sum_{k=0}^{\infty} \frac{\left(\frac{\pi}{2}-\frac{i \pi}{2}\right)^{1+2 k}}{(1+2 k)!}}-\frac{\sum_{k=0}^{\infty} \frac{(-1)^{k} e^{3.94813 k}}{(2 k)!}}{3^{1} \sum_{k=0}^{\infty} \frac{\left(\frac{3 \pi}{2}-\frac{i \pi}{2}\right)^{1+2 k}}{(1+2 k)!}}\right)\right)}{\phi}\)

\section*{Integral representations:}
\(16 \log _{0.991589}\left(-\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)\right)+11+\frac{1}{\phi}=\)

\(16 \log _{0.991589}\left(-\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)\right)+11+\frac{1}{\phi}=\)

\(\phi\)
\(16 \log _{0.991589}\left(-\pi\left(\frac{\cos (2.39996)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \times 2.39996)}{3 \cosh \left(\frac{3 \pi}{2}\right)}\right)\right)+11+\frac{1}{\phi}=\)


From:


We have:
\(-0.297512+1 / 2 \tan ^{\wedge}-1\left(2.27798^{\wedge} 2\right)\)

\section*{Input interpretation:}
\(-0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)\)
\[
\tan ^{-1}(x) \text { is the inverse tangent function }
\]

\section*{Result:}
0.392699 .
(result in radians)
\(0.392699 \ldots=\pi / 8\)

\section*{Input interpretation:}
0.392699

\section*{Rational form:}
\(\frac{392699}{1000000}\)

\section*{Possible closed forms:}
\(\frac{\pi}{8} \approx 0.39269908169\)

\section*{Alternative representations:}
\(-0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)=-0.297512+\frac{\mathrm{sc}^{-1}\left(2.27798^{2} \mid 0\right)}{2}\)
\(-0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)=-0.297512+\frac{1}{2} \cot ^{-1}\left(\frac{1}{2.27798^{2}}\right)\)
\(-0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)=-0.297512+\frac{1}{2} \tan ^{-1}\left(1,2.27798^{2}\right)\)

\section*{Series representations:}
\[
\begin{aligned}
& -0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)= \\
& -0.297512+\frac{1.2973 \pi}{\sqrt{26.9277}}-0.0963541 \sum_{k=0}^{\infty} \frac{(-1)^{k} e^{-3.29316 k}}{1+2 k} \\
& -0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)= \\
& -0.297512+0.5 \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{5}\right)^{k} 10.3784^{1+2 k} F_{1+2 k}\left(\frac{1}{1+\sqrt{22.5422}}\right)^{1+2 k}}{1+2 k} \\
& -0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)= \\
& -0.297512+0.5 \tan ^{-1}(x)-0.5 \pi\left|\frac{\arg (i(-5.18919+x))}{2 \pi}\right|+ \\
& 0.25 i \sum_{k=1}^{\infty} \frac{\left(-(-i-x)^{-k}+(i-x)^{-k}\right)(5.18919-x)^{k}}{k} \text { for }(i x \in \mathbb{R} \text { and } i x>1)
\end{aligned}
\]

\section*{Integral representations:}
\(-0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)=-0.297512+2.5946 \int_{0}^{1} \frac{1}{1+26.9277 t^{2}} d t\)
\[
-0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)=
\]
\[
-0.297512-\frac{0.648649 i}{\pi^{3 / 2}} \int_{-i \infty+\gamma}^{i \infty+\gamma} e^{-3.32962 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} d s \text { for } 0<\gamma<\frac{1}{2}
\]
\(-0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)=\)
\[
-0.297512+\frac{0.648649}{i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-3.29316 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s \text { for } 0<\gamma<\frac{1}{2}
\]

\section*{Continued fraction representations:}
\[
\begin{aligned}
-0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right) & = \\
-0.297512+\frac{2.5946}{1+\mathrm{K}_{k=1}^{\infty} \frac{26.9277 k^{2}}{1+2 k}} & =-0.297512+\frac{2.5946}{1+\frac{26.9277}{3+\frac{107.711}{5+\frac{242.35}{7+\frac{430.844}{9+\ldots}}}}}
\end{aligned}
\]
\[
\begin{aligned}
& -0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)=-0.297512+\frac{2.5946}{1+\mathbb{K}_{k=1}^{\infty} \frac{26.9277(1-2 k)^{2}}{27.9277-51.8554 k}}= \\
& -0.297512+\frac{2.5946}{1+\frac{26.9277}{-23.9277+\frac{242.35}{-75.7832+\frac{673.193}{-127.639+\frac{1319.46}{-179.494+\ldots}}}}} \\
& -0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)= \\
& 2.29708-\frac{69.8666}{3+{\underset{k=1}{\mathrm{~K}}}_{\frac{26.9277\left(1+(-1)^{1+k}+k\right)^{2}}{3+2 k}}}=2.29708-\frac{69.8666}{3+\frac{242.35}{5+\frac{107.711}{7+\frac{673.193}{9+\frac{430.844}{11+\ldots}}}}} \\
& -0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)= \\
& -0.297512+\frac{2.5946}{27.9277+\mathrm{K}_{k=1}^{\infty} \frac{\left.53.8554\left(1-2 \left\lvert\, \frac{1+k}{2}\right.\right\rfloor\right)\left\lfloor\frac{1+k}{2}\right\rfloor}{\left(14.4639+13.4639(-1)^{k}\right)(1+2 k)}}= \\
& -0.297512+\frac{2.5946}{27.9277+-\frac{53.8554}{3-\frac{53.8554}{139.639-\frac{323.133}{7-\frac{323.133}{251.35+\ldots}}}}}
\end{aligned}
\]

Multiplying the result by \(4 \pi / 3\) and adding \(3^{3} / 10^{3}\), and again multiplying all the expression by \(1 / 10^{27}\), we obtain:
\(1 / 10^{\wedge} 27^{*}\left[\left(\left(\left(-0.297512+1 / 2 \tan ^{\wedge}-1\left(2.27798^{\wedge} 2\right)\right)\right)\right) * 4 \mathrm{Pi} / 3+3^{\wedge} 3 / 10^{\wedge} 3\right]\)

\section*{Input interpretation:}
\(\frac{1}{10^{27}}\left(\left(-0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)\right) \times 4 \times \frac{\pi}{3}+\frac{3^{3}}{10^{3}}\right)\)
\(\tan ^{-1}(x)\) is the inverse tangent function

\section*{Result:}
\(1.67193 \ldots \times 10^{-27}\)
(result in radians)
\(1.67193 \ldots * 10^{-27}\) result practically equal to the proton mass

\section*{Alternative representations:}
\[
\frac{\frac{1}{3}\left(-0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)\right) 4 \pi+\frac{3^{3}}{10^{3}}}{10^{27}}=\frac{\frac{4}{3} \pi\left(-0.297512+\frac{\operatorname{sc}^{-1}\left(2.27798^{2} \mathrm{p}\right)}{2}\right)+\frac{27}{10^{3}}}{10^{27}}
\]
\[
\frac{\frac{\frac{1}{3}\left(-0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)\right) 4 \pi+\frac{3^{3}}{10^{3}}}{\frac{10^{27}}{3} \pi\left(-0.297512+\frac{1}{2} \cot ^{-1}\left(\frac{1}{2.27798^{2}}\right)\right)+\frac{27}{10^{3}}}}{10^{27}}=
\]
\[
\frac{\frac{1}{3}\left(-0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)\right) 4 \pi+\frac{3^{3}}{10^{3}}}{10^{27}}=
\]
\[
\frac{\frac{4}{3} \pi\left(-0.297512+\frac{1}{2} \tan ^{-1}\left(1,2.27798^{2}\right)\right)+\frac{27}{10^{3}}}{10^{27}}
\]

\section*{Series representations:}
\[
\begin{aligned}
& \frac{\frac{1}{3}\left(-0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)\right) 4 \pi+\frac{3^{3}}{10^{3}}}{10^{27}}=2.7 \times 10^{-29}- \\
& 3.96683 \times 10^{-28} \pi+\frac{1.72973 \times 10^{-27} \pi^{2}}{\sqrt{26.9277}}-1.28472 \times 10^{-28} \pi \sum_{k=0}^{\infty} \frac{(-1)^{k} e^{-3.29316 k}}{1+2 k} \\
& \frac{\frac{1}{3}\left(-0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)\right) 4 \pi+\frac{3^{3}}{10^{3}}}{10^{27}}=2.7 \times 10^{-29}-3.96683 \times 10^{-28} \pi+ \\
& 6.66667 \times 10^{-28} \pi \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{5}\right)^{k} 10.3784^{1+2 k} F_{1+2 k}\left(\frac{1}{1+\sqrt{22.5422}}\right)^{1+2 k}}{1+2 k} \\
& \frac{\frac{1}{3}\left(-0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)\right) 4 \pi+\frac{3^{3}}{10^{3}}}{10^{27}}= \\
& 2.7 \times 10^{-29}-3.96683 \times 10^{-28} \pi+6.66667 \times 10^{-28} \pi \tan ^{-1}(x)- \\
& 6.66667 \times 10^{-28} \pi^{2}\left\lfloor\frac{\arg (i(-5.18919+x))}{2 \pi}\right]^{2}+3.33333 \times 10^{-28} i \pi \\
& \sum_{k=1}^{\infty} \frac{\left(-(-i-x)^{-k}+(i-x)^{-k}\right)(5.18919-x)^{k}}{k} \text { for }(i x \in \mathbb{R} \text { and } i x>1)
\end{aligned}
\]

\section*{Integral representations:}
\[
\begin{aligned}
& \frac{\frac{1}{3}\left(-0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)\right) 4 \pi+\frac{3^{3}}{10^{3}}}{10^{27}}= \\
& 2.7 \times 10^{-29}-3.96683 \times 10^{-28} \pi+3.45946 \times 10^{-27} \pi \int_{0}^{1} \frac{1}{1+26.9277 t^{2}} d t \\
& \frac{\frac{1}{3}\left(-0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)\right) 4 \pi+\frac{3^{3}}{10^{3}}}{10^{27}}=2.7 \times 10^{-29}-3.96683 \times 10^{-28} \pi- \\
& \frac{8.64865 \times 10^{-28} i}{\sqrt{\pi}} \int_{-i \infty+\gamma}^{i \infty} e^{-3.32962 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} d s \text { for } 0<\gamma<\frac{1}{2} \\
& \frac{\frac{1}{3}\left(-0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)\right) 4 \pi+\frac{3^{3}}{10^{3}}}{10^{27}}=2.7 \times 10^{-29}-3.96683 \times 10^{-28} \pi+ \\
& \frac{8.64865 \times 10^{-28}}{i} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-3.29316 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
\]

\section*{Continued fraction representations:}
\[
\begin{aligned}
& \frac{\frac{1}{3}\left(-0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)\right) 4 \pi+\frac{3^{3}}{10^{3}}}{10^{27}}= \\
& \frac{2.7 \times 10^{-29}+3.06278 \times 10^{-27} \pi+\left(2.7 \times 10^{-29}-3.96683 \times 10^{-28} \pi\right)\left({\underset{k}{k}}_{\infty}^{\infty} \frac{26.9277 k^{2}}{1+2 k}\right)}{1+\mathrm{K}_{k=1}^{\infty} \frac{26.9277 k^{2}}{1+2 k}} \\
& 9.649 \times 10^{-27}-1.21922 \times 10^{-27} \frac{26.9277}{3+\frac{107.711}{5+\frac{242.35}{7+\frac{430.844}{9+\ldots}}}} \\
& 1+\frac{26.9277}{3+\frac{107.711}{5+\frac{242.35}{7+\frac{430.844}{9+\ldots}}}}
\end{aligned}
\]
\[
\begin{aligned}
& \frac{\frac{1}{3}\left(-0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)\right) 4 \pi+\frac{3^{3}}{10^{3}}}{10^{27}}= \\
& \left(2.7 \times 10^{-29}+3.06278 \times 10^{-27} \pi+\left(2.7 \times 10^{-29}-3.96683 \times 10^{-28} \pi\right)\right. \\
& \left.\left(\mathrm{K}_{k=1}^{\infty} \frac{26.9277(1-2 k)^{2}}{27.9277-51.8554 k}\right)\right) /\left(1+{\underset{k}{k}}_{\infty}^{\infty} \frac{26.9277(1-2 k)^{2}}{27.9277-51.8554 k}\right)= \\
& 9.649 \times 10^{-27}-1.21922 \times 10^{-27} \\
& \frac{26.9277}{-23.9277+\frac{242.35}{-75.7832+\frac{673.193}{-127.639+\frac{1319.46}{-179.494+\ldots}}}} \\
& 1+\frac{26.9277}{-23.9277+\frac{242.35}{-75.7832+\frac{673.193}{-127.639+\frac{1319.46}{-179.494+\ldots}}}} \\
& \frac{\frac{1}{3}\left(-0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)\right) 4 \pi+\frac{3^{3}}{10^{3}}}{10^{27}}= \\
& \left(8.1 \times 10^{-29}-8.39671 \times 10^{-26} \pi+\left(2.7 \times 10^{-29}+3.06278 \times 10^{-27} \pi\right)\right. \\
& \left({\underset{K}{k=1}}_{\infty}^{\left.\left.\frac{26.9277\left(1+(-1)^{1+k}+k\right)^{2}}{3+2 k}\right)\right) /\left(3+{\underset{k}{k=1}}_{\infty} \frac{26.9277\left(1+(-1)^{1+k}+k\right)^{2}}{3+2 k}\right)=}\right. \\
& -2.63709 \times 10^{-25}+9.649 \times 10^{-27} \frac{242.35}{5+\frac{107.711}{7+\frac{673.193}{9+\frac{430.844}{11+\ldots}}}} \\
& 3+\frac{242.35}{5+\frac{107.711}{7+\frac{673.193}{9+\frac{430.844}{11+\ldots}}}}
\end{aligned}
\]
\(\frac{\frac{\frac{1}{3}\left(-0.297512+\frac{1}{2} \tan ^{-1}\left(2.27798^{2}\right)\right) 4 \pi+\frac{3^{3}}{10^{3}}}{10^{27}}=}{\frac{27}{1000000000000000000000000000000}+}\)

\(\frac{27}{1000000000000000000000000000000}+\)
\[
\pi\left(-3.96683 \times 10^{-28}+\frac{3.45946 \times 10^{-27}}{27.9277+-\frac{53.8554}{3-\frac{53.8554}{139.639-\frac{323.133}{7-\frac{323.133}{251.35+\ldots}}}}}\right)
\]

Page 301

sqrt147 \(1 / 4\left[\left(\left(1+\left(2 *(28 / 27)^{\wedge} 1 / 6-(7 / 3)^{\wedge} 1 / 2\right)^{*} 1 / 2\right)\right)\right]^{\wedge} 24\)

\section*{Input:}
\(\sqrt{147} \times \frac{1}{4}\left(1+\left(2 \sqrt[6]{\frac{28}{27}}-\sqrt{\frac{7}{3}}\right) \times \frac{1}{2}\right)^{24}\)

\section*{Result:}
\(\frac{7}{4} \sqrt{3}\left(1+\frac{1}{2}\left(\frac{2 \sqrt[3]{2} \sqrt[6]{7}}{\sqrt{3}}-\sqrt{\frac{7}{3}}\right)\right)^{24}\)

\section*{Decimal approximation:}
\(553.5763109577611508924497142411420181121205592675804034176 \ldots\)
553.57631095...

\section*{Alternate forms:}
\[
\begin{aligned}
& \frac{7 \sqrt{3}(6+2 \sqrt[3]{2} \sqrt{3} \sqrt[6]{7}-\sqrt{21})^{24}}{18953525353286467584} \\
& \frac{7(6+2 \sqrt[3]{2} \sqrt{3} \sqrt[6]{7}-\sqrt{21})^{24}}{6317841784428822528 \sqrt{3}} \\
& \frac{7(2 \sqrt{3}+2 \sqrt[3]{2} \sqrt[6]{7}-\sqrt{7})^{24}}{11888133931008 \sqrt{3}}
\end{aligned}
\]

We obtain also:
\(1 / \mathrm{Pi}^{*} \operatorname{sqrt147} 1 / 4\left[\left(\left(1+\left(2 *(28 / 27)^{\wedge} 1 / 6-(7 / 3)^{\wedge} 1 / 2\right)^{*} 1 / 2\right)\right)\right]^{\wedge} 24-29-11+3+1 /\) golden ratio

\section*{Input:}
\(\frac{1}{\pi} \sqrt{147}\left(\frac{1}{4}\left(1+\left(2 \sqrt[6]{\frac{28}{27}}-\sqrt{\frac{7}{3}}\right) \times \frac{1}{2}\right)^{24}\right)-29-11+3+\frac{1}{\phi}\)

\section*{Result:}
\(\frac{1}{\phi}-37+\frac{7 \sqrt{3}\left(1+\frac{1}{2}\left(\frac{2 \sqrt[3]{2} \sqrt[6]{7}}{\sqrt{3}}-\sqrt{\frac{7}{3}}\right)\right)^{24}}{4 \pi}\)

\section*{Decimal approximation:}
139.8268465237575595423359918238438694689225571185119148748
\(139.82684652 \ldots\) result practically equal to the rest mass of Pion meson 139.57

\section*{Property:}
\(-37+\frac{1}{\phi}+\frac{7 \sqrt{3}\left(1+\frac{1}{2}\left(-\sqrt{\frac{7}{3}}+\frac{2 \sqrt[3]{2} \sqrt[6]{7}}{\sqrt{3}}\right)\right)^{24}}{4 \pi}\) is a transcendental number

\section*{Alternate forms:}
\[
\begin{aligned}
& \frac{1}{67108864 \pi}(-56494569452637785 \sqrt{3}+ \\
& 6475173025186656 \sqrt[3]{2} \sqrt[6]{7}+20749964390355984 \times 2^{2 / 3} \sqrt{3} \sqrt[3]{7}+ \\
& 36984381951320496 \sqrt{7}-1412997045166896 \sqrt[3]{2} \sqrt{3} 7^{2 / 3}- \\
& \left.13584038815634112 \times 2^{2 / 3} \times 7^{5 / 6}-2516582400 \pi+33554432 \sqrt{5} \pi\right) \\
& \frac{1}{\phi}-37+\frac{7(2 \sqrt{3}+2 \sqrt[3]{2} \sqrt[6]{7}-\sqrt{7})^{24}}{11888133931008 \sqrt{3} \pi} \\
& \frac{\left(7 \sqrt{3}(2 \sqrt{3}+2 \sqrt[3]{2} \sqrt[6]{7}-\sqrt{7})^{24}-1319582866341888 \pi\right) \phi+35664401793024 \pi}{35664401793024 \pi \phi}
\end{aligned}
\]

\section*{Series representations:}
\[
\begin{aligned}
& \frac{\sqrt{147}\left(1+\frac{1}{2}\left(2 \sqrt[6]{\frac{28}{27}}-\sqrt{\frac{7}{3}}\right)\right)^{24}}{4 \pi}-29-11+3+\frac{1}{\phi}= \\
& -37+\frac{1}{\phi}+\frac{\left(1+\frac{1}{2}\left(-\sqrt{\frac{7}{3}}+\frac{2 \sqrt[3]{2} \sqrt[6]{7}}{\sqrt{3}}\right)\right)^{24} \sqrt{146} \sum_{k=0}^{\infty} 146^{-k}\binom{\frac{1}{2}}{k}}{4 \pi} \\
& \frac{\sqrt{147}\left(1+\frac{1}{2}\left(2 \sqrt[6]{\frac{28}{27}}-\sqrt{\frac{7}{3}}\right)\right)^{24}}{4 \pi}-29-11+3+\frac{1}{\phi}= \\
& -37+\frac{1}{\phi}+\frac{\left(1+\frac{1}{2}\left(-\sqrt{\frac{7}{3}}+\frac{2 \sqrt[3]{2} \sqrt[6]{7}}{\sqrt{3}}\right)\right)^{24} \sqrt{146} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{146}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}{4 \pi} \\
& \sqrt{147}\left(1+\frac{1}{2}\left(2 \sqrt[6]{\frac{28}{27}}-\sqrt{\frac{7}{3}}\right)\right)^{24} \\
& \hline 4 \pi \\
& -37+\frac{1}{\phi}+\frac{\left(1+\frac{1}{2}\left(-\sqrt{\frac{7}{3}}+\frac{2 \sqrt[3]{2} \sqrt[6]{7}}{\sqrt{3}}\right)\right)^{24} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 146^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{8 \pi \sqrt{\pi}}
\end{aligned}
\]

And:
\(1 / \mathrm{Pi}^{*}\) sqrt147 \(1 / 4\left[\left(\left(1+\left(2^{*}(28 / 27)^{\wedge} 1 / 6-(7 / 3)^{\wedge} 1 / 2\right)^{*} 1 / 2\right)\right)\right]^{\wedge} 24-47-4\)

\section*{Input:}
\(\frac{1}{\pi} \sqrt{147}\left(\frac{1}{4}\left(1+\left(2 \sqrt[6]{\frac{28}{27}}-\sqrt{\frac{7}{3}}\right) \times \frac{1}{2}\right)^{24}\right)-47-4\)

\section*{Result:}
\(\frac{7 \sqrt{3}\left(1+\frac{1}{2}\left(\frac{2 \sqrt[3]{2} \sqrt[6]{7}}{\sqrt{3}}-\sqrt{\frac{7}{3}}\right)\right)^{24}}{4 \pi}-51\)

\section*{Decimal approximation:}
125.2088125350076646941314049894782313512022479387061520127...
\(125.2088125 \ldots\) result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for \(\mathrm{T}=0\) and to the Higgs boson mass 125.18

\section*{Property:}
\(-51+\frac{7 \sqrt{3}\left(1+\frac{1}{2}\left(-\sqrt{\frac{7}{3}}+\frac{2 \sqrt[3]{2} \sqrt[6]{7}}{\sqrt{3}}\right)\right)^{24}}{4 \pi}\) is a transcendental number

\section*{Alternate forms:}
\[
\begin{aligned}
& \frac{1}{67108864 \pi}(-56494569452637785 \sqrt{3}+ \\
& 6475173025186656 \sqrt[3]{2} \sqrt[6]{7}+20749964390355984 \times 2^{2 / 3} \sqrt{3} \sqrt[3]{7}+ \\
& 36984381951320496 \sqrt{7}-1412997045166896 \sqrt[3]{2} \sqrt{3} 7^{2 / 3}- \\
& \left.13584038815634112 \times 2^{2 / 3} \times 7^{5 / 6}-3422552064 \pi\right)
\end{aligned}
\]
\[
\frac{7(2 \sqrt{3}+2 \sqrt[3]{2} \sqrt[6]{7}-\sqrt{7})^{24}}{11888133931008 \sqrt{3} \pi}-51
\]
\[
\frac{7 \sqrt{3}\left(1-\frac{\sqrt{z}}{2}+\frac{\sqrt[3]{2} \sqrt[6]{7}}{\sqrt{3}}\right)^{24}}{4 \pi}-51
\]

\section*{Series representations:}
\[
\begin{aligned}
& \frac{\sqrt{147}\left(1+\frac{1}{2}\left(2 \sqrt[6]{\frac{28}{27}}-\sqrt{\frac{7}{3}}\right)\right)^{24}}{4 \pi}-47-4= \\
& -51+\frac{\left(1+\frac{1}{2}\left(-\sqrt{\frac{7}{3}}+\frac{2 \sqrt[3]{2} \sqrt[6]{7}}{\sqrt{3}}\right)\right)^{24} \sqrt{146} \sum_{k=0}^{\infty} 146^{-k}\binom{\frac{1}{2}}{k}}{4 \pi} \\
& \frac{\sqrt{147}\left(1+\frac{1}{2}\left(2 \sqrt[6]{\frac{28}{27}}-\sqrt{\frac{7}{3}}\right)\right)^{24}}{4 \pi}-47-4= \\
& -51+\frac{\left(1+\frac{1}{2}\left(-\sqrt{\frac{7}{3}}+\frac{2 \sqrt[3]{2} \sqrt[6]{7}}{\sqrt{3}}\right)\right)^{24} \sqrt{146} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{146}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}{4 \pi}
\end{aligned}
\]
\[
\frac{\sqrt{147}\left(1+\frac{1}{2}\left(2 \sqrt[6]{\frac{28}{27}}-\sqrt{\frac{7}{3}}\right)\right)^{24}}{4 \pi}-47-4=
\]
\[
-51+\frac{\left(1+\frac{1}{2}\left(-\sqrt{\frac{7}{3}}+\frac{2 \sqrt[3]{2} \sqrt[6]{7}}{\sqrt{3}}\right)\right)^{24} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 146^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{8 \pi \sqrt{\pi}}
\]
\(\left.\left(\left(\left(1 /\left(\left(\left(\operatorname{sqrt147} 1 / 4\left[\left(\left(1+\left(2^{*}(28 / 27)^{\wedge} 1 / 6-(7 / 3)^{\wedge} 1 / 2\right)^{*} 1 / 2\right)\right)\right]^{\wedge} 24\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 1024\)

\section*{Input:}
\(\sqrt[1024]{\frac{1}{\sqrt{147} \times \frac{1}{4}\left(1+\left(2 \sqrt[6]{\frac{28}{27}}-\sqrt{\frac{7}{3}}\right) \times \frac{1}{2}\right)^{24}}}\)

\section*{Exact result:}
\(\frac{\sqrt[512]{2}}{\sqrt[2048]{3} \sqrt[1024]{7}\left(1+\frac{1}{2}\left(\frac{2 \sqrt[3]{2} \sqrt[6]{7}}{\sqrt{3}}-\sqrt{\frac{7}{3}}\right)\right)^{3 / 128}}\)

\section*{Decimal approximation:}
0.993850626273740014558241730509119666154385626182676838679...
\(0.993850626 \ldots\). result very near to the value of the following Rogers-Ramanujan continued fraction:
\(\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{54} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684\)
and to the dilaton value \(\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}\)

\section*{Alternate forms:}
\(\frac{2^{13 / 512} \times 3^{47 / 2048}}{\sqrt[1024]{7}\left(\sqrt{\text { root of } x^{6}-48384 \text { near } x=6.03648}+6-\sqrt{21}\right)^{3 / 128}}\)
\(\frac{2^{13 / 512} \times 3^{47 / 2048}}{\sqrt[1024]{7}(6+2 \sqrt[3]{2} \sqrt{3} \sqrt[6]{7}-\sqrt{21})^{3 / 128}}\)
\(\frac{2^{13 / 512} \times 3^{23 / 2048}}{\sqrt[1024]{7}(2 \sqrt{3}+2 \sqrt[3]{2} \sqrt[6]{7}-\sqrt{7})^{3 / 128}}\)
\(\left(\left(\left(1 /\left(\left(\left(\left(\operatorname{sqrt} 1471 / 4\left[\left(\left(1+\left(2 *(28 / 27)^{\wedge} 1 / 6-(7 / 3)^{\wedge} 1 / 2\right)^{*} 1 / 2\right)\right)\right]^{\wedge} 24\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 128\)

\section*{Input:}
\(\sqrt[128]{\frac{1}{\sqrt{147} \times \frac{1}{4}\left(1+\left(2 \sqrt[6]{\frac{28}{27}}-\sqrt{\frac{7}{3}}\right) \times \frac{1}{2}\right)^{24}}}\)

\section*{Exact result:}
\(\frac{\sqrt[64]{2}}{\sqrt[256]{3} \sqrt[128]{7}\left(1+\frac{1}{2}\left(\frac{2 \sqrt[3]{2} \sqrt[6]{7}}{\sqrt{3}}-\sqrt{\frac{7}{3}}\right)\right)^{3 / 16}}\)

\section*{Decimal approximation:}
\(0.951850902028482983268257153140899019695065615404900318306 \ldots\)
\(0.951850902028 \ldots\) result very near to the spectral index \(n_{s}\), to the mesonic Regge slope, to the inflaton value at the end of the inflation 0.9402 (see Appendix) and to the value of the following Rogers-Ramanujan continued fraction:
\[
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
\]

From:
Astronomy \& Astrophysics manuscript no. ms c ESO 2019 - September 24, 2019 Planck 2018 results. VI. Cosmological parameters

The primordial fluctuations are consistent with Gaussian purely adiabatic scalar perturbations characterized by a power spectrum with a spectral index \(n_{s}=0.965 \pm\) 0.004, consistent with the predictions of slow-roll, single-field, inflation.

We know that \(\alpha\) ' is the Regge slope (string tension). With regard the Omega mesons, the values are:
\[
\begin{array}{c|c|c}
\omega|6| m_{u / d}=0-60 & 0.910-0.918 \\
& \omega / \omega_{3}|5+3| m_{u / d}=255-390 & 0.988-1.18 \\
\omega / \omega_{3}|5+3| m_{u / d}=240-345 & 0.937-1.000
\end{array}
\]

\section*{Alternate forms:}
\[
2^{13 / 64} \times 3^{47 / 256}
\]
\[
\sqrt[128]{7}\left(\text { root of } x^{6}-48384 \text { near } x=6.03648+6-\sqrt{21}\right)^{3 / 16}
\]
\[
\frac{2^{13 / 64} \times 3^{47 / 256}}{\sqrt[128]{7}(6+2 \sqrt[3]{2} \sqrt{3} \sqrt[6]{7}-\sqrt{21})^{3 / 16}}
\]
\(\frac{2^{13 / 64} \times 3^{23 / 256}}{\sqrt[128]{7}(2 \sqrt{3}+2 \sqrt[3]{2} \sqrt[6]{7}-\sqrt{7})^{3 / 16}}\)

\section*{Conclusion}

To conclude we highlight once again, as \(\pi, \phi, 1 / \phi\) and 11 , or a Lucas number (often in the development of the Ramanujan equations we use Fibonacci and Lucas numbers), they play a fundamental role in the development, and therefore, in the final results of Ramanujan's equations. It always seems more probable that \(\pi, \phi, 1 / \phi\) and 11 and other numbers connected to the Fibonacci and Lucas sequences, are not only mathematical constants and / or simple numbers, but "information", which if inserted in the most varied combinations possible following always a precise logic, they lead to the solutions obtained so far: masses of particles (Higgs boson and pion), as described in the paper, and other physical and cosmological parameters.

\section*{Acknowledgments}

I would like to thank Prof. George E. Andrews Evan Pugh Professor of Mathematics at Pennsylvania State University for his great availability and kindness towards me

\section*{References}

\section*{Manuscript Book Of Srinivasa Ramanujan Volume 2}

Andrews, G.E.: Some formulae for the Fibonacci sequence with generalizations. Fibonacci Q. 7, 113-130 (1969) zbMATH Google Scholar

Andrews, G.E.: A polynomial identity which implies the Rogers-Ramanujan identities. Scr. Math. 28, 297-305 (1970) Google Scholar

The Continued Fractions Found in the Unorganized Portions of Ramanujan's Notebooks (Memoirs of the American Mathematical Society), by Bruce C. Berndt, L. Jacobsen, R. L. Lamphere, George E. Andrews (Editor), Srinivasa Ramanujan Aiyangar (Editor) (American Mathematical Society, 1993, ISBN 0-8218-2538-0)```


[^0]:    ${ }^{1}$ M.Nardelli have studied by Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

