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2 ZEEV RUDNICK
1. PREFACE

This paper is an expanded version of some of the lectures given at
the summer school in Bologna. In these lectures we gave an introduc-
tion to very basic number theory, assuming practically no background.
The lectures were intended for graduate students in Math and Physics
and while the material is completely standard, we tried to make the
presentation as elementary as possible.

Some of the easier proofs are included, others are relegated to exer-
cises, but several of the deeper facts are stated without proof. Most of
the material may be found in classic texts such as [1] and [3].

2. DIVISIBILITY

2.1. Basics on divisibility. Wedenoteby Z = {...,—2,-2,0,1,2,...}
the set of integers.
The Euclidean property: If b # 0 then for any a, we can write

a=qgb+r

with remainder 0 < r < |b| and quotient ¢. *

Given a pair of integers a,b with b # 0, we say that b divides a,
denoted as b | a, if the remainder r = 0, that is if a« = bg for some
integer q. We will also say that b is a divisor of a.

The basic properties of the divisibility relation are

1. b |0 for all nonzero b and 1 | @ for all a.

2. Transitivity: b | a and ¢ | b implies ¢ | a.

3.ifd | a and d | b then d | ax + by for all integers z, y.

4. units: a | 1 if and only if @ = +1. Indeed, since nonzero integers
have absolute value at least 1, the only solutions of the equation
zy = 1 in integers are (z,y) = (1,1) or (—1,—1).

5. For nonzero integers a,b we have both a | b and b | a if and only
if b = +a.

Indeed, if b | a the we can write a = bz for some integer x, and
from a | b we can write b = ay for some y € Z. Thus azy = a and
since a # 0 this means xy = 1 which forces x = £1.

2.2. The greatest common divisor. Given a pair of integers a com-
mon divisor is an integer d which divides both. For instance the com-
mon divisors of 4 and 6 are the integers £1, +2.

Definition 2.1. A greatest common divisor of a pair of nonzero inte-
gers a,b is a common divisor d which is mazimal in the sense that if §
is any common divisor of a,b then § | d.

Lor —|b|/2 <7 < |b|/2.
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An inspection shows that the greatest common divisors of 4 and 6
are 2.

The basic fact is the existence (not apriori obvious from our defi-
nition) and essential uniqueness of greatest common divisors. We will
denote by ged(a, b) a choice of greatest common divisor, which is unique
if require that it be positive:

Theorem 2.2. Any two nonzero integers a,b admit a greatest common
divisor, unique up to sign. Furthermore, one can always find integers
z,y so that ged(a, b) = az + by.

Below we will see a proof of this which gives an efficient algorithm for
both computing the ged and finding integer solutions of the equation
ged(a, b) = ax + by.

We first derive a few properties of the ged:

Definition 2.3. A pair of integers a,b is coprime if ged(a,b) =1
A useful criterion for coprimality is

Lemma 2.4. a,b are coprime if and only if there are integers x,y such
that ax + by = 1.

We will need to use the following:

Lemma 2.5. a) If a,b are coprime and a | bc then a | c.
b) If a,b are coprime and both divide ¢ then their product ab divides
c.

Proof. Indeed, if a,b are coprime then we can write 1 = ax + by for
integers x,y. Multiplying this equation by ¢ we find

(2.1) c=a-zc+y-bc.

For part (a), we are assuming a | bc and so both summands on the
RHS of (2.1) are divisible by a, hence so is the LHS, namely c.

For part (b), we are assuming that a | ¢ and so ab | yb-c and likewise
since we assume that b | ¢, we have ab | ax - ¢ and thus ab divides the
LHS of (2.1) and so divides the LHS, namely c. O

2.3. The Euclidean algorithm. The Euclidean algorithm gives an
efficient method for finding the ged as well as for computing x,y so
that ged(a,b) = ax + by. The method is as follows: Assume |a| > |b|.
It will be convenient to set r_; := |a|, and 79 := |b]. We use division
with remainder to write

a=qb+ry, 0<m <Ibl.
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If 7, = 0 then b | @ and ged(a, b) = b. Otherwise, iterate this step with
a replaced by b and b replaced by the remainder r; to write

bZQQT1+’I”2, 0<ro<ry.
Continuing in this fashion, we get after k£ steps
Tk—2 = QkTk—1 + Tk, 0<re <rg_1-

Since the sequence of remainders [b| = rg > r; > ry > ... is a
strictly decreasing sequence of non-negative integers, this process has
to terminate in a finite number of steps, say after n steps we have

Tn—2 = qnTn—1 + T'n, T # 0
and
Tn—1 = Gn+1Tn
We claim that
ged(a,b) =1, .
Moreover, the process gives integers z,y so that
ged(a,b) = ax + by .

To see this, we will show by descending induction on ¢ = n,n —
1,...,0,—1 that

(22) T; ‘ Tn
and that
(2.3) Tn = X;Ti—1 + Yili

Once we have this, taking i = 0, —1 will give 7, | /o =band r,, | r—1 =
a, and taking ¢ = 0 in (2.3) will give r, = x¢a + yob.

For i = n we clearly have r, | r, and r,, = 17, +0r, 1. Fori=n—1
we have r,_1 = ¢, 7, giving both (2.2) and (2.3) in that case. Assuming
we know that r, | rp and r, | rp_1, we use rg_s = @pTr_1 + 7% to find
that r,, | rx_o. Further, assuming we know (2.3) for i = & gives

Tn = TETk—1 + YTk
= ZTk—1 + Yk(Th—2 — QkTh—1)

= YpTk—2 + (Th — QeYk)Tk—1

that is (23) holds for 7 = £k — 1 with Tk—1 = Yky Yo—1 = Tk — QrYk-
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Example: a = 8, b = 5: To compute ged(8,5), we carry out the
following steps:

8=1-5+4+3
5=1-342
3=1-2+41
2=2-1.

Thus ged(8,5) = 1. To find integer solutions of 8z+5y = 1, we proceed
backwards:

1=3-1.2
=3-(5-1-3)=2-3—-5
=2.(8-1-5)—5=2-8-3-5

and thus we found the solution x = 2, y = —3 to 8z + 5y = 1.

An examination of the Euclidean algorithm shows that the number
of steps is at most 2log, |b| + 1 = O(logmin(|al, |b])), that is the com-
plexity is linear in the number of bits needed to represent the input.

Exercise 2.6. Prove this estimate on the number of steps.
Hint: Show that ry < r, o/2.

Exercise 2.7. Show that one cannot significantly improve this esti-
mate.

Hint: Take a,b to be consecutive Fibonacci numbers. These are
defined recursively as Fy = 0, F}, = 1, and for n > 1 by F,;; =
F,+ F,,_;. Show that the number of steps for computing ged(F,41, Fy)
is n (?) and that n ~ log F},/ log((1 ++/5)/2) as n — oo.

2.4. The Diophantine equation azx + by = c. Given integers a, b, c,
we wish to find integer solutions to the equation

ar +by =c.

As the example 4z 4+ 6y = 1 illustrates, such solutions need not exist,
since the RHS is odd while the LHS is even! More generally, if gcd(a, b)
does not divide ¢ then there will be no integer solutions. It turns out
that this divisibility condition is the only obstruction to the existence
of solutions, and once this obstruction vanishes then there are infinitely
many integer solutions:

Theorem 2.8. The equation ax + by = ¢ has integer solutions if and
only if ged(a, b) | c.
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If there is one solution (o, yo) then there are infinitely many integer
solutions, and they are all given by

Ty =9+ k Yp = Yo — k

a
ged(a, b)’ ged(a, b)

where k runs over all integers.

The proof of this theorem is very easy once we know the existence
of one solution. To find a solution, first use the Euclidean algorithm
to solve the equation au + bv = ged(a, b) and then take

c c

0T Yeed(a b)) T Vged(a,b)
3. PRIME NUMBERS

3.1. The fundamental theorem of arithmetic. A prime is a nat-
ural number p > 1 which has no proper divisors (that is no divisors
other than £p and £1).

The sequence of primes is thus p; =2, po =3, p3 =5,....

Lemma 3.1. If p is prime which divides a product: p | be, then it has
to divide one of the factors: p| b orp|c.

Indeed, if p is prime and p does not divide b then automatically p
and b are coprime, hence the result follows from Lemma 2.5.

We claim that every integer n > 1 is a product of primes: Indeed,
n > 1 is either a prime, in which case we are done, or decomposable:
n = ab, with a,b > 1. In the latter case, we have a,b < n and arguing
by induction, both a, b are products of primes and hence so is n = ab.

Since every integer is a product of primes, they are thus the building
blocks of all the integers. In fact, more is true - the factorization into
products of primes is unique:

Theorem 3.2 (Fundamental Theorem of Arithmetic). Every natural num-

ber is uniquely decomposable into a product of prime powers.

Exercise 3.3. Show that if the prime factorization of a pair of integers
is given by a = [[p*® and b = [[p®® then

ged(a, b) = H prin(e(®)fP)

While we know that every integer factors into a product of primes,
a basic problem is how to find this factorization efficiently. Currently,
there is no known algorithm which will give the prime factorization
of an integer in a number of steps which is polynomial in the input
(quantum algorithms aside).
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TABLE 1. Comparison between 7 (z) and Li(x).

z m(x) [Li(z)] — m(x)
108 5,761,455 754

1010 | 455,052,511 3,104

1012 37,607,912,018 38,263

10 | 3,204,941,750,802 | 314,890
1016 | 279,238,341,033,925 | 3,214,632

3.2. There are infinitely many primes.
Theorem 3.4 (Euclid). There are infinitely many primes.

Proof. Argue by reductio ad absurdum: If there were finitely many
primes, say only M of them, then form the integer @ = p1-ps-- - --ppr+1.
It is either a prime or decomposable. Since () is greater than all the
primes pi,...,pu, it cannot be a prime. However, () clearly leaves
remainder 1 on division by each of the available primes p;, and thus
being divisible by no prime, cannot decompose into a product of primes!
We thus arrive at a contradiction. 0J

Exercise 3.5. Show that there infinitely many primes of the form 4k—+
3.

3.3. The density of primes. After knowledge that there are infin-
itely many primes, one can try to assess their density. Gauss recounted
that in 1792, as a boy of 15, he arrived at the conjecture that the den-
sity of primes near z is about 1/logx and so if we denote by 7(x) the
number of primes up to x

m(z) :=#{n:p, <z}
then 7(z) is asymptotically equal to the logarithmic integral, given for
x> 2 by

T odt
Li(z) := —
5 logt
In turn, Li(z) has an asymptotic expansion
x x x
Li(z) = st o)
i(z) log + (log x)? e (log )™ + ((logx)"+1)

To check the strength of Li(z) as an approximation to m(x), we
examine Table 1 (writing [y] := integer part of y). As is seen from this
table, Li(z) is a remarkably good approximation to 7 (z) in this range.
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As a measure of the quality of the approximation, note that the width
of the third column is about a half of the width of the second one, that
is to say that the remainder is approximately square root of the main
term!

The statement that m(z) ~ Li(z) is known as the Prime Number
Theorem. It was proved in 1896 by Hadamard and de la Vallée Poussin,
by using the Riemann zeta function. The empirical statement made
above from the data in Table 1 as to the magnitude of the remainder
in this approximation is a form of the celebrated Riemann Hypothesis,
see Section 8.2.

3.4. Primes in arithmetic progressions. An important issue is the
existence of primes in a given arithmetic progression: Given a and
g > 1, to find a large prime p with p = ¢ mod ¢. Clearly, in some
instances it cannot be done, say the progression {2,4,6,8, ...} contains
no large primes as all primes except 2 are odd. Likewise, if a and ¢ have
a common factor d > 1 then it divides every element of the progression
a,a+q,a+ 2q... and so there are no primes in it (excepting perhaps
if a = d is prime). We should thus restrict attention to the case that
a and g are co-prime. It turns out that this is the only obstruction
to the existence of primes in arithmetic progression, as was proved by
Dirichlet in 1837. In fact there are arbitrarily large primes in every
progression not excluded by such reasoning:

Theorem 3.6 (Dirichlet’s Theorem). For ¢ > 1 and any a co-prime
to q, there are infinitely many primes of the form a + kq.

One can try to give an argument for this along the lines of Euclid’s
argument for the existence of infinitely many primes (Theorem 3.4).
This works in a few cases of small ¢, and for some special progressions
such as p =1 mod g, but this line of attack has not yielded Dirichlet’s
theorem in its full force.

A quantitative version of Dirichlet’s theorem is the Prime Number
Theorem for arithmetic progressions, which asserts that for fixed ¢ >
1, every progression ¢ mod g has asymptotically the same density of
primes. Thus setting 7(z;q,a) := #{p < z : p = a mod ¢}, we have
for a coprime to ¢

w(x;q,a) ~ —Li(z) .
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4. CONTINUED FRACTIONS

Continued fractions are expressions such as

1+
1
24 ——

3+1
4

We now study them systematically.
Given integers ag € Z, ay,as,--- > 1, consider the finite continued
fraction

[ag; @1, - ..y Q) = ag +
a; + 1
as + 1

o
am

To compute this fraction, one defines integers p,,, ¢, by the recursion
(m>1):

Pm = GmPm—1 + Pm—2

m = OmGm—1 T gm-—2
with p_1 =1, pg = ag, ¢_1 = 0, go = 1. These satisfy the relations

m—1

Pmm—1 = Pm14m = (—1)
and
Pmm—2 — Pm—2Gm = (—1)" @, .
On then shows that

[aO;a'lv"'aam] :pm/Qm .

The infinite simple continued fraction [ag; a1, ag, . ..] is the limit of
the “convergents” p,,/gm. Every irrational o has a unique continued
fraction expansion.

Example: We will obtain the continued fraction expansion of the
quadratic irrationality v/3: Since /3 lies between 1 and 2, we write
V3 =1+1/z; with

1 V3+1
V3-1 2

I =

Thus 21 = 14 1/z5 with
2 —
V3-1

V3+1

To =
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and thus we can write zo = 2 4+ 1/x3 with
1 —
V3-1

The procedure has thus cycled back and we may continue it indefinitely
to find that v/3 has the periodic continued fraction expansion

I3 Iy .

1 _
\/§=1+71=[1;1,2,1,2,...]=[1;1,2].
1+

1
2+ —

This is something of a rarity; it turns out that an irrational has a
periodic continued fraction expansion if and only if it is a quadratic
irrationality, that is of the form r + sv/d, with 7, s rational and d > 1
an integer which is not a perfect square.
The convergents give very good rational approximations to a: We
have
11 <|a-— p_m| < ! :
2 m9m+1 dm ImGm+1
The convergents p,,/q, are the “best” rational approximations to
@, in the following senses: If p/q satisfies |@ — p/q| < 1/2¢* then
P/q = Pm/qm for some m. Moreover, for m > 1, if 0 < ¢ < g,,, and

P/q # Pm/@m then |a —p/q| > |a — pm/gm].

5. MODULAR ARITHMETIC

5.1. Congruences. Given N > 1, we say that two integers a,b are
congruent modulo N, written as a =b mod N, if N |a —b.

Congruence modulo N is an “equivalence relation” on the set of
integers, that is as follows immediately from the definition,

l.a=a mod N
2. a=b mod N if and only if b=a mod N
3.a=b mod N and b =c¢ mod N implies a = ¢ mod N

Given N > 1, every integer is congruent to precisely one of the N
integers {0,1,..., N—1}, as is seen by writing a = ¢N +r with remain-
der 0 < r < N. Thus denoting by Z/NZ the set of congruence classes
of integers modulo N, we see that a complete set of representatives can
be taken to be {0,1,..., N —1}, though other choices are equally valid.

The set of congruence classes modulo N also admits algebraic oper-
ations of addition and multiplication. To see this, one needs to check
that ifa =a’ mod N and b= mod N thena+b=a +b mod N
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TABLE 2. Multiplication modulo 4

W= O
(vl Nen] New] Nen) Rew]
W N = O =
N OO DN
=N WO W

TABLE 3. Multiplication modulo 5

0123 4
0j0 0000
110 1 2 3 4
2|0 241 3
310 31 4 2
410 4 3 21

and likewise a-b = @'-0' mod N, that is the sum/product of congruence
classes is independent of the choice of representatives.

Example: See tables 2 and 3 for the multiplication tables modulo 4
and 5.

The existence of addition and multiplication satisfy the usual laws of
integer arithmetic, that is commutativity, associativity, distributivity
etc. This is formally expressed by saying that Z/NZ is a “ring”.

5.2. Modular inverses. An integer a is invertible modulo N if there
is an integer b so that ab =1 mod N. We say that b is an inverse of
a modulo N, denoted by b =a~! mod N.

For instance 1 is always invertible and 1= = 1 mod N. Invertibility
makes sense for congruence classes modulo N (why?). We will denote
the set of invertible residue classes modulo N by (Z/NZ)*.

Examining the multiplication tables (2), (3), we see that modulo 4,
the invertible residue classes are 1,3 with 37! = 3 mod 4 while all
nonzero residue classes modulo 5 are invertible, and 27! = 3 mod 5,
371=2 mod5and 4! =4 mod 5.

As these examples indicate, an inverse modulo N, of it exists, is
unique modulo N. Indeed, if ab=1 mod N and ac =1 mod N then
using commutativity and associativity of modular multiplication we
have

b=b-1=b-ac=(ab)-c=1-c=c¢ mod N

and thus b = ¢ mod N as claimed.
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Moreover the product of invertible classes is still invertible. Thus we
get a commutative group structure on the set (Z/NZ)* of invertible
residue classes modulo N. We will hence refer to (Z/NZ)* as the
multiplicative group modulo N.

A criterion for invertibility modulo N, as well as an algorithm for
finding the modular inverse, is given by

Lemma 5.1. A necessary and sufficient condition for an integer a to
be invertible modulo N is that a and N are coprime: ged(a, N) = 1.

Indeed, @ and N are coprime if and only if we can solve ax + Ny =1
(Lemma 2.4), and the latter equation is equivalent to solubility of the
congruence ax =1 mod N.

As an immediate corollary, we see that if N is prime then all nonzero
residue classes modulo N are invertible, since the only divisors of N
are 1 and N and so the only alternative to gcd(a, N) = 1 in this case
is ged(a, N) = N, and thus a =0 mod N.

Moreover, as described in (2.3), the Euclidean algorithm provides
for an efficient method of finding a solution of ax + Ny = 1, that is of
polynomial time in the input, and thus an efficient method for finding
modular inverses.

Definition 5.2. Euler’s totient function ¢(N) is the number of invert-
ible residue classes modulo N.

As we saw above, of p is prime then all nonzero residue classes mod
p are invertible and thus ¢(p) = p — 1 in this case.

Exercise 5.3. Show that for prime p we have ¢(p*) = p* — p*~! (k >
1).

5.3. The Chinese Remainder Theorem. Given x mod mn, we get
a pair of residue classes (r mod m,z mod n) in Z/mZ x Z/nZ. If
m,n are coprime, then we may recover x mod mn from this pair.

Theorem 5.4 (CRT). If m,n are coprime then for a,b we can solve
the congruence

(5.1)

r=a modm
r=b modn

the solution is unique modulo mn.

Proof. To see uniqueness, note that if x, 2" are solutions of (5.1), then
both m and n divide £ — ' and since m,n are coprime this forces
mn | x — 2', that is x = 2’ mod mn.
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TABLE 4. Orders of elements mod 5

a 1 2 3 4
ord(a,5) |1 4 4 2

The method of solution is constructive: Since m,n are coprime, m
is invertible modulo n. Denote by m the inverse of m mod n, and
likewise let 7 be the inverse of n mod m. Then a solution of the
system of congruences (5.1) is given by

T =nna+mmb mod mn.

Indeed, modulo m we have nn =1 mod m while m =0 mod m and
thus z =nna+mmb=1-a+0-mb=a mod m, and likewise x = b
mod n. O

Exercise 5.5. If t =a mod3, r =b mod 5, x = ¢ mod 7 find x
mod 105.

Exercise 5.6. Show that if m,n are coprime then x is invertible mod-
ulo mn if and only if it is tnvertible both modulo m and modulo n.

Exercise 5.7. Show that if m,n are coprime then ¢(mn) = ¢(m)p(n).

Exercise 5.8. Show that for N > 1 we have ¢(N) = N[, y(1—1/p)
where the product is over all primes dividing N .

5.4. The structure of the multiplicative group (Z/NZ)*. In this
section, we will investigate the structure of multiplication in the group
of invertible residue classes modulo V.

Exercise 5.9. If a,b € Z/NZ then we may compute a -b mod N in
O(logaloghb) bit operations.

A fundamental aspect is the power operation, of raising an element
to a power: a — a* mod N. It turns out that this is computationally
easy:

Exercise 5.10 (Divide and conquer). Show that we can compute a*
mod N in at most O(logk(log N)?) elementary bit operations.

Definition 5.11. The order of a € (Z/NZ)* is the least integer k > 1
for which a* =1 mod N.

We denote this integer by ord(a, N).
Exercise 5.12. Make up tables of orders of all elements modulo 5,8,11.
That ord(a, N) exists is guaranteed by:
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TABLE 5. Orders of elements mod 8

a
ord(a, 8)

1357
1 2 2 2

TABLE 6. Orders of elements mod 11

a 1
ord(a,11) | 1

2 3456 7 8 910
10 5 5 5 10 10 10 5 2

Theorem 5.13 (Fermat-Euler). For any a € (Z/NZ)* we have
a®™ =1 mod N .
In particular, we see that ord(a, N) < ¢(N). In fact more is true:

Proposition 5.14. Let a € (Z/NZ)* be invertible modulo N.
a) Suppose a* =1 mod N. Then ord(a, N) divides k.
b) In particular, ord(a, N) divides ¢(N).

Proof. Write k = qord(a,N) + r, with 0 < r < ord(a, N). Then
1 =da"= (a4>M).q" =19-¢" = a" mod N. Since r < ord(a, N),
this forces 7 = 0 by the minimality of ord(a, N), that is ord(a, N) | k.
Part (b) follows from part (a) and Fermat-Euler. O

Exercise 5.15. Let p # 2,5 be a prime, and consider the decimal
(base 10) expansion of the rational 1/p. This expansion is periodic of
the form 1/p = 0.a1...ar where T denotes the minimal period. For
instance, 1/3 = 0.333--- = 0.3 (T = 1), 1/7 = 0.142857 (T = 6),
1/11 = 0.09 (T = 2) etc.

Show that T = ord(10,p). Generalize.

5.5. Primitive roots. The maximal order of an invertible element is
#(N). We will say that a € (Z/NZ)* is a primitive root modulo N if
ord(a, N) = ¢(N).

An examination of the tables of orders of elements modulo 5, 8 ,...
indicates that this sometimes does indeed happen, though when the
modulus is 8 the maximal order is 2 rather than 4 = ¢(8).

The following theorem explains this empirical finding:

Theorem 5.16. If p is a prime then there is a primitive root modulo
.
For composite moduli, it is relatively rare to have primitive roots:

Exercise 5.17. a) Show that if n > 2 then ¢(n) is even.
b) If m,n > 2 are coprime then there is no primitive root modulo
mn.
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It turns out that there is a primitive root modulo N if and only if
N =2,4or N = p* 2p* where p is an odd prime.

While Theorem 5.16 guarantees the existence of a primitive root
modulo a prime, one does not know of an efficient algorithm that given
a (large) prime p, finds a primitive root modulo p.

In this context, there is a conjecture of Emil Artin from the 1920’s
which among other things says that the number 2 is a primitive root
modulo infinitely many primes, and the same is true for any integer
a # + and not a perfect square - see the survey by Ram Murty [4] for
further details.

The importance of the notion of primitive roots comes from the fol-
lowing observation: For g € (Z/NZ)*, the function  — ¢® mod N
has period exactly ord(g, N) by Proposition 5.14, and in particular if g
is a primitive root modulo N then this period is precisely ¢(/V). Thus
if g is a primitive root modulo N then for any a € (Z/NZ)* we may
write ¢ = ¢° mod N with z unique modulo ¢(N). Since there are
¢(N) invertible residues and the same number of (necessarily invert-
ible) powers g* mod N, we find:

Lemma 5.18. An invertible element g € (Z/NZ)* is a primitive root
modulo N if and only if every element a € (Z/NZ)* can be written as
a=¢g* mod N.

This lemma allows us to convert modular multiplication in the group
(Z/NZ)* into modular addition in Z/¢(N)Z, assuming we have a prim-
itive root, since if a = ¢® and b = ¢¥ then a-b = ¢**¥ mod N.

If a = ¢® mod N, we will write  := Indg(a, N). We may think
of Indy(a, N) as a discrete logarithm, since by the above reasoning
Indy(ab) = Indy(a) + Indy(b) mod ¢(N). Given g, x it is easy to
compute g* mod N, there is no known efficient method of determin-
ing x = Indy(a, N) from a, g and N. This is known as the discrete
logarithm problem.

6. QUADRATIC CONGRUENCES

6.1. Euler’s criterion. Let p be an odd prime. We will study the
congruence

(6.1) r?=a mod p

where a is invertible modulo p. One algorithm for deciding the solubil-
ity of this congruence is given by Euler’s criterion:

Proposition 6.1 (Euler’s criterion). There is a solution of 2> = a
mod p if and only if a® /2 =1 mod p.
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Proof. Indeed, if a = 22 mod p then ¢® Y/2 = 27-1 =1 mod p. For
the reverse direction, we may use the existence of a primitive root g
mod p to try and solve the congruence (6.1) by writing

a=g¢" mod p, 0<b<p—-1

It will suffice to show that b = 2z mod p—1 since then x = ¢* mod p
solves the congruence (6.1). Substituting a = ¢* mod p in a®V/2 = 1
mod p gives

ng_lbzl mod p .

By Proposition 5.14 this forces (p—1)b/2 = 0 mod ord(g, p) and since
g is a primitive root, ord(g,p) = p — 1 and we find that b=0 mod 2,
that is b = 2z as required. O

As an immediate consequence, we see that for p odd, —1 = 22 mod p
if and only if p =1 mod 4, since (—1)P~1/2 = 1 precisely in that case.

6.2. The Legendre symbol and Quadratic Reciprocity. For p #
2 an odd prime and a invertible modulo p, the Legendre symbol ( )

a
P
(a)_ +1 a=2%2 modp
p " ] =1 otherwise

It is sometime convenient to extend the definition to include non-
invertible residues by requiring (%) =0ifp|a.

is defined as

Below are some simple properties of the Legendre symbol:

1. If a = b mod p then (9) = (Q>

p p
2

2. (%) = +1. Both these follow from the very definition of the

Legendre symbol.
3. Euler’s criterion can be reformulated to read

<2) =a? Y2 modp
p

This gives a computationally efficient method of finding the Le-
gendre symbol, as we can compute ¢® /2 mod p in O(log3 P)
steps.

A simple consequence is a rule for when —1 is a square modulo

p:
-1 = (_1)(10—1)/2 — +1, p=1 mod4
p _]—: p= 3 mod4
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()= G)

This follows from Euler’s criterion!

4. Multiplicativity:

More profound is the celebrated law of Quadratic Reciprocity, conjec-
tured by Euler and proved by Gauss:

Theorem 6.2. If p # q are distinct odd primes then

<§> (%) = (-1)= T

An addendum is the quadratic character of 2:

P 1, p=+3 mod 38

Example: To illustrate the power of the law of quadratic reciprocity,

we will compute the Legendre symbol (%) for primes p # 2,5. We

<§) = (B) (oo = (2)

To compute (Ig’), we only need to know the remainder of p after division
by 5 and then check that the invertible squares modulo 5 are 1 and 4.

This gives that (g) =1ifp=+1 mod5 and <I§)) = —1for p=+2
mod 5.

have

7. PELL’S EQUATION

Given a positive integer d, not a perfect square, we wish to find the
integer solutions of the equation

2 —dy*=1.

This equation was studied several centuries ago. Its study in modern
times was championed by Fermat (Pell had nothing to do with this
equation, and owes it being named after him to Euler).

Exercise 7.1. Show that if d is a perfect square then the equation
x~dy? = 1 has only finitely many integer solutions.

Obvious solutions are (z,y) = (£1,0), called the trivial solutions.
The nontrivial solutions come in quadruples: If (z,y) are solutions
then so are (+x, +y). We will say that a solution is positive if x,y > 0.
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TABLE 7. Solutions of 2% — 2y? =1

N

Yn

2

12

70

408

2378
13860
80782
470832
2744210
15994428

© 0 I O Ot = W N =

—
o

It turns out that nontrivial solutions always exist, though they are
quite sparse. We may clearly order the positive solutions by increas-
ing size of their y coordinate, or equivalently by the size of their z-
coordinate. The first nontrivial solution (z1,y;) will be called the fun-
damental solution.

Example: Suppose d = 2. To find (positive) solutions of the corre-
sponding Pell equation, we rewrite it as

1 +dy? =2

and the proceed to search through values of y = 1,2, ..., to find those
for which 1 + dy? is a perfect square. This process quickly yields the
solutions (z,y) = (3,2), (17,12), (99, 70), (577,408), . . .. In this way we
can clearly find all solutions up to any given value of y.

In Table 7 we enumerate the y-coordinate of first few positive solu-
tions (Z,,yn) in the case d = 2. One can clearly see an exponential
increase of y, with n.

Here it was easy to find the first few solutions by a brute-force search.
This is not always the case. For instance, for d = 61 the equation was
already treated in the 12-th century in India, and it was found that
the fundamental solution has y; = 226, 153, 980. It is unlikely that this
was found by hand merely by brute force!

Another example of a large fundamental solution for a small value
of d is given by d = 109, when y; = 15,140, 424, 455, 100.
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7.1. The group law. A remarkable feature of the Pell equation is the
existence of a composition law on the set of solutions, turning them
into a commutative group. One way of seeing this is to first endow the
set, of real solutions with a group law. Geometrically, the real solutions
form a hyperbola 22 — dy? = 1 with two sheets, and we do this just for
the right sheet (z > 0), via the following parameterization by means
of the hyperbolic functions:
_ sinh(t)

z(t) := cosh(t), y(t): Nz

If we denote by P, = (z(t),y(t)) the point corresponding to ¢ then the
group law is the one inherited from the additive group of the reals,
namely

Pt)«P(t):=P(t+1t).
More generally, we can write any real solution as +P(t) and then de-
clare the group law to be eP(t) x € P(t') := e’ P(t + '), €, = £1.

In this form this does little except to demonstrate the existence of the
group law, since recovering t+t' from t and #' involves a transcendental
inversion problem. However, we may use the addition formulae for
the hyperbolic functions to compute the x and y coordinates of the
composition. If we set P = (z,y), P' = (z',y') then P x P' = (2", y")
with

(7.1) 2" = zx' + dyy/, ' =xy +2'y.

In particular, the inverse of (z,y) is (z, —y).

Note that from (7.1) it is not transparent to see that the addition
law is associative!

In the form (7.1) we immediately see that the composition of rational
solutions is still rational and ditto for integer solutions, which are our
goal. Thus we see that the integer solutions form a group.

An easy way to recall the composition law (7.1) for rational solutions
is to map them to quadratic irrationalities: (z,y) — a =z + Vdy, in
which case composition is given by ordinary multiplication.

Rational solutions are easy to find by the “secant method”.

2

Exercise 7.2. Show that all rational solutions of x> — dy?> = 1 are

given by (—1,0) together with
( 1+dt* 2t

1 —di?2’ 1 — dt?
Hint: Start with the trivial solution (—1,0). Given a point (z,y) #

(—1,0) on the hyperbola z? —dy? = 1, draw the line connecting the two
points (—1,0) and (z,y). This line will intersect the y-axis at a point

(7.2)

) : t rational} .
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(0,t). Show that y = t(xz + 1) and substitute back into the original
equation 22 — dy? = 1 to find the expression (7.2). Argue that as t
varies over all rationals, we get all the rational solutions other than

(—1,0).

7.2. Integer solutions. As we saw on the basis of examples, integer
solutions are harder to come by. From the shape of the composition law
(7.1) we see that if there is one nontrivial integer solution, then there
are automatically infinitely many integer solutions: We may assume
that we have a positive solution P = (x1,y1), 1,1 > 0 and then
composing it with itself we get the solutions P*2 = Px P, ..., P*™ =
P*®=Y) « P = (z,,y,) and from (7.1) its is clear that x, — 0o as
n — oo.

Theorem 7.3. a) If d > 0 is not a perfect square then there are infin-
itely many integer solutions of Pell’s equation z? — dy? = 1.

b) If we denote by ¢4 = (x1,y1) the fundamental solution then all
integer solutions are given by x + /dy = +e, n € Z.

7.3. Finding the fundamental solution. While Theorem 7.3 guar-
antees the existence of solutions and that all solutions are found from
knowledge of the fundamental solution, it tells us nothing about how
to find the fundamental solution. One method of course is to search as
described above. However there is an alternative method which is more
efficient and involves the continued fraction expansion of v/d. The situ-
ation is as follows: The continued fraction expansion of v/d is periodic,
of the form:

Vd = [ag; a1, -, Ga)

where A is the minimal period of the expansion. Let p;_1/gn_1 be the
(h — 1)-st partial convergent. Then

Phoy — dgj_; = (=)™
If h is even then the fundamental solution is (pp—1, gs—1)-

If h is odd then the fundamental solution ¢, is given by the (2h—1)-st
partial convergent, and moreover

€4 = Pon—1 + Vdgah_1 = (Ph—1 + \/th—l)2 .
Examples: d = 7: Then /7 = [2;1,1,1, 4] has period h = 4. The 3-

rd partial convergent is [2;1,1,1] = 8/3 and the fundamental solution
is (8, 3).

d = 61: Then 61 = [7;1,4,3,1,2,2,1,3,4,1,14] and this allows us
to compute the (large) fundamental solution.
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8. THE RIEMANN ZETA FUNCTION

The Riemann zeta function is defined for complex s with Re(s) > 1
by the series
=1
¢(s) = il
n=1
We give an introduction to its basic properties (see [2]).
A basic fact is Euler’s product formula, which displays the connection

between ((s) and primes:

Theorem 8.1. For Re(s) > 1, ((s) can be represented by the conver-
gent product over all primes:

=Tl

p

Proof. The idea is to expand each factor (1 — p~*)~! as a geometric

series
1 N |
s Z ks
1-p= par
and to multiply together the resulting series

1 1
Hl_p—S:Z(lﬁ ko
p

pl p2 prr)s )

We can write this as a sum

5o

n=1 n’
where a(n) is the number of ways of expressing the integer n as a
product of prime powers. By the Fundamental Theorem of Arithmetic
3.2, this can be done in one and only one way, i.e. a(n) = 1, which
proves the product formula, once we check that everything is absolutely
convergent if Re(s) > 1. O

As the above argument shows, the product formula is but a form of
the Fundamental Theorem of Arithmetic.

8.1. Analytic continuation and functional equation of ((s). To
further explore the connection between the theory of primes and ((s),
we will analytically continue ((s) to all values of s. We use the Gamma
function given for Re(s) > 0 by the integral representation

*° dt
[(s)= / e =
0 t
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to define the completed zeta function by
* —s S
C'(s) =7 PT)C(5)
The basic fact about this variant of ((s) is

Theorem 8.2. 1. The completed zeta function (*(s) has a mero-
morphic continuation to the entire s-plane.
2. (*(s) is analytic except for simple poles at s =0, 1.
3. It satisfies the functional equation

¢(s) =¢C(1—5)

As an immediate consequence of this fact, we observe that (*(s) has
no zeros outside the critical strip 0 < Re(s) < 1. This holds since
['(s) is never zero, and ((s) is analytic and nonzero in the region of
convergence Re(s) > 1, so that the completed zeta function (*(s) # 0
in Re(s) > 1; by the functional equation, the same is true for the
symmetric region Re(s) < 0. Moreover, since I'(s) is analytic except
for simple poles at s = 0,—1,—2,..., {(s) is nonzero in Re(s) < 0
except for simple zeros at the negative even integers s = —2,—4,...
(to make up for the simple poles of I'(5) at these points). These are
called the trivial zeros of ((s); the nontrivial ones are the zeros of (*(s)
and as we have seen they all lie in the critical strip.

Proof. (Sketch) We start with the integral representation
7_‘_—3/2F(f)i — /oo e—wn2tts/2@
2'ns 0 t

which shows that we have an integral representation of (*(s) for Re(s) >
1 as

(8.1) C*(s) = /000 e(t);lts/?@

2 t
where the theta-function is given for ¢ > 0 by

o)=Y et

n=—oo

By Poisson summation, #(¢) has a transformation formula

(8.2) 0(%) = V0(t)

Breaking up the region of integration in the integral representation
8.1 to an integral over (0,1) and one over (1,00), we change variables
t — 1/t to to transform the integral over (0.1) to one over (1,00).
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We then use the transformation formula 8.2 for #(¢) to find after some
manipulation that

63 Co=—t-+ [ O e g

Since §(t)—1 = O(e ™) as t — oo, the integral is absolutely convergent
for all s and is therefore an entire function of s. Thus from (8.3) we get
the meromorphic continuation, with the only poles being the simple
ones at s = 0, 1. From the symmetry of (8.3) with respect to s — 1—s
we get the functional equation. O

8.2. Connecting the primes and the zeros of ((s). Riemann, in
his seminal paper of 1858 [5], used ((s) to give a formula for 7(x) in
terms of the zeros of ((s). His formula gives a clear understanding as
to why Li(x) is the correct approximation to m(z). Instead of a formula
for m(z), it is more convenient to give a formula for the weighted sum of
prime powers p* < z, each prime power p* weighted by the logarithm
log p of the corresponding prime. One defines

P(z) =) Y logp

P kipk<z

The repetitions p* for £ > 2 give a contribution of the order of at most
vx. The primes (k = 1) give a contribution which, if one believes
Gauss’ assertion that the density of primes near x is about 1/loguz,
is about z. Thus we expect (and the above argument is easily made
rigorous) that the Prime Number Theorem is equivalent to the assertion
that ¢ (z) ~ z. This is made transparent by the formula (due to von
Mangoldt)

(8.4) b =o- TS

where the sum is over all zeros p of {(s). Note that we cannot expect the
formula to converge absolutely, since it would then define a continuous
function of x, while 1 (z) is a step function with jumps when x = p* is
a prime power.

The contribution of the trivial zeros p = —2,—4,—6,... is easily
summed to equal ;log(1 — 272) and is negligible. The constant term
is ('/¢(0) = log2mw. The important part is the sum over the nontrivial
zeros, which we expect to be of smaller order than z. It is thus crucial
to understand the distribution of the zeros.
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8.3. The Riemann Hypothesis. As noted in section 8.1, the non-
trivial zeros of ((s) all lie in the critical strip 0 < Re(s) < 1. If pis a
zero then by the functional equation (*(s) = (*(1 —s), sois 1 — p, and
since ((5) = ((s) (z denoting complex conjugation), we get zeros at p
and 1 — p (the two symmetries s — s and s — 1 — s coincide on the
“critical line” Re(s) = 1/2).

The first few zeros were computed by Riemann himself, and all lie
on the critical line Re(s) = 1/2. They are p, = 1/2 + it,, with t; =
14.13...,ty = 21.02...,t3 = 25.01... etc. (by symmetry, we only need
to consider positive t).

Riemann’s Hypothesis (RH): All nontrivial zeros of ((s) lie on the
critical line Re(s) = 1/2.

The Riemann Hypothesis has been checked extensively and is widely
believed to be true, though an explanation and proof are still missing to
date. Its significance to the theory of primes is immense. For instance,
we can use RH to explain the small size of the remainder term Li(z) —
m(x) in Table 1. To see this, it suffices to show that ¢(z) — x is small,
and in fact we shall argue that it is of order at most v/z log> z. This
is reasonable if we look at the formula for ¢ (z) in (8.4), which we will

write as
pl/2+itn

where the sum is now only over the nontrivial zeros, the omitted terms
being negligible. If we assume the t, are real, so |z'/?in| = \/z it is
tempting to then use the triangle inequality to deduce

1
() — z| S\/EZM

and so say that ¢(z) —z is of order y/z. The argument is not quite cor-
rect, as it transpires that the sum of absolute values diverges: > 1/|1/2+
it,| = oo. Nevertheless, this gives the essence of what is happening,
and in fact taking more care and using more information on the distri-
bution of zeros, one can show that ¢ (z) — z < /zlog®z. This gives
7(x) — Li(z) < v/zlogz and so explains the observation regarding the
size of the third column in Table 1.

The Riemann Hypothesis and its generalization (GRH) to other “L-
functions” is one of the most important unsolved problems in Number
Theory, and its validity has numerous implications. For instance, there
are algorithms for primality testing of integers which are proved to
require polynomial time (that is, testing if n is prime or not requires a
number of operations polynomial in logn), provided we assume GRH.
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As to what was actually proved so far, the significant fact is that
there are no zeros on the boundary of the critical strip: (1 + it) # 0,
so 0 < Re(p) < 1 for all nontrivial zeros. This is enough to prove the
Prime Number Theorem, as was done (independently) by Hadamard
and de la Vallée Poussin in 1896. One has in fact a zero-free region
near the boundary of the critical strip, whose width shrinks to zero as
we go up. However, to date we do not have a proof that there is any
strip of the form Re(s) > 1 — ¢ in which there are no zeros, for any
6> 0.
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