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The basic definition of ((s = x + iy) based on the product formula does not
converge for Re[s] < 1. One can however define 'universal’ ¢, call it C, as the
product of the partition functions Z,, (s) = 1/(1—p~*), in the subset of com-
plex plane, where the factors Z,, are complex algebraic numbers. The idea

is to regard the value of é as an element of an infinite-dimensional algebraic
extension of the rationals containing all roots of primes. é can be regarded as
a vector with infinite number of components and is completely well defined
despite the fact that the product expansion does not converge as an ordinary
complex number unless one somehow specifies how the 'producting’ is done.



In case that the factors | Z,,|? of the partition functions Z, = 1/(1—p~%)
are complex rationals, one can rewrite the product formula by applying adelic
formula to the norm squared |Z,,|? appearing in the product formula. The
basic hypothesis is that the product of the p-adic norms of the complex
norm squared of the function é defined by the product formula obtained by
changing the order of producting gives the norm squared of the analytically
continued ¢ in the region (Re[s] < 1, Im[s] # 0) at the points, where the
factors |Z,,|? are algebraic numbers: [|* = IT, N,(|C*) = [¢[>. A milder
version of this hypothesis is that the product of the p-adic norms squared of
|Q: | converges to some function proportional to |¢]?.

If this hypothesis is correct, the following vision giving good hopes about
the proof of the Riemann hypothesis, suggests itself.

a) |C|? is a number in an infinite-dimensional algebraic extension of ra-
tionals and can vanish only if it contains a rational factor which vanishes.
The vanishing of this factor is possible if it is a product of an infinite number
of moduli squared |Z,,(2)|? having a rational value. For the values of y for
which this is true on the line Re[s] = n 4 1/2 correspond to the phases p; ™
having the following general form.

pW = U = (7’1+i81\/_\p/1/f(p1,y)) % (7’+i8\n/ f(m,y)) ’
i+ stk(pr,y) =p1
r?+ s*k(p1,y) =nf .

rt + sik(p1,y) = p1 condition is solved by k(p1,y) = vp1 —m?, m < /p.
r? + s?k(p1,y) = n? condition is satisfied if U is a product of even powers of
the phases of type U;. Unless k(p1,y) is not square, the phases correspond
to orthogonal triangles with one short side having integer valued length and
the other sides having integer valued length squared.

b) If y defines rational value of |Z,,(2)|?, also its integer multiples ny
do the same. If the values of integers k(p1,y) do not depend on the value
of y, the allowed values of y generate an additive group having integers as
a coefficient ring. Even powers of the phases guaranteing the rationality of
|Z,,(2)]? on the line Re[s] = 1/2, guarantee rationality on the lines Re[s] = n.

c¢) Especially important subset of these phases correspond to the choice
ki = 1. These phases correspond to Gaussian primes having the form
G =ri+isy, 7+ 82 = py, pp mod 4 = 1, and can compensate the irrational-

ity of the pl_n_l/ ? factor only in this case. The products of the squares of



Gaussian primes define Pythagorean triangles and the corresponding phases
are rational. Rather interestingly, the linear superpositions y = niys + nays
of only two Pythagorean values of y; form a dense subset of reals. Eisenstein
primes having the general form r; +syw, w = —1/2+ \/%, r2+s2—ris) = pi,
p1 mod 3 = 1, are second, probably very important class of complex primes.
They can compensate the irrationality of the pl_”_l/ ? factor for p; mod 3 = 1
(note that the 1/2 is not relevant for the phase). Also other phases are needed
since for primes satisfying p; mod 4 = 3 and p; mod 3 = 2 simultaneously
neither Gaussian nor Eisenstein primes can compensate the irrationality of
the p; /*pr™ factor.

d) The lines on which the real parts for an infinite number of factors Z,,
can be rational, correspond to the lines Re[s] = n/2. This in turns leads
to the conclusion that the norm squared of é can vanish only on the lines
Re[s] = n/2. If the norm squared of the ¢ coincides with the norm squared
of the analytically continued (, Riemann hypothesis follows since it is known
that the lines Re[s] =n/2 , n # 1 do not contain zeros of (.

In the following this vision is developed in detail and it is shown that it
survives the basic tests.

0.2 Detailed realization of the Universality Principle

Universality Principle states that ( vanishes only if |Q: |* understood as a
number in an infinite-dimensional algebraic extension of rationals vanishes
and hence must contain a rational factor resulting from an infinite number of
rational factors Z, . This hypothesis alone makes Riemann hypothesis very
plausible. In this section an attempt to reduce the Universality Principle to
something more conrete is made. Adelic formula and the hypothesis that the
norm of |¢|? defined by the modified adelic formula equals to |¢|? are described
and shown to imply Universality Principle if the modified adelic formula
defines a norm in the infinite-dimensional algebraic extension of rationals.
The conditions guaranteing the rationality and the reduction of the p-adic
norm of |Z,,|* are derived, and the connection between Pythagorean phases
and basic facts about Gaussian and Eisenstein primes are summarized.



0.2.1 Modified adelic formula and Universality Principle

Although the product representation of ( does not converge absolutely for
Re[s] < 1, one can consider the possibility that the convergence of the func-
tion é defined by the product representation occurs in some exceptional
points in some natural sense. The points at which the value of é belongs
to the infinite-dimensional algebraic extension of rationals are obviously ex-
cellent candidates for these points. é identified as an element of this algebraic
extension certainly exists mathematically as a vector with an infinite num-
ber of components. The convergence in the strong sense would mean that
the interpretation of the algebraic numbers of the algebraic extension as real
numbers in the expression of { gives the analytically continued ( somehow. In
the weak sense the convergence would mean that the complex norm squared
for é , if defined in a suitable sense, equals or is proportional, to the norm
squared of the analytically continued (.

1. Modified Adelic formula and Universality Principle

The fact that the product formula for ¢ at rational points converges only
conditionally, suggests that one should be able to device a natural method
of 'producting’ giving rise to the norm squared of the analytically continued
(. Adelic formula provides very attractive approach to this problem (the
appearence of the norm squared instead of norm is motivated by the Adelic
formula).

The adelic formula expresses the real norm of a rational number as a
product of the inverses of the p-adic norms

1 pa—

2| r

1=l - (1)

This formula generalizes also to the norms of the complex rationals. How
to generalize this formula to the infinite-dimensional algebraic extension of
rationals? The simplest possibility is to write the complex norm squared as
vector in the infinite-dimensional extension having rational coefficients and
to apply adelic formula to each factor separately.

1
2l = S eRTTI—1 -
P k

k
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] = > My . (2)
k
Here €*) denote the units of the infinite-dimensional algebraic extension
: . . i k)
(products of roots of primes and analogous to imaginary unit) and ey denote
the evaluations of these units identified as real numbers. The resulting norm
is indeed equal to the real norm when the resulting number is interpreted as
a real number.
In the case that the factors Z,, of ¢ are complex rationals, one can write
the real norm of the real ¢ for Re[s] > 1 as a product

G@F = = TN, P =T I%zen] - o
1 Lp p1 p1 Lp

Here N,(z) denotes the p-adic norm of number x. This formula explains why

one must define the p-adic zeta as an arithmetic inverse of the real . The

generalization of this formula to the case that (2 has values in the set of the

complex rationals is straighforward.

The problem with this representation is that the product over primes
p1 does not converge in an absolute sense for Re[s] < 1. By a suitable
rearrangment of a conditionally convergent product a convergence to any
number can be achieved. This suggests that one could find some unique
manner to rearrange the terms to a convergent expression converging to | ]2.
A unique definition indeed suggests itself: the analytic continuation of ( from
the region Re[s| > 1 might be equivalent with the exchange of the order of
‘producting’ in the expression of (:

» 2 LQ_ 1
CoF = TN =TT )]

P P p1

= TN =TI (W

The minimal working hypothesis is that |¢|? defined as the product its
p-adic norms equals to [¢|? at points, where its values are rational:

[IN(C7) = 17 (5)
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The generalization to the algebraic extension of rationals is straighforward
since the p-adic norm squared is sum over the p-adic norms of the components
of the algebraic extension with various units e®) of the algebraic extension
multiplying them interpreted as real numbers elf{)

[IN(C) = ZeRHN |C| = ¢,

P = Ek:e |C|k' (6)

From this formula Universality Principle follows automatically. Since |C|2
can be regarded as a vector having infinite number of components, the only
manner to achieve the vanishing of [], N,(|¢]?) is to require that it contains
a vanishing rational factor. As will be found, the points at which infinite
number of the factors of |Q: |? can be rational, very probably belong to the lines
Re(s) = n/2. Thus the Universality Principle, and as it seems, also Riemann
hypothesis, reduces to the statement that the modified Adelic formula defines
a genuine norm which vanishes only when the vector is a null vector and is
equal to [¢[%. Of course, one could consider also the possibility that this norm
is proportional to [¢|%.

0.2.2 The conditions guaranteing the rationality of the factors
| Zp, |2

Universality Principle states that zeros of ( correspond to zeros of |Q: 2. This
quantity, when well-defined, belongs to an infinite-dimensional real algebraic
extension of rationals, and its vanishing is possible if it contains a vanishing
rational factor which is product of an infinite number of factors Z,, which
are rational. |C|? is the product of the factors

1 .
: — =1—2p; " Re[p\’] + p; " . 7
Zpl(l'—l-zy)zpl(l' _2y> D1 e[pl] D1 ( )

This expression equals to a rational number ¢, if one has

; qpi —p1°
Re[pY] = % : (8)



In this case the integer multiples ny do not satisfy the rationality condition,
to say nothing about the superpositions of different values of y. It is also
implausible that this condition would hold true for an infinite number of
primes p; required by the vanishing of a rational factor of é .

An alternative manner to achieve rationality is by requiring that the
two terms are separately rational. p;>” factor is rational only if one has
x = n/2. To achieve rationality Re[p%’] should contain a factor compensating
the irrationality of the p;"? factor somehow. On the lines Re[s] =2z =n/2
one has

1
Zpl (n/Q + iy)Zpl (n/Q - Zy)
It is of crucial importance that the moduli squared depend on the real part
of p%¥ only. If this is rational, rationality is achieved for even values of n.
On the lines Re[s] = n + 1/2 rationality is achieved provided that P
factors contain the phase factor (r; + 251\/E)/\/p_1 compensating the pl_l/2
factor and multiplying a factor which of the same type:

—n/2 7 —-n
=1-2p / Re[pf’] +D -

(r1 + is1Vk) " (r +isvk)?
N r?2 4+ 2k
2+ sk = p1 . (9)

p = UU =

The latter equation is satisfied if one has

k= ypp—m?, 0<m</p. (10)

On the lines Re[s| = n one must have

o (T + ’L'S\/E)2 (11>
L
The overall conclusions are following.
a) The vanishing of |§ | requires only the rationality of the real parts of
Zp, for infinite number of values of p;. The basic ansatz allows rationality
only on the lines Re[s] = n/2 and my subjective feeling is that it is extremely
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implausible that exceptional ansatz gives rise to the rationality of an infinite
number of |Z,, |* factors. That this is really the case might turn out to be
difficult part in attempts to prove Riemann hypothesis even if one has proved
the identity [T, N,(/¢|?) = |¢|?> and that this product defines a norm.

b) Rationality requirement allows pl_iy to consist of the products of the
phases of very general algebraic numbers 7 + isv/k. The products of these
numbers are always of same form and their norm squared is 7? + s2k. Geo-
metrically these numbers correspond to orthogonal triangles with one or two
sides having integer valued length and remaining side having integer valued
length squared.

c¢) For given value of y all integer multiples ny of y provide a solution of
the rationality conditions. It is not necessary to require that the algebraic
extensions r +1is4/k(p1, y;) associated with y; and y, satisfying the condition,
are same for given value of p;: that is, one can have

k(p1,y1) # k(p1,y2) -

For k(p1,y1) = k(p1,y2) also the linear combinations myy; + niys satisfy
rationality conditions. For the minimal solution to the rationality conditions,
only multiples of each y solve the rationality conditions. For the maximal
solution all solutions y; correspond to the same algebraic extension for given
p1 and unrestricted linear superposition of the y; holds true.

d) For p mod 4 = 1 rational phase factors p; ¥ defined by the powers of
the Gaussian primes provide the minimal manner to achieve rationality such
that unrestricted superposition of solutions holds true. For p; mod 4 = 3
and p; mod 3 = 1 the minimal manner to achieve compensation is by using
Eisenstein primes. For the primes p; mod 4 = 3 and p; mod 3 = 2 one
cannot compensate ,/p; factor using Gaussian or Eisenstein primes and a
more general algebraic extension of integers is necessary. For given prime p;
there is finite number of possible algebraic extensions.

0.2.3 The conditions guaranteing the reduction of the p-adic norm

The term p; " appearing in the factors 1/Z,, is inversely proportional to

integers and thus have p-adic norm which is larger than one for the primes
appearing as factors of the integer n;. Some mechanism guaranteing the
reduction of the p-adic norm must be at work and this mechanism gives



strong conditions on the allowed phases p™.
The condition guaranteing the reduction is very general. What is required
is the reduction of the p-adic norm

XX, , X=1-UpY , U= (ep)™? . 12
p

Here one has ¢ = 1 for even values of n whereas for for odd values of n one
has € = £1 depending on whether the square root exists or not p-adically:
the sole purpose of this factor is to take care that the p-adic counterpart of
U is an ordinary p-adic number.

By writing

pl_iy = cos(¢) + isin(¢)
one obtains
| XX, =|1-2Ucos(¢) +U?|, .

Not surprisingly, the vanishing of the norm modulo p implies in modulo p
accuracy

U = cos(¢) —/—1sin(o) .
Since U must be real, the only possible manner to satisfy the condition is to
require that

sin(¢) =0 mod p , cos(p) =1 mod p . (13)

Clearly, ¢ must correspond to angle 0 or 7 in modulo p accuracy. What this
condition says is that partition functions Z,, are real in order p. This is very
natural condition on the line Re[s| = 1/2 where the ( is indeed real.

The condition cos?(¢) = 1 mod p implies

py modp=1. (14)

p1 can be always written as a power p; = a* of a primitive root a satisfying
a?~' = 1 modulo p such that k divides p — 1. Thus p} mod p = 1 holds true
only only if n mod (p —1)/k = 0 is satisfied.

9



The conditions guaranteing modulo p reality of Z,, for prime p dividing
the denominator of p; ", when written explicitely, give

— . 2 27. .2 2 2rs  __
Re[s]=n : r¢ — sk =1+ sk | =0,

Re[s]:n—l—% : (T2_S2k)T1—QTSS1/€:T2+S2k’ Wﬂzo .

(15)

In the case of Gaussian primes (k = 1) also second option is possible since
the multiplication with 4 yields new rational phase factor: this option cor-
responds simply the exchange of r? — s? and 2rs factors in the formula above.

Rather general solution to the conditions can be written rather immedi-
ately. In both cases the conditions

smodp? =0, rmodp=0 (16)

are satisfied. Note that s mod p? = 0 is necessary since r? 4+ 52k mod p = 0
holds true. Besides this the conditions

r? + s2k mod p = 1 for Rels]=n ,
(17)
1

symodp=0 & rymodp=1 for Re[s]=n+3 ,

are satisfied.

It pl_iy is inversely proportional to integer containing as factors powers
of a prime p larger than p;, the reduction of the norm cannot occur for
Re[s] = 1/2 but is possible for sufficiently large values of Re[s] = n/2. For
p1 = 2 and p; = 3 factors the reduction of the norm is certainly not possible
on the line Re[s] = 1/2 since the condition 2p+1 < p; cannot be satisfied for
any prime in these cases. The reduction of the p-adic norm of the { suggests
strongly that the condition 2p; + 1 < p; is satisfied for large primes p;. If it
is satisfied completely generally, the phase factors associated with Zs must
be of the general form

10



Ly (ELEG)  (m(y) +iy 22 —m2(y))
27 = X .
V2 2
This constraint and similar constraints associated with larger primes give
very strong constraints on the zeros.

The general conclusions are following.

a) The reduction of the p-adic norm and the related modulo p reality of
Zp, is the p-adic counterpart for the reality of ¢ on the critical line which
suggests that it might occur completely generally. It requires that p! mod p =
1 holds true for all primes appearing as factors of the denominator n; of the
rational part of the phase p; ™.

b) If the denominator of p; ¥ is squarefree integer, the p-adic norm of Z,,
is never larger than unity except possibly in the diagonal case p = p;.

¢) In the diagonal case the norm grows like pi** for Re[s] = n + 1/2
and p} for Re[s] = n. This conforms with the fact that ¢ has no zeros for
Re[s] > 1 but has zeros for Re[s] = —2n.

d) If rational points of { obey linear superposition, then the rational
points on the lines Re[s] = n contain an even number of y;:s needed to
achieve the rationality of Re[p™®]. Hence the denominator tends to have
larger p-adic norm than it can have on the line Re[s] = 1/2. This means
that the line Re[s] = 1/2 is optimal as far as zeros of |C|? are considered.

It can however happen that in the product piyl pin complex conjugates of

factor phases can compensate each other so that the p-adic norm of pi(yl +u2)
is not always larger than the norms of the factors. In particular, the factors
(r1+is1Vk)/\/pr could cancel in the product pi” p; > This mechanism could
explain the emergence of almost zeros y;; = y; — y; of ¢ on the line Re[s] = 1
required by the inner product property of the Hermitian form defined by the

superconformal model for the zeros of (.

0.2.4 Gaussian primes and Eisenstein primes

The general manner to satisfy the rationality requirement is to assume that
the phases piy correspond to orthogonal triangles with one or two sides with
an integer valued length and one side with integer valued length squared. A
rather general and mathematically highly interesting manner to realize the
rationality of the the phases pl_”/ szf’ is by choosing the phases to be products
of Gaussian or Eisenstein primes.

11



Gaussian primes consist of complex integers e; € {£1, £i+}, ordinary
primes p mod 4 = 3 multiplied by the units e; to give four different primes,
and complex Gaussian primes r+is multiplied by the units e; to give 8 primes
with the same modulus squared equal to prime p mod 4 = 1. Every prime
p mod 4 = 1 gives rise to 8 nondegenerate Gaussian primes. Pythagorean
phases correspond to the phases of the squares of complex Gaussian integers
m—+1in expressible as products of even powers of Gaussian primes G, = r+is:

Gy=r+is, GG=r*+s=p, pprime& pmod 4=1.  (18)

The general expression of a Pythagorean phase expressible as a product of
even number of Gaussian primes is

r? — 52 +i2rs

U= r2 4+ 52 (19)

By multiplying this expression by a Gaussian prime ¢, one obtains second
type of Pythagorean phase

2 (2 L2
- rs+2z(7“ s?)
r? + 52

(20)

Gaussian primes allow to achieve rationality of pfnﬂ/ 2 p~% factor for p; mod 4 =

1. The generality of the mechanism suggests that Gaussian primes should
be very important. For Re[s] # n/2 it is not possible to achieve complex
rationality with any decomposition of pi¥ to Gaussian primes.

Besides Gaussian primes also so called Eisenstein primes are known to
exist and the fact that only the rationality of the real parts of 1/Z,, factors
is necessary for the rationality of |Z,, |*> means that they are also possible.
Note however that now the multiplication the phase by 44 makes the real
part of the phase irrational, and is thus not allowed. Thus only four-fold
degeneracy is present now for (.

Whereas Gaussian primes rely on modulo 4 arithmetics for primes, Eisen-
stein primes rely on modulo 3 arithmetics. Let w = exp(i¢), ¢ = £27/3,
denote a nontrivial third root of unity. The number 1-w and its associates

12



obtained by multiplying this number by 41 and +i; the rational primes
p mod 3 = 2 and its associates; and the factors r + sw of primes p mod 3 = 1
together with their associates, are Eisenstein primes. One can write Eisten-
stein prime in the form

S \/§
=r——41i5— . 21
w=r—gtisg (21)
What might be called Eisenstein triangles correspond to the products of
powers of the squares of Eisenstein primes and have integer-valued long side.
The sides of the orthogonal triangle associated with a square of Eisenstein

prime E, have lengths

(r* —rs — 357 sﬁ
2 72
Eisenstein primes clearly span the ring of the complex numbers having the
general form z = (r +iv/3s)/2, r and s integers. To my very restricted best
knowledge, the other algebraic extensions of integers do not allow the notion
of prime number.

One can use Eisenstein prime E, to achieve the replacement of the pl_l/ 2
factor with 1/p;-factor in the partition functions Z,, the same effect for
p1 mod 4 =1 and p; mod 3 = 1 with the net result that iv/3 term appears.
This trick does not work for p; mod 4 = 3 and p; mod 3 = 2. Note that the
presence of both Gaussian and Eisenstein primes in the same factor Z,, is not
allowed since in this case also the real part of Z,, would contain /3. This
suggests that quite generally p mod 4 =1 resp. p mod 4 =3 AN p mod 3 =1
parts of é could correspond to Gaussian resp. Eisenstein primes.

For the factors Z,, satisfying p; mod 4 = 3 & p1 mod 3 = 2 simultane-
ously, neither Gaussian nor Eisenstein primes can affect the rationalization
of p™™*1/2=% factor, and in this case more general algebraic extension of
complex numbers is necessary as already found.

, p=1r 45 —rs) .

0.3 Tests for the |¢|2 = |¢|? hypothesis

The fact that the phases piy correspond to nonvanishing values of y, suggests
that |(|* = |¢]? equality holds on the real axis only in the sense of a limiting
procedure y — 0. If the the values of y giving rise to allowed phases obey

13



linear superposition (that is ki (p1,y) defining the algebraic extension does
not depend on y), the allowed values of y form a dense set of the real axis,
since arbitrarily small differences y; —y; are possible for the zeros of (. Hence
the limiting procedure y — 0 should be well-defined and give the expected
answer if the basic hypothesis is correct.

0.3.1 What happens on the real axis?

The simplest test for the basic hypothesis is to look what happens on the
real axis at the points s = n. Real ¢ diverges at s = 1 and s = 0 and has
trivial zeros are at the points s = —2n. The norm of ( is given by

)l = 1;[[1}|1—p;”|p] | (22)

For n = 0 a straightforward substitution to the formula implies that |C(0)]
vanishes. For n > 0 one has

e = ] [Hﬁff !

4y

Iplzl;[p” {l;[ 11 p‘k] . (23)

pl mod pk=1

Since the number of primes p; satisfying the condition p} mod p* = 1 is
infinite, the norm vanishes for all values n > 0. For s = —n < 0 one has,

)l = 1;[[1}|1—p’f|p] | (21)

and also this product vanishes always.

How to understand these results?

a) The results are consistent with the view that ||z on the real axis should
be estimated by taking the limit y — 0. Since the values of y in question
involve necessarily differences of very large values of y, it is conceivable that
the limiting procedure does not yield zero. That the limiting procedure can
give zero for Re[s| < 0 could be partially due to the fact that for Re[s] =
—n < 0 one has for the diagonal p; = p contribution |Z,(—n + iy)|, = 1

14



whereas for Re[s] = n > 0 one has |Z,(n+1iy)|, > 1 in general. Furthermore,
for Re[s] = —n only p} mod p* = 1 condition leads to the reduction of the
p-adic norm of Z,,, 4, whereas for Re[s] = —2n also pf mod p* = —1 condition
has the same effect.

b) One cannot exclude the possibility that only the proportionality |¢|2 o
|C|? holds true. For instance, in the superconformal model predicting that
the physical states of the model correspond to the zeros of ¢ on the critical
line, the Hermitian form defining the 'inner product’ is proportional to the
product of sin(imz)I'(2)((z). This function vanishes for Re[s] € {0,1} and
the coefficient function of ( is finite in the critical strip. For s = 0 this
function however has the value —1/2 and for s = 1 the value is 1, whereas
the naively evaluated value of |Q: | vanishes identically at these points. Thus
something else is necessarily involved.

c¢) It could also be that the product represention for the norm squared
of é as a product of its p-adic norms converges only in a restricted region.
It would not be surprising if the negative values of y were excluded from
the region of convergence for the representation of |Q: |* as a product of its
p-adic norms. Concerning the proof of the Riemann hypothesis, the minimal
requirement is that the region [1/2 < Re[s] <1, y # 0] is included in the
region of convergence.

One might think that [¢|2 = |¢]? hypothesis is testable simply by compar-
ing the norm squared of the real zeta with the product of the p-adic norms
of |¢|>. The problems are that the value for the product of p-adic norms is
extremely sensitive to numerical errors since the p-adic norm of Pythagorean
triangles phases fluctuates wildly as a function of the phase angle, and that
one does not actually know what the values of p%¥ actually are. One testable
prediction, also following from the superconformal model of the Riemann
Zeta, is that the superpositions of the zeros are probably almost zeros or
minima of |{|z on the lines Re[s] = n/2. One could also try to understand
whether the the norm of é allows a continuation to a continuous function of
the complex argument identifiable as a modulus of an analytic function.

0.3.2 Can the imaginary part ofé vanish on the critical line?

Riemann Zeta is real on the critical line Re[s] = 1/2. A natural question
is whether also ¢ has a vanishing imaginary part on this line. This is cer-
tainly not necessarily since ¢ has values in the infinite-dimensional algebraic
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extension of rationals. One cannot formulate the vanishing condition for the
imaginary part in terms of the norm squared of any quantity defined by using
the generalization of the adelic formula.

The properties of é must be however consistent with the vanishing of
Im[(] on the critical line. The reality of { on the critical line follows from
the symmetry with respect to the critical line reducing on the critical line
to the condition ((s) = ((1 — s) implying the reality of ((s)((1 — s). This
condition makes sense also for é . In general case, one has

A 1
C(s)C(A=s) = [[ Zp, (z+iy) Zy, (1—z—1y) = ]| —
p1 p1 [1 — " p Y = pr Y + p%}

Due to the presence of p™* terms, the moduli squared for these factors are
complex irrational numbers.

On the line Re[s] = 1/2, the product representation for this function
reduces to the product of real factors

1 B —1/2 iy | gy L

T2t (i) L e )
in the algebraic extension of rationals. Thus the reality and rationality of the
function ¢(s)¢(1 — s) on the critical line corresponds in a very transparent
manner the reality of ( on the critical line. Note also that the modulo p
reality of the factors Z,, implied by the reduction of the p-adic norm can be
regarded as the p-adic counterpart for the reality of ¢ on the critical line.

0.3.3 What about non-algebraic zeros of (?

In principle real ¢ can also have irrational zeros z. The following argument
however demonstrates that they do not pose a problem.
a) Pythagorean phase condition means that only the linear combinations

Yy = anyk (26)

with ny integer and p™* complex rational phase for every p, are possible.
Since the differences y; —y; are known to have arbitrarily small values for the
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zeros of (, this means that the values allowed by the rationality requirement
of ¢ of y must form a dense subset of reals.

b) If the norm of é defined as a product of its p-adic norms indeed equals
to the norm of the real (, one obtains strict bounds for the norm of the real
¢ excluding the zeros in the dense set inside the critical strip. The continuity
of the real ¢ in turn implies that it cannot vanish except on the critical line.

0.4 Riemann Zeta and quantum TGD

The idea that quantum TGD could be regarded as a generalized number the-
ory was stimulated by the notion of infinite primes inspired by TGD inspired
theory of consciousness and by the notion ofe phase preserving canonical
identification playing a key role in the understanding of the p-adic aspects of
quantum TGD. The work with Riemann hypothesis has led to a realization
that this vision might be realized in a unexpectedly concrete sense.

0.4.1 Phase preserving canonical identification and Riemann Hy-
pothesis

The sharpened form of Riemann hypothesis has interesting potential implica-
tions concerning the construction of quantum TGD. For given p, the p-adic
norms of Pythagorean phases p}’ fluctuate wildly as the real coordinate y
varies in an arbitrarily small range. The proposed hypothesis however means
that in the set of the allowed phases p' ¢ there must be a long range or-
der removing this wild variation and making p-adic { functions effectively
continuous functions of y. A possible explanation is that the very fact that
py defines Pythagorean phase for infinite number of primes p;, implies this
effective continuity.

The existence of only two values y; for which p; ™ are rational for in-
finite number of primes p;, implies that the set y = n1y; + nays defining
Pythagorean phases forms a dense set on the real axis. Even for single value of
y and single value of p; the phase factors p; Y define a dense subset of all pos-
sible phase factors. This suggests that one could use Pythagorean phases to
define the phase preserving canonical identification with Pythagorean phases
to optimize the continuity for the mapping of the real physics to the p-adic
physics. Thus the sharpened form of the Riemann hypothesis would become
an essential part of quantum TGD and physics a la TGD.
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0.4.2 Zeros of ( code for infinite energy quantum states of TGD
Universe

The first amazing analogy with TGD is the structure of the partition func-
tions Z,,. These partition functions are proportional to integer n; = []; p;"
such that p; mod p; = 1 holds true. This requires 2p; +1 < p;. TGD inspired
interpretation is that Z, corresponds to a spacetime sheet with p;-adic ef-
fective topology to which particles represented by smaller spacetime sheets
with effective p;-adic topologies are 'glued’. The square free integer n = []; p;
codes the presence of a fermion in mode p; on spacetime sheet with effective
topology characterized by p;. The reduction of the p-adic norm from p; to
p; " corresponds to the presence of n 4+ 1 bosons associated with spacetime
sheet(s?) with p;-adic topology. One can also identify the factors of partition
function representing purely bosonic states. If p does not divide the integer
associated with the phase p;™ but the norm of state is reduced by power
p~*, the spacetime sheet p; contains k bosons of type p but nor fermions of
type p.

The generation of Bose-Einstein condensates of bosons in the mode is thus
necessary for the reduction of the p-adic norm. The exponent k = Ng — Np
of p-adic norm p~* of é codes the net energy of bosons and fermions on the
spacetime sheet with fermions giving negative contribution to the energy.

When |Q: | vanishes, the state described by é contains infinite number of
bosons and has infinite energy. The zeros of é correspond to quantum states
of infinite energy (macroscopic quantum states) and the value of y actually
codes the particle content of the quantum state. Thus it seems that ¢ could
provide a toy model for the quantum critical dynamics of quantum TGD. In
fact, the following considerations suggest that much more than a mere toy
model might be in question. Also the spectroscopy of quantum TGD might
have number theoretic interpretation.

This coding applies also in case of arithmetic quantum field theory when
one interprets it as a collection all p-adic p-adic quantum field theories and
interprets Riemann Zeta and closely related L-functions as representations
of the physical states. In fact one can divide these functions with Z,, and
multiply them with powers of Z,, to get more general states with the same
zeros but different particle content. p; codes for spacetime sheets containing
particle like spacetime sheets and for a given value of p the factors Z,, of the
p-adic ¢ code for the numbers of fermions and bosons in mode p topologically
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condensed on the spacetime sheet labelled by p;.

0.4.3 Zeros of ( code also elementary particle numbers

The properties of Gaussian and Eisenstein primes have intriguing parallels
with quantum TGD at the level of elementary particle quantum numbers.

a) The lengths of the complex vectors defined by the non-degenerate
Gaussian and Eisenstein primes are square roots of primes as are also the
preferred p-adic length scales L,: this suggests a direct connection with
quantum TGD.

b) Each nondegenerate (purely real or imaginary) Gaussian prime of
given norm p corresponds to 8 different complex numbers G = +r + is
and G = +s £ ¢r. This is the number of different spin states for the imbed-
ding space spinors and also for the color states of massless gluons (note that
in TGD quark color is not spinlike quantum number but is analogous to
orbital angular momentum). Complex conjugation might be interpreted as
a representation of charge conjugation and multiplication by +1,+¢ could
give rise to different spin states. The 4-fold degeneracy associated with the
p mod 4 = 3 Gaussian primes could correspond to the quartet of mass-
less electroweak gauge bosons with a given helicity [(y, Z°) « +p) and
(WH, W) « +ip].

c) For Eisenstein prime E,, the multiplication by +i does not respect
the rationality of the real part of |Z,,|* and the number of states is reduced
to four. Same restriction applies quite generally to the case when piy is
of general form r + ivk. On the other hand, the effect of multiplication
of Einstein primes £,, by these units remains invisible in the part of phase
consisting of even powers of Einstein primes. Therefore the 8-fold degeneracy
is effectively there and the interpretation is that this multiplication, although
it changes the physical state, is not visible in the properties of the partition
function.

d) The basic character of the quark color is triality realized as phases w
which are third roots of unity. The fact that the phases are associated with
the Eisenstein primes suggests that they might provide a representation of
quark color. One can indeed multiply any Eisenstein prime in the product
decomposition by factor 1, w or w and the interpretation is that the three
primes represent three color states of quark. The obvious interpretation is
that each factor Z,, with p; mod 4 = 1 could represent 8 possible leptonic
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states. Each factor Z,, satisfying p; mod 4 = 3 and p; mod 3 = 1 con-
ditions simultaneously would correspond to a product of Eisenstein prime
with Eisenstein phase and each prime p; associated with Eisenstein phase
would correspond to one color state of quark. Even a number theoretical
counterpart of color confinement could be imagined.

There is also a further interesting analogy supporting the idea about num-
ber theoretical counterpart of the quark color. { decomposes into a product
(1 X (3, such that (; is the product of p mod 4 = 1 partition functions and (3
the product of p mod 4 = 3 partition functions. This decomposition reminds
of the leptonic color singlets and color triplet of quarks. Rather interestingly,
leptons and quarks correspond to Ramond and Neveu-Schwartz type super
Virasoro representations and the fields of N-S representation indeed contain
square roots of complex variable existing p-adically for p mod 4 = 3.

e) What about the most general factors r + isv/k? Can one assign some
kind of color degeneracy also with these factors? It seems that this is the
case. Ome can always find phase factors of type Ux = (r + isv/k)/n with
minimal values of n (r* + sk = n?). The factors 1, U clearly give rise to a
3-fold degeneracy analogous to color degeneracy.

0.4.4 Gaussian and Eisenstein versions of infinite primes

The vision about quantum TGD as a generalized number theory generates
also a third line of thoughts.

a) As has been found, the zeros of  code for the physical states of a super-
symmetric arithmetic quantum field theory. As a matter fact, the arithmetic
quantum field theory in question can be identified as arithmetic quantum
field theory in which single particle states are labelled by Gaussian primes.
The properties of the Gaussian primes imply that the single particle states
of this theory have 8-fold degeneracy plus the four-fold degeneracy related to
the +¢ or £1-factor which could be interpreted as a phase factor associated
with any p mod 4 = 3 type Gaussian prime. Also Eisenstein primes could
allow the construction of a similar arithmetic quantum field theory.

b) The construction of the infinite primes reduces to a repeated second
quantization of an arithmetic quantum field theory. A straightforward gener-
alization of the procedure allows to define also the notion of infinite Gaussian
and FEisenstein primes. Since each infinite prime is in a well-defined sense a
composite of finite primes playing the role of elementary particles, this would
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mean that each composite prime in the expansion of an infinite prime has
either four-fold degeneracy or eight-fold degeneracy. The interpretation of
infinite primes could thus literally be as many-particle states of quantum
TGD. In TGD the topology of spacetime surfaces of infinite size is charac-
terized by infinite-p p-adic topology and the possibility of infinite-p p-, G-
and E-adic topologies suggests the fascinating possibility that this infinite-p
p-adic topology carries implicitly information about the discrete quantum
numbers of all particles represented as spacetime sheets glued to the larger
spacetime sheet.

0.4.5 G-adic and E-adic fractals?

A third line of thoughts relates to the possibility to generalize the notion of
p-adicity so that could speak about G-adic and E-adic number fields. The
properties of the Gaussian and Einsenstein primes indeed strongly suggest
a generalization for the notion of p-adic numbers to include what might be
called G-adic or E-adic numbers.

a) Consider for definiteness Gaussian primes. The basic point is that
the decomposition into a product of prime factors is unique. For a given
Gaussian prime one could consider the representation of the algebraic exten-
sion involved (complex integers in case of Gaussian primes) as a ring formed
by the formal power series

G=)» z,G". 27
p

Here z, is Gaussian integer with norm smaller than |G|, which equals to p
for p mod 4 = 3 and /p for p mod 4 = 1.

b) If any Gaussian integer z has a unique expansion in powers of G, such
that coefficients have norm squared smaller than p, modulo G arithmetics
makes sense and one can construct the inverse of G and number field results.
For p mod 4 = 1 the extension of the p-adic numbers by introducing v/—1 as a,
unit is not possible since v/—1 exists as a p-adic number: the proposed struc-
ture might perhaps provide the counterpart of the p-adic complex numbers in
case p mod 4 = 1. Thus the question is whether one could regard Gaussian
p-adic numbers as a natural complexification of p-adics for p mod 4 = 1,
perhaps some kind of square root of R,, and if they indeed form a number
field, do they reduce to some known algebraic extension of R,?
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¢) In case of Eisenstein numbers one can identify the coefficients Z,, in the
formal power series £ = }_2,FE] z, as Eisenstein numbers having modulus
square smaller than p associated with F, and similar argument works aso in
this case.

c) What is interesting from the physics point of view is that for p mod 4 =
1 the points G and E}' are on the logarithmic spiral 2, = p2exp(ingo/2),
where ¢ is the Pythagorean (Eisenstein) phase associated with G (E2). The
logarithmic spiral can be written also as p = exp(nlog(p)¢/do). This reminds
strongly of the logarithmic spirals, which are fractal structures frequently en-
countered in self-organizing systems: perhaps G- and E-adics might provide
the mathematics for the modelling of these structures.

0.5 Discussion of other ideas related to the Riemann
hypothesis

The study of the Riemann hypothesis has generated several competing candi-
dates for the Great Principle. The progress made possible by the realization
of the connection between Pythagorean phases and Gaussian primes allows to
reduce the number of the competitors. It seems that the Universality Princi-
ple, together with the hypothesis that the norm of the analytically continued
¢ equals to the product of the p-adic norms of é , is the only surviver.

0.5.1 Does p-adic ¢ at the limit p — oo correspond to real (?

The naive idea that reals are obtained as the limit R,, p — oo, suggests
real ¢ corresponds to the p — oo limit for p-adic (. This idea does not
conform with the results obtained. The norms of p-adic ¢ functions are in
general non-vanishing for the zeros of é and there are reasons to believe that
at p — oo limit the norms approach to unity.

This argument can be articulated also by using the p-adic number fields
associated with infinite primes. Since the conditions for the reduction of
the norm involve always modulo arithmetics and since modulo arithmetics
reduces to ordinary arithmetics for the infinite primes, the p-adic norm of
the p-adic ¢ in this case is unity. Only the allowance of the infinite primes in
the product representation of ¢ might change the situation in this respect.

More precise formulation of this argument is an interesting exercise about
infinite primes. The first question is about what one means with infinite-p
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p-adic numbers. It is not at all clear whether this notion even makes sense.

a) The most straightforward generalization introduces infinite p-adic num-
bers as formal powers series with integers coefficients. The problem is that
there seems to be no manner to definet the inverse of an infinite-p p-adic
number in this approach. For instance, the p-adic inverse of an integer,
seems impossible to define.

b) One can however consider the possibility of introducing infinite-p p-
adics as the formal power series

PN g, P
n>0
of infinite prime P with rationals, reals, or p-adic numbers, instead of inte-
gers, appearing as a coefficient field. In this case one could define the inverse
of an infinite prime and in the lowest order it is just the rational, real or p-
adic inverse. The use of rationals as coefficient field seems especially natural.
p-Adic norm would be simply

j2|p = P70

in the representation where infinite p-adic number is decomposed to a product
of power of P and number with a unit norm. Norm is infinite or infinitesimal
for ky # 0. One could also define the norm as

[z|p = P7*]ao|

but this would mean the loss of the ultrametricity. One would however have
ultrametricity for a sum of numbers with different P-adic norm.

This construction conforms with the construction of the generalized reals
based on the idea of regarding infinite integers as spanning algebraic exten-
sion of reals (playing the role of imaginary units) with reals appearing as
a coefficient field. One could also consider the possibility of using p-adic
numbers as coefficient fields for infinite integers.

If one use defines infinite-p p-adics using rationals appearing as a coeffi-
cient field, it seems very difficult to imagine how to define roots pT/ " without
introducing an infinite-dimensional algebraic extension allowing all roots of
all primes. Hence one must allow effectively rationals algebraically extended
with all roots of all primes.
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Does infinite-p p-adic  correspond to real (7 The asnwer seems to be a
definitely "No’ unless one defines the p-adic norm of infinite-p p-adic number
in a non-ultrametric manner as |z|p = P~*|zy|. Can infinite-p ¢ have zeros
if ultrametric norm is used? Unless one allows the presence of infinite primes
p1 in the product representation of (, the answer is negative. The reason is
that the reduction of the p-adic norm for the factor Z, occurs only if the
condition p} mod p = 1, n some positive integer, holds true. This condition
cannot be satisfied if p is an infinite prime. Thus for infinite primes p-adic
¢ has no zeros. Situation changes if one allows infinite primes p; in the
representation of (. In real case their presence would imply that the product
representation of ¢ vanishes for Re[s] < 0. For Re[s] > 0 these factors give
infinitesimal contribution to the value of the real (.

0.5.2 Does Local-Global Principle make sense?

Local-Global Principle has been the basic guideline for a long time in the
attempts to understand the Riemann hypothesis. This hypothesis states
that the zeros of the real ¢ are also the zeros of the p-adic ¢ functions (in
the manner as they are defined). It must be emphasized that Universality
Principle has same implications as this hypothesis.

How could one understand the hypothesis that each real zero of ( corre-
sponds to a p-adic zero? The simplest testable assumption guaranteing this
is that the p-adic norm of ¢ for any value of p is never larger than than the
norm of the real zeta in case that p-adic zeta is defined:

I((z =2 +iy)|, <|¢(2)|r for all values of p ,
| (28)
=2 and py rational for every p; .

If this hypothesis holds true then each zero of the real  is zero of every p-adic
¢ and the argument above works. In fact, a much weaker hypothesis stating
that inequality holds for some values of p for given value of z is enough to
lead to a plausibility argument in favour of the Riemann hypothesis.

From the foregoing it is clear that the Local-Global Principle is not con-
sistent with the identification of the norm of the real { as a product of p-adic
norms of ¢ function. Also the fact that p-adic ¢ functions need not vanish
for the zeros of ( violates the Local-Global Principle.
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