
10.1098/rspa.2002.1090

Hopf bifurcation with cubic symmetry
and instability of ABC flow

By Peter Ashwin
1

and Olga Podvigina
1,2,3,4

1School of Mathematical Sciences, University of Exeter,
Exeter EX4 4QE, UK
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We examine the dynamics of generic Hopf bifurcation in a system that is symmetric
under the action of the rotational symmetries of the cube. We classify the generic
branches of periodic solutions at bifurcation; there are generically 27 branches cor-
responding to maximal symmetries, organized into five symmetry types. There are
also up to 22 periodic solution branches of two other symmetry types. These results
are found by examination of the normal form (with S1 normal-form symmetry) for
the bifurcation truncated at the third order.

In addition to the periodic branches whose branching and stability we find, there
are several branches of tori, homoclinic bifurcations and chaotic attractors in the
dynamics of the third-order normal form. Since many of these features are not
amenable to analysis, we give some numerical examples. On breaking the normal-
form symmetry, there may be breakup of the branches of tori, but the predictions
for the periodic solutions will be reliable.

For the Navier–Stokes equations with a particular forcing, an ABC flow is a dynam-
ically stable solution for small Reynolds numbers R. For the most symmetric case,
A = B = C = 1, the first instability of this system is a Hopf bifurcation at R = 13.04
with rotational symmetry of the cube. We use our normal-form analysis to explain
the observed behaviour of solutions at this primary instability. Numerical simulations
show that there is supercritical branching to rotating waves that alternate between
the three axes, which undergo secondary Hopf bifurcation to a 2-torus at approxi-
mately R = 13.09. The eight symmetrically related tori break up and then merge
to form a chaotic attractor with full symmetry. We can explain all these features by
use of the generic third-order normal form and S1 normal-form symmetry-breaking
terms.
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1. Introduction

The so-called ABC flow is a fully three-dimensional steady flow of incompressible
fluid with velocity field

uABC = (A sin x3 + C cos x2, B sin x1 + A cos x3, C sin x2 + B cos x1), (1.1)

where A, B and C are constants. This flow satisfies the Beltrami condition ∇ ×
uABC = αuABC with α = 1, and hence it is a solution to the Euler equations with
the vanishing force. Arnold (1965) has proved that a steady-state solution to a force-
free Euler equation can have chaotic streamlines only if the solution possesses the
Beltrami property; he introduced ABC flows as the simplest analytical example of
vector fields satisfying this condition. As such, ABC flows have enjoyed the close
attention of a large number of mathematicians and physicists. Hénon (1966) showed
numerically that, for A =

√
3, B =

√
2, C = 1, the ABC flow is indeed chaotic. The

particle paths of a variety of ABC flows have been studied in Dombre et al. (1986).
If at least one coefficient in (1.1) vanishes, the flow is integrable. Using the Painlevé
test, Dombre et al. (1986) argued that this condition for integrability of an ABC
flow is also necessary. The Poincaré sections computed for certain flows of that type
revealed that the flows do have chaotic streamlines; indeed, the largest Lyapunov
exponents for streamlines of some ABC flows were computed in Galanti et al. (1992)
and were found to be positive.

If a triangle can be constructed with sides equal to A2, B2 and C2, the flow has
eight stagnation points in a periodicity cube; there are no stagnation points other-
wise. In the case A = B = C = 1, stagnation points are connected by heteroclinic
trajectories, which are straight lines (Childress & Soward 1985).

Non-integrability of streamlines, giving rise to chaotic mixing of a passive scalar
within the flow, is a necessary condition for a flow to act as a fast magnetic field
generator (Klapper & Young 1995; Vishik 1988, 1989). For this reason, and because
heteroclinic structure of trajectories of ABC flows is rather well understood, they
are widely employed in the study of magnetic field generation. In the context of the
kinematic dynamo, ABC flows were first examined in Childress (1970). It was shown
that they can act as dynamos (see, for example, Arnold & Korkina 1983; Childress &
Gilbert 1995; Galanti et al. 1992, 1993; Galloway & Frisch 1984, 1986; Gilbert 1991,
1992). These computations suggest that, for certain sets of coefficients, the dynamos
are fast. ABC flows were also proposed as prototypes for the study of the develop-
ment of turbulence (see Podvigina 1999a,b; Podvigina & Pouquet 1994). Magnetic
field reversals were observed in an ABC-force-driven fully nonlinear magnetohydro-
dynamic system (Podvigina 2003a).

Generically, equation (1.1) has the symmetry group isomorphic to D2 if we
exclude time-reversal symmetries (these are symmetries of the flow but not of the
Navier–Stokes equations). If two coefficients are equal, it is isomorphic to D4. For
A = B = C, the group, denoted by H, has 24 elements and it is isomorphic to the
rotation group of a cube (Arnold 1984; Dombre et al. 1986). We consider the latter
case

A = B = C = 1. (1.2)
For any Reynolds number R, uABC is a steady solution of the Navier–Stokes

equation
∂v

∂t
= v × (∇ × v) − ∇p +

1
R

∆v + f , (1.3)
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subject to the incompressibility condition

∇ · v = 0 (1.4)

and the force
f =

1
R

uABC (1.5)

(p is the pressure). Space-periodic boundary conditions are assumed in x1, x2, x3,
namely,

v(x1, x2, x3) = v(x1 + 2kπ, x2 + 2lπ, x3 + 2mπ),

p(x1, x2, x3, ) = p(x1 + 2kπ, x2 + 2lπ, x3 + 2mπ)

for any (k, l, m) ∈ Z3. In this set-up, any symmetry of the ABC flow is also a
symmetry of the equation, but solutions that branch from the ABC flow solution
may break some or all of these symmetries.

One of the aims of this paper is to examine the primary dynamical instability
of this flow on increasing Reynolds number by showing that its stable dynamics
near this instability are governed by a generic Hopf bifurcation with the appropriate
symmetry. Using this, we predict and find the existence of many different branches
of periodic solutions as well as more exotic dynamics.

Numerical results on bifurcations of time-dependent solutions of the Navier–Stokes
equations (1.1)–(1.5) for R � 50 were presented in Podvigina & Pouquet (1994) and
Podvigina (1999a,b). It can be proven that, for R < 0.5, the flow (1.1)–(1.5) is a
unique steady state of (1.3), (1.4), and it is stable. Computations show that the flow
is stable for R � 13.04 (Galloway & Frisch 1987; Podvigina & Pouquet 1994) and
that it is a unique attractor of this hydrodynamical system for R � 7.8 (Podvigina
& Pouquet 1994). The trivial steady state (the 1:1:1 ABC flow (1.1), (1.2)) becomes
unstable in a Hopf bifurcation at some R = R0, where R0 can be numerically located
at approximately 13.044 (Podvigina 1999b). The action of the group H on the centre
eigenspace at this bifurcation is isomorphic to the standard representation of the
group of rotational symmetries of the cube, O (see Podvigina 1999a).

In this paper we firstly characterize generic Hopf bifurcation with the symmetry O.
Secondly, we analyse this instability and secondary bifurcations in the particular
case of instability of uABC in the above problem at R = R0 to perturbations in the
Eulerian velocity field.

In order to do this, we apply methods and results from generic equivariant bifurca-
tion theory to this problem (see Golubitsky & Stewarts (1985) and Golubitsky et al.
(1988) for discussion and development of methods, details of the theory and many
examples). An important feature of this theory is that a generic Hopf bifurcation of
a symmetric equilibrium will (in the absence of further degeneracies) occur within
a linear subspace that is one of the C-irreducible representations (henceforth called
‘irreps’) of the symmetry group. The group O = S4 of permutations of four elements
has five C-irreps, W0, . . . , W4; two of these are on C3, one on C2 and two on C.
We consider only bifurcations for representation W0 on C3 where O acts purely by
rotations. This irrep is two copies of the R-irrep on R3 given by rotational sym-
metries of a cube. The other R-irrep on R3 is the set of symmetries of a regular
tetrahedron acting by permuting its vertices; note that this includes reflections and
has no rotations of order four (but it does have a rotation-reflection of order four).
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There exists a non-trivial isomorphism of the group O×S1 into itself. We will give
an explicit form for it in § 2. The action of O × S1 on W1 (the C3 representation of
O × S1 distinct from W0) can be represented as a composition of the isomorphism
and the action of the group on W0. Thus all our results concerning bifurcations with
symmetry group O × S1 on W0 are also applicable to the representation W1, the
isomorphism being taken into account. (However, representations of the group O on
W0 and W1 are not related by an automorphism of the group, and so the bifurcations
on W0 and W1 are different in this sense.)

Generic steady-state bifurcations with several types of cubic symmetry have been
investigated by many authors. In particular, bifurcations on cubic lattices are stud-
ied in Callahan & Knobloch (1997). An analysis of steady-state bifurcation with
the 48-element group Õ of rotations and reflections of the cube is considered in
Melbourne (1986). Some work has been done on steady bifurcation with another
element subgroup of Õ of elements that preserves the ordering of the axes; in partic-
ular, Guckenheimer & Holmes (1988) uses the third-order normal form to show that
branches of robust attracting heteroclinic cycles can arise as a generic possibility.
However, this group is not isomorphic to O; it has no elements of order four. As to
Hopf bifurcations, an analysis of generic Hopf bifurcation on square (respectively,
cubic) lattices was carried out in Silber & Knobloch (1991) (respectively, Dias &
Stewart 1999). Swift & Barany (1991) examine generic Hopf bifurcation with the
symmetry of an index-2 subgroup of O; they find branches of robust homoclinic
orbits branching from the trivial solution for an open and dense set of normal-form
coefficients (these homoclinic orbits were further investigated in Ashwin & Chossat
(1998)).

For the action of O × S1 on C3 that we consider here, there are two families of
fixed-point subspaces that are isomorphic to C2. In one of these, we can apply the
analysis of the Hopf bifurcation with dihedral D4 symmetry of Swift (1988) to find
branches of periodic solutions with submaximal symmetries. The other subspace also
supports submaximal symmetry periodic solutions.

The structure of the paper is as follows. In § 2 we characterize the group O, discuss
its representation on R3 by rotations and the representation it induces on C3 at a
generic Hopf bifurcation. For this representation, we discuss the isotropy subgroups
and invariant subspaces and derive the general normal form at bifurcation. Much of
the dynamics we investigate here is determined by the normal form truncated at third
order. We classify the generic branching behaviour and stabilities of these periodic
orbits at bifurcation in terms of the coefficients of this normal form. There are five
families of periodic solutions with maximal symmetries (all maximal symmetries are
C-axial in the terms of Dionne et al. (1996)). These solutions are always present; two
additional families (with submaximal symmetries) are present for an open (but not
dense) set of normal-form coefficients. All these periodic solutions have frequencies
close to the Hopf frequency. Since all branching periodic solutions are determined at
third order for an open set of normal-form parameters, theorem 11.2 of Golubitsky
et al. (1988) implies that the branching of periodic solutions of the full equations are
generically determined by the third-order normal form.

In addition to periodic branching behaviour, other branches can occur in the
normal form to chaotic attractors and quasi-periodic branches (for an open set of
normal-form coefficients) and homoclinic/heteroclinic cycles (for a codimension-1 set
of normal-form coefficients). In § 3 some indicative examples of this are investigated
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numerically by path following, as a complete analytical classification of all possi-
ble attractors is not presently possible. We also discuss the effect of breaking the
normal-form symmetry introduced at Hopf bifurcation by virtue of the fact that all
terms that do not commute with the S1 symmetry of phase shifts given by solution
of the linear equations can be transformed away to arbitrarily high order. These ‘flat
terms’ can, however, cause dynamically important effects such as torus breakup; we
give some examples.

In § 4 we return to the particular case of instability of the ABC flow, describing
and discussing attractors observed numerically at the bifurcation. We discuss how the
observed transition to a chaotic attractor with full symmetry on increasing R can be
explained by the normal-form model analysed in §§ 2 and 3. The branches of periodic
solutions correspond to time-periodic Eulerian solutions close to the original ABC
flow; moreover, the quasi-periodic and chaotic solutions are also close to the original
ABC flow and can be thought of as its time-dependent perturbations. Finally, some
limitations, the effects of symmetry breaking and possible extensions of this present
work are briefly discussed in § 5.

2. Hopf bifurcation with rotational symmetry of the cube

The group. We consider Hopf bifurcation with cubic symmetry for the complex
irreducible action on C3 of the group O × S1 generated by the threefold rotation

ρ111 : (z1, z2, z3) �→ (z2, z3, z1),

the fourfold rotation

ρ001 : (z1, z2, z3) �→ (z2,−z1, z3)

and the normal-form S1 phase-shift symmetry

γθ : (z1, z2, z3) �→ eiθ(z1, z2, z3).

We refer to the group acting in this way as O×S1 (the representation on W0 of § 1).
We denote

κ+
110 : (z1, z2, z3) �→ (z2, z1,−z3), κ−

110 : (z1, z2, z3) �→ (−z2,−z1,−z3), etc.

Note that κ+
110 = ρ2

111ρ001ρ
2
111 and κ−

110 = ρ2
001κ

+
110. The symmetry ρ111 has order

three and corresponds to a rotation around a vertex of the cube, ρ001 has order four
and corresponds to a rotation about the centre of a cube face by one-quarter of a turn,
κ+

110 has order two and corresponds to a rotation about a line through midpoints of
opposite edges of the cube by a half of a turn. We refer to the (conjugacy class of the)
group generated by κ−

011γπ as Z2(e) and to the one generated by ρ2
001γπ as Z2(f).

The γ act as temporal phase-shift symmetries that are present in the normal form
but, in fact, these symmetries are broken in generic problems by high-order terms.
The isomorphism of the group O × S1 to itself that relates the C3 representations
W0 and W1 is given by

ρ111 �→ ρ111, ρ001 �→ γπρ001, γθ �→ γθ.
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Table 1. Table of the isotropy subgroups for the action of O × S1 on C3 considered here

(There are nine possible symmetry types; the number of conjugate subgroups and the normalizer
are listed as well as the dimension of the fixed-point subspace and a list of generators. The
suffixes (e) and (f) refer to edge and face symmetries, respectively.)

name typical point dimC generators conjugates normalizer

O × S1 (0, 0, 0) 0 {ρ111, ρ100, γθ} 1 O × S1

D3 (z, z, z) 1 {ρ111, κ
−
110γπ} 4 D3 × S1

D2 (z, z, 0) 1 {κ+
110, κ

−
110γπ} 6 D2 × S1

D4 (z, 0, 0) 1 {ρ100, ρ
2
001γπ} 3 D4 × S1

Z4 (z, iz, 0) 1 {ρ001γπ/2} 6 Z4 × S1

Z3 (z, ze2πi/3, ze4πi/3) 1 {ρ111γ2π/3} 8 Z3 × S1

Z2(f) (z1, z2, 0) 2 {ρ2
001γπ} 3 D4 × S1

Z2(e) (z1, z2, z2) 2 {κ−
011γπ} 6 D2 × S1

1 (z1, z2, z3) 3 {e} 1 O × S1

Z3
Z4

D3D2 D4

Z2(f ) Z2(e)

1

O × S1

Figure 1. The isotropy lattice for the irreducible action of O × S1 on C3.

Invariant subspaces. For an action of a group G, the isotropy subgroup of a point
x is the largest subgroup of G that fixes that point. Given any subgroup H, the
fixed-point space Fix(H) is the set of points fixed by all group elements in H (see,
for example, Golubitsky et al. 1988).

The isotropy subgroups and invariant subspaces for the irreducible action of O×S1

on C3 are listed in table 1, with a typical point, dimension, generators, number of
conjugates and normalizers tabulated. Note that all non-trivial isotropy subgroups
contain mixed spatio-temporal symmetries; often these are differentiated from purely
spatial symmetries by addition of a tilde, but in this case it is unnecessary. This is
similar to the case for D4 Hopf bifurcations, where the action of D4 × S1 on C2

has non-trivial kernel. Recall that if H is an isotropy subgroup, then the normalizer
Norm(H) = {g ∈ O × S1 : gH = Hg} is the largest subgroup that maps Fix(H)
to itself. The isotropy subgroups can be partially ordered into the lattice shown in
figure 1 by considering containment (up to conjugacy). Note that there is a candi-
date for a robust (relative) heteroclinic cycle that connects equilibria in the D2 and
D4 subspaces and passes through Z2(e) and Z2(f). This set-up is not present in
the D4 Hopf bifurcation and is a truly three-dimensional phenomenon. We have not
managed to rule out such robust heteroclinic cycles, but neither have we observed
them in the normal-form dynamics.
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One can demonstrate that there are no robust homoclinic cycles for this
group action, by noting that the only chains of properly contained subgroups
1 < K < H < O × S1 have K = Z2(e) or Z2(f), and in both cases there is no g
and H such that Norm(K) ∩ gH = ∅ and K < H ∩ Hg. Hence, by proposition 2.3 of
Ashwin & Montaldi (2002), there can be no such robust homoclinic cycles (although
there may still be robust heteroclinic cycles).

Normal form. The general formal normal form for a vector field with the given
action O × S1 symmetry can be written as follows:

ż1 =
∑

(l1,l2,q1,q2,q3)∈I′

C1
l1,l2,q1,q2,q3

zl1
1 |z1|2q1

× (zl2
2 z1−l1−l2

3 |z2|2q2 |z3|2q3 + zl2
3 z1−l1−l2

2 |z3|2q2 |z2|2q3),

where I ′ is the subset of (l1, l2, q1, q2, q3) ∈ Z5 such that

l1 odd, l2 � 1
2(1 − l1) and l2 even,

q1 � max(−l1, 0), q2 � max(−l2, 0), q3 � max(1 − l1 − l2, 0).

The other components, ż2 and ż3, can be obtained by cyclic permutation of the
indices of z1, z2 and z3. We show this by considering the formal power-series expan-
sion of a vector field on C3 as follows:

żi =
∑

(l1,l2,l3)∈Z3

∑
(q1,q2,q3)∈I

Ci
l1,l2,l3,q1,q2,q3

zl1
1 zl2

2 zl3
3 |z1|2q1 |z2|2q2 |z3|2q3 (2.1)

(i = 1, 2, 3), where

I = {(q1, q2, q3) ∈ Z3 : q1 � max(−l1, 0), q2 � max(−l2, 0) and q3 � max(−l3, 0)}.

The series (2.1) commutes with the action of O ×S1 if and only if it commutes with
all its generators. It commutes with ρ111 if

C2
l3,l1,l2,q3,q1,q2

= C1
l1,l2,l3,q1,q2,q3

and

C1
l1,l2,l3,q1,q2,q3

= C3
l2,l3,l1,q2,q3,q1

for all li, qi. It commutes with ρ001 if

C1
l1,l2,l3,q1,q2,q3

= (−1)l2C2
l2,l1,l3,q2,q1,q3

,

C2
l1,l2,l3,q1,q2,q3

= (−1)l2+1C1
l2,l1,l3,q2,q1,q3

,

C3
l1,l2,l3,q1,q2,q3

= (−1)l2C3
l2,l1,l3,q2,q1,q3

.

Finally, it commutes with S1 if

Ci
l1,l2,l3,q1,q2,q3

= 0 for l1 + l2 + l3 �= 1.

After some algebra, the above relations for C1
l,q can be reduced to C1

l1,l2,l3,q1,q2,q3
= 0

if l1 is even, l2 is odd, or l3 is odd and

C1
l1,l2,l3,q1,q2,q3

= C1
l1,l3,l2,q1,q3,q2

.
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Table 2. Branching for the maximal symmetry branches
at generic Hopf bifurcation with symmetry O

(All branches have non-degenerate branching behaviour as determined by the third-order normal
form.)

number of
name branch |z|2 solutions

D3 (z, z, z) −λ(A1r + 2A2r + 2A3r)−1 4
D2 (z, z, 0) −λ(A1r + A2r + A3r)−1 6
D4 (z, 0, 0) −λ(A1r)−1 3
Z4 (z, iz, 0) −λ(A1r + A2r − A3r)−1 6
Z3 (z, ze2πi/3, ze4πi/3) −λ(A1r + 2A2r − A3r)−1 8

Substitution of the above expressions into (2.1) for i = 1 yields the equivariant
normal form given.

Alternatively, one can compute that 1 and |z1|2 + |z2|2 + |z3|2 generate the ring
of invariants up to cubic orders, while the module of equivariants (to cubic order) is
generated by 

z1

z2

z3


 ,


|z1|2z1

|z2|2z2

|z3|2z3


 ,


(z2

2 + z2
3)z̄1

(z2
1 + z2

3)z̄2

(z2
1 + z2

2)z̄3




over the ring of invariants. Hence one can see that the cubic-order normal form is
given by

ż1 = (λ + iω)z1 + A1|z1|2z1 + A2(|z2|2 + |z3|2)z1 + A3(z2
2 + z2

3)z̄1,

ż2 = (λ + iω)z2 + A1|z2|2z2 + A2(|z1|2 + |z3|2)z2 + A3(z2
1 + z2

3)z̄2,

ż3 = (λ + iω)z3 + A1|z3|2z3 + A2(|z1|2 + |z2|2)z3 + A3(z2
1 + z2

2)z̄3.


 (2.2)

For convenience, we write

A1 = A1r + iA1i, etc.

We are interested in the case where λ ∼ 0 and ω = O(1) for Hopf bifurcation. The
fifth-order normal form has first component given by

ż1 = (λ + iω)z1 + A1|z1|2z1 + A2(|z2|2 + |z3|2)z1 + A3(z2
2 + z2

3)z̄1

+ (A4|z1|2(z2
2 + z2

3) + A5(|z2|2z2
2 + |z3|2z2

3) + A6(|z2|2z2
3 + |z3|2z2

2))z̄1

+ (A7(z̄2
2 + z̄2

3)z2
1 + A8|z1|4 + A9(|z2|4 + |z3|4) + A10|z2z3|2)z1, (2.3)

and the other components can be found by cyclic permutation of the indices of z1,
z2 and z3. There can be seen to be seven different equivariants at fifth order.

Maximal symmetry branches. All maximal isotropy subgroups for this action of
O × S1 have fixed-point spaces that are one (complex) dimensional; the equivariant
Hopf lemma (Golubitsky et al. 1988) then implies that each of these supports a
branch of solutions. In this case, we can compute the branching behaviour as in
table 2 and their stability in table 3. Observe that all branches are different for
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Table 3. Stabilities of the maximal branches of periodic solutions bifurcating at generic Hopf bifurcation with symmetry O

(The type refers to whether the eigendirection is radial (r), i.e. within the fixed-point subspace or transverse (t) out of the fixed-point subspace.
the column ‘#’ refers to the number of eigenvalues with this form. The final column indicates the symmetry types of any periodic solutions
that appear at secondary bifurcation associated with these eigenvalues being zero; all branches can also undergo secondary Hopf bifurcation
to tori. These stabilities are given in terms eigenvalues of the relative equilibria of the third-order normal-form coefficients, ignoring the zero
eigenvalues along the group orbit of the normal-form symmetry S1. The quantities ξk are roots of the equation (2.4); these roots come as two
complex pairs, and ‘c.c.’ denotes complex conjugate.)

name type eigenvalue/λ # branches to

D3 r −2 1

t
−A1r + A2r + 4A3r ±

√
(A1r − A2r + 2A3r)2 + 12A3i(A1i − A2i − A3i)

A1r + 2A2r + 2A3r
4 Z2(e)

D2 r −2 1

t
−A1r + A2r + 3A3r ±

√
(A1r − A2r + A3r)2 + 8A3i(A1i − A2i − A3i)

A1r + A2r + A3r
2 Z2(f)

t
A1r − A2r + A3r ±

√
4|A3|2 − (A1i − A2i + A3i)2

A1r + A2r + A3r
2 Z2(e)

D4 r −2 1

t
A1r − A2r ±

√
|A3|2 − (A1i − A2i)2

A1r
4 Z2(e, f)

Z4 r −2 1

t
A1 − A2 − A3

A1r + A2r − A3r
, c.c. 2

t
−A1r + A2r − 3A3r ±

√
(A1r − A2r − A3r)2 + 8A3i(−A1i + A2i − A3i)

A1r + A2r − A3r
2 Z2(f)

Z3 r −2 1

t
ξk

−A1r − 2A2r + A3r
(k = 1, 2, 3, 4) 4

P
roc.

R
.
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y = A3r

x = A2r

y = −m + 2x

y = −m + x

y = m − x

y = m / 2 − x

Z3

Z4

D3
D2

D4

Figure 2. For A1r = −m < 0, the maximal symmetry solutions branch in the λ > 0 direction for
these values of the normal-form coefficients in the (A2r, A3r)-plane. The lines where branching
changes direction are indicated on this diagram. Observe that there are D4 branches everywhere
for A1r < 0 and that there are 10 different cases; A1r > 0 gives a further 10 cases.

generic values of the coefficients; this means that branching is not degenerate if we
only use the third-order normal form. From this information, we see that, in the case
A1r < 0, we can get branching of the maximal symmetry solutions in the λ > 0
direction (and hence possible stable branches) for the regions shown in figure 2. As
usual, we refer to branches that appear for λ > 0 as supercritical and those for λ < 0
as subcritical. We summarize as follows.

(i) The branching only depends on (A1r, A2r, A3r), but the stability depends also
on (A1i, A2i, A3i).

(ii) For the case A1r < 0 illustrated, the D4 branch always branches supercritically.

(iii) The case A1r > 0 is not illustrated, but will lead to a similar pattern of branch-
ing depending on (A2r, A3r).

(iv) One can only realize 20 of the 32 possible combinations of sub/supercritical
branching of the maximal subgroups by appropriate choice of normal-form
coefficients.

The stability of the maximal symmetry branches is calculated in table 3. The
stability is given in terms of eigenvalues ξ for the linearization about these relative
equilibria. These can be converted into Floquet exponents for the periodic orbits
(with period T ) simply by computing eξT .

The eigenvalues of the Z3 solution are given by solving the polynomial equation

ξ4 + c3ξ
3 + c2ξ

2 + c1ξ + c0 = 0, (2.4)

Proc. R. Soc. Lond. A (2003)



Hopf bifurcation with cubic symmetry 1811

where

c0 = 36|A3|2| − A1 + A2 + A3|2,
c1 = 24((−A1r + A2r + 2A3r)A2

3r + (2A2
3i − (A1r − A2r)2

+ A3i(A1i − A2i))A3r + (−2A1r + 2A2r)A2
3i + (A1r − A2r)(−A1i + A2i)A3i),

c2 = 4(A2
1r + A2

2r + A2
3r) − 8A1rA2r

+ 12A3i(A1i − A2i) + 24A2
3i + 28A3r(A1r − A2r),

c3 = −4A1r + 4A2r − 8A3r.

We have not been able to simplify this substantially, but this equation appears to
have four proper complex roots for almost all parameter values.

The final column in table 3 gives the symmetry of the submaximal relative equi-
libria that branch when these eigenvalues pass through zero. These are found by
examining the limiting behaviour of the submaximal relative equilibria.

Note that all maximal isotropy subgroups have one complex-dimensional fixed-
point space and so are C-axial in terms of Dionne et al. (1996). We note that there
are five such maximal subgroups, and so we can conclude that at such a bifurcation
we will have 27 branches of periodic solutions bifurcating with the five maximal
symmetry types.

(a) Dynamics in Fix(Z2(f))

The normal form on Fix(Z2(f)) reduces to the D4 normal form studied by Swift
(1988), namely, if z3 = 0, then

ż1 = (λ + iω)z1 + A1|z1|2z1 + A2|z2|2z1 + A3z
2
2 z̄1,

ż2 = (λ + iω)z2 + A1|z2|2z2 + A2|z1|2z2 + A3z
2
1 z̄2.

}
(2.5)

As in Swift (1988), one can better understand the dynamics of this system by
parametrizing C2 by coordinates (r, θ, φ, ψ) ∈ R4, where

z1 =
√

r cos 1
2θ exp(1

2 i(φ + ψ)), z2 =
√

r sin 1
2θ exp(1

2 i(−φ + ψ)), (2.6)

so that the condition for a periodic orbit ψ = Kt can be expressed as

r cos θ = |z1|2 − |z2|2 = K1, r sin θ exp iφ = 2z1z̄2 = K2, (2.7)

where K1 ∈ R and K2 ∈ C are constants. Observe that the S1 coordinate ψ is
removed by this change of coordinates. Hence we can find the locations of periodic
orbits in (2.2) by differentiating the above expressions to obtain the equations

r(2 cos θ(A1rr + λ) + (rA3i sin2 θ) sin 2θ) = 0, (2.8)

r sin θ(λ + r(1
2A1r + 1

2A2r + A3r(−1
2 + cos2 φ) − A3i cos θ sin φ cos φ)) = 0, (2.9)

r2 sin θ(cos θ(1
2(A1i − A2i + A3i) − A3i cos2 φ) − A3r sin φ cos φ) = 0. (2.10)

Note that, from these equations, we can recover (i) the trivial solution r = 0, (ii) the
maximal branches where sin θ = 0 or cos θ = 0, and (iii) the submaximal branches
where θ and φ vary depending on the normal-form coefficients.
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Table 4. Branching of submaximal solutions in Fix(Z2(f))

limit (z1, z2) (θ, φ) (P4, P5) branching

D4 z2 = 0 θ = 0 P5 = 1 |A3| = |A1 − A2|
D2 z1 = z2 θ = 1

2π, φ = 0, π P4 = 1, P5 = 0 |A3|2 = Re(Ā3(A1 − A2))
Z4 z2 = iz1 θ = 1

2π, φ = 1
2π P4 = −1, P5 = 0 |A3|2 = Re(Ā3(A2 − A1))

Submaximal branches in Fix(Z2(f)). Restricting by excluding the cases (a)–(c)
above, we can obtain submaximal branches as follows. Solving (2.8), we get

sin 2φ =
2 cos θ(rA1r + λ)

rA3i sin2 θ
, (2.11)

whereas solving (2.10), we obtain

cos θ =
A3r sin 2φ

A2i − A1i + A3i cos 2φ
. (2.12)

Moreover, rearranging (2.9), we get

r =
−2λ

A1r + A2r + A3r cos 2φ + A3i cos θ sin 2φ
, (2.13)

and using this to eliminate r, we can define P4 and P5 by

P4 := cos 2φ =
A3r(A1r − A2r) + A3i(A1i − A2i)

A2
3r + A2

3i

=
Re(Ā3(A1 − A2))

|A3|2

and

P5 := cos2 θ =
|A3|4 − |Re(Ā3(A1 − A2))|2

| Im(Ā3(A1 − A2))|2
.

Hence there will be a branch of submaximals with symmetry Z2(f) if and only if

−1 < P4 < 1 and 0 < P5 < 1, (2.14)

where P4 and P5 are real functions of the cubic-order coefficients as defined above.
The direction of branching will depend on the sign of the denominator of (2.13).
Note that these expressions are equivalent to the slightly more compact expressions of
Swift (1988), but they are expressed in the original variables rather than transformed
ones.

On varying one of the normal-form coefficients as a second parameter, the Z2(f)
submaximal branches will limit to the maximal isotropy subspaces given in table 4.
The conditions for branching from maximals to Z2(f) are found from the expressions
for P4 and P5, and it can be checked that these give rise to a zero eigenvalue for the
relevant maximal solution.

(b) Dynamics in Fix(Z2(e))

On the invariant subspace (z1, z2, z2), the dynamics is given by

ż1 = (λ + iω)z1 + A1|z1|2z1 + 2A2|z2|2z1 + 2A3z
2
2 z̄1,

ż2 = (λ + iω)z2 + (A1 + A2 + A3)|z2|2z2 + A2|z1|2z2 + A3z
2
1 z̄2.

}
(2.15)
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Table 5. Branching of submaximal solutions in Fix(Z2(e))

limit (z1, z2) (θ, φ) branching

D2 z1 = 0 θ = π 2|A3| = |A1 − A2 + A3|
D4 z2 = 0 θ = 0 |A3| = |A2 − A1|
D3 z1 = z2 θ = 1

2π, φ = 0 |A3|2 = Re(Ā3(A1 − A2))

One can perform the same substitution (2.6) to obtain submaximal branches when

λ + 1
2r[A1r + 2A2r − A3r + (3 cos θ − 1)(A3r cos2 φ + A3i cos φ sin φ)] = 0, (2.16)

1
2 cos θ(A1i − A2i + 2A3i + A3r sin φ cos φ − A3i3 cos2 φ)

+ 1
2A3i(cos2 φ − 1) − 3

2A3r sin φ cos φ = 0, (2.17)

rA3r(cos2 φ − 1) + 3rA3i sin φ cos φ + cos θ(2λ + r(2A1r + A2r − A3r))

+ r cos2 θ(−A2r + A3r cos2 φ − 3A3i sin φ cos φ) = 0. (2.18)

The above equations do not have the symmetries of the Z2(f) equations, with the
consequence that we have not been able to solve them explicitly. Nevertheless, their
branching behaviour is computable.

Submaximal branches in Fix(Z2(e)). In this subspace, there can be branches of
periodic solutions with submaximal symmetry, namely, when (2.16)–(2.18) have non-
trivial solutions (r, θ, φ).

These solutions limit onto the D2 maximal branch when cos θ = 0 and onto the
D4 maximal branch when cos θ = −1. They bifurcate from the D3 maximal branch
when sin θ = cos θ and φ = 0. In other words, these solutions branch from maximal
solutions under the conditions given in table 5. Note that there can be saddle-node
bifurcations within Fix(Z2(e)) when sin2 φ = 1, r �= 1 and θ �= 0. These are not
associated with bifurcation to or from any invariant subspace.

3. Examples of attracting behaviour

We now attempt to understand the possible dynamics of the normal form (2.2).
Note that, even for the D4 Hopf bifurcation (Swift 1988), proving the exact form
and genericity of the branch of quasi-periodic solutions is impossible if one includes
normal-form symmetry-breaking terms, due to the appearance of resonances. In this
section, we use the dynamical systems package dstool tk (Back et al. 1992) with
the ‘quality-controlled’ fourth-order Runge–Kutta method.

(a) Symmetries of attractors

We say a compact invariant set A is an attractor if it is the ω-limit set of a positive
measure set of initial conditions (see, for example, the discussion in Ashwin (1999)).
It is important to make a distinction between two kinds of symmetries that can be
attributed to an attractor in a symmetric system. Given an attractor A, we define
T (A) = {σ ∈ G : σ(x) = x for all x ∈ A} and Σ(A) = {σ ∈ G : σ(A) = A}
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Table 6. The two families of parameter values of the coefficients in (2.2)
investigated numerically in § 3 b

case λ A1 A2 A3

Iκ 1 + i −1 − 0.9i −0.2 + 0.45i −0.3 + κi
IIκ 1 + i −1 − 0.9i −0.1 + 0.1i −0.3 + κi

as in Chossat & Golubitsky (1988). The former subgroup we refer to as the point
symmetry of the attractor, whereas the latter subgroup is the symmetry on average
of the attractor. In this paper, we employ the latter notion to discuss the symmetry
of an attractor; the former notion corresponds to the isotropy type of a typical point
on the attractor, which may have less symmetry than the attractor.

Projection onto S1-orbits. The S1 symmetry of the normal form means that peri-
odic orbits can be reduced to equilibria on factoring out this symmetry. This allows
us to locate and continue branches of periodic (respectively, quasi-periodic) orbits
as if they were equilibria (respectively, periodic orbits). To this end, we project the
third-order normal form (2.2) onto an R-codimension-1 section in C3 as follows. We
define an ordinary differential equation on (v1, v2, v3) ∈ C3 by

v̇1 = f1(v1, v2, v3) + iav1,

v̇2 = f2(v1, v2, v3) + iav2,

v̇3 = f3(v1, v2, v3) + iav3,


 (3.1)

where the original equations (2.2) are expressed as żi = fi(z1, z2, z3), and where we
choose

a =
− Im(f1z̄1)

|z1|2
.

This equation is well defined for all z1 �= 0 and its solutions are in correspondence
with group orbits of those of (2.2) in the sense that

vk(t) = zk(t) exp(iγ(t))

for γ(t) such that, for all φ ∈ [0, 2π), the spaces

Sφ = {(v1, v2, v3) : |v1| > 0 and arg(v1) = φ} (3.2)

are invariant; this enables us to study periodic orbits of (2.2) by studying equilibria
of (3.1). By choosing initial conditions with x1 real and positive, we will remain in
the subspace S0 for all time and hence effectively reduce the dimension of the system
from six to five.

There are bifurcations apparent between chaotic attractors in the cubic normal-
form system (2.2) at some example parameter values. These transitions appear to be
typical in this system, although proving genericity is only possible in a very limited
sense. Table 6 gives the values of the normal-form parameters that we investigate
here.
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Figure 3. Bifurcation diagrams showing details of some of the bifurcations for the family Iκ,
computed using xppaut. Parts (a) and (b) show the bifurcations on varying κ against Re(x3),
while (c) and (d) show it against Im(x3). Parts (b) and (d) show the same diagram over a smaller
range of κ. All lines represent relative equilibria and the horizontal lines represent relative equi-
libria with maximal symmetry; the thick lines are stable. Note that the only relative equilibria
that are stable are the Z3 solutions for κ < 0.025. The circles are branches of stable periodic
solutions that branch at a Hopf bifurcation at A. This branch is destroyed at a homoclinic
bifurcation at B. C, D and E are bifurcations of submaximal branches with symmetry Z2(e)
and Z2(f) from the maximal branches. Observe that there are two folds of the branch of Z2(e)
solutions between B and C on this diagram. The values of κ at A, B, C, D and E can be found
numerically using the tables in § 2 and are 0.025 14, 0.044 65, 0.103 22, 0.325 64 and 0.595 63,
respectively.

(b) Numerical examples

Bifurcations in the family Iκ. The family of systems Iκ (parametrized by κ) in
table 6 can be observed to have a number of attractors and bifurcations that start
to show the dynamical richness of the normal form (2.2). Figure 3, computed using
xppaut (Ermentrout 2000) shows some branches of relative equilibria and periodic
orbits in the family for the ‘interesting’ range of −0.2 < κ < 0.7. The solutions
are shown projected into the Re(x3) and Im(x3) components for the S1 reduced
system (3.1) with Re(x1) > 0 and Im(x1) = 0, where xi = Re(vi). The steady
states and periodic orbits of the reduced system correspond to periodic orbits and
tori of the original system (2.2), respectively. Note that varying κ does not change
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x3r
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1
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x2r

x3r

x2r
1−1
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Figure 4. Attractors for the system (2.2) are shown (with transient behaviour) for parameter
values (a) I−0.05, a stable Z3 relative equilibrium, (b) I0.03, a stable Z3 relative periodic orbit,
(c) I0.045, a stable Z4 relative periodic orbit, and (d) I0.2, a fully symmetric attractor formed
by merging of all Z4 relative periodic orbits. In all cases, the attractors are shown in the
(x2r, x3r)-plane for the system (3.1) with the continuous symmetry projected out. In these
figures, the projection (and section) preserves a D4 symmetry that fixes x1i = 0.

the position of the maximal solutions, only their stability. Hence they appear as
horizontal lines on these diagrams. The figure shows only relative equilibria and the
Z3-periodic orbits. For κ > 0.045, all of the solutions on this diagram are unstable;
however, they are all of saddle type and many appear to be embedded within the
chaotic attractor for larger κ.

Figure 4 shows attractors for the family Iκ. There is a transition from stable Z3-
periodic orbit to fully symmetric chaos; a Poincaré section of the case (d) is shown
in figure 5a while part (b) shows the network of heteroclinic connections that occur
at the isolated parameter value in Iκ associated with a transition from Z3 tori to
Z4 tori. Figure 6 shows the transition at I0.0047 schematically in a Poincaré section;
before the bifurcation, there are Z3-symmetric tori, which become Z4 symmetric
after the bifurcation.
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x2r

1

−1
x2r
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Figure 5. (a) A Poincaré section taken at Re(x1) = 0.96 for I0.2. (b) I0.0047: two equilibria of
type Z2(e) and their unstable manifolds are shown; these are close to forming a network of
heteroclinic connections.

Figure 6. Schematic of a heteroclinic network between periodic orbits with symmetry Z2(e)
(i.e. (z1, z1, z2)). This is formed at the bifurcation where Z3-symmetric tori are replaced by
Z4-symmetric tori shown with the S1 symmetry factored out and so the periodic orbits are
replaced by equilibria. Before the bifurcation, the connections are broken such that there are
periodic orbits on the triangular faces corresponding to Z3 tori in the full system. After the
bifurcation, there are Z4-symmetric relative periodic orbits on the shaded square faces.

The family IIκ. On increasing κ, this has a branch of stable Z3-periodic orbits that
have a subcritical bifurcation leading directly to fully symmetric chaos.

(c) Breaking the normal-form symmetry

As previously stated, the S1-normal-form symmetry is not present in the full
dynamics. Although it does not affect the branching of periodic attractors and their
stability, it will cause degeneracies of any more complicated attractors. In particular,
tori will only be visible in the dynamics of the full system for isolated parameter
values as the presence of resonances will cause breakup of tori at what may be a very
small scale.
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Figure 7. Simulations of the normal form with broken S1 symmetry (3.3) with xir = Re(zi), for
a Poincaré section taken at x1 constant. (a), (b) A conjugate attractor for I0.028, ε = −0.047;
(c) an attractor for I0.035 with ε = −0.047 with fully symmetric chaos.

To examine the effects of normal-form symmetry breaking, we simulate the sys-
tem

ż1 = f1(z1, z2, z3) + εz3
1 ,

ż2 = f2(z1, z2, z3) + εz3
2 ,

ż3 = f3(z1, z2, z3) + εz3
3 ,


 (3.3)

where fi is the cubic-order normal form in (2.2). The extra term εz3
i breaks the

S1 symmetry for ε �= 0 while retaining the O symmetry. Parts (a) and (b) of fig-
ure 7 show one of the conjugate attractors for the parameters I0.028 with ε = −0.047;
the detail (b) shows the presence of small-scale folding and presumably chaos in
the attractor. Part (c) shows an attractor for I0.035 with ε = −0.047 that is
apparently chaotic and possesses full symmetry. This perturbation can cause the
branch of Z3-symmetric tori to break up into a chaotic attractor before merging
into a single fully symmetric chaotic attractor. Note that the observed quantita-
tive effect of the symmetry-breaking terms on the fully symmetric attractor is not
great.
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4. Instability of ABC flow

In this section we consider time-dependent solutions to the Navier–Stokes equation
with the 1:1:1 ABC forcing. We study in detail the bifurcations from the trivial
steady state (the 1:1:1 ABC flow (1.1), (1.2)) at a Hopf bifurcation where R ≈ 13.044.
According to Podvigina (1999a), the action H of the group on the centre eigenspace
is isomorphic to the representation W0 (see § 1), and hence results of § 2 can be
applied to this bifurcation.

(a) The symmetry group of the Navier–Stokes equation with the 1:1:1 ABC force

The symmetry group H of (1.3), (1.4) with forcing (1.1), (1.2), (1.5) is generated
by

s1 : x1 → x2, x2 → x3, x3 → x1

and

s2 : x1 → 1
2π − x2, x2 → 1

2π + x1, x3 → −1
2π + x3.

Let ϑ : O → H be the isomorphism such that ϑ(ρ111) = s1 and ϑ(ρ001) = s2. Some
other elements of the group are

ϑ(κ+
110) = s3 : x1 → 1

2π + x2, x2 → −1
2π + x1, x3 → 1

2π − x3

and

ϑ(κ−
110) = s4 : x1 → −1

2π − x2, x2 → −1
2π − x1, x3 → −1

2π − x3.

(b) Numerical simulations

Standard pseudo-spectral methods are used for numerical solution of (1.3)–(1.5).
The flow is represented as a Fourier series,

v(t) =
∑

k

vk(t)eik·x. (4.1)

The numerical resolution provided by 163 Fourier harmonics suffices and is used
throughout. We have reproduced results of some 163 harmonics computations, using
the resolution of 243 harmonics (see the next section for details).

For the action of H ∼= O, the space of 2π-periodic functions can be decomposed
into five isotypic components, corresponding to five representations of the group O.
These functional subspaces were described in Podvigina (1999a) by relations between
Fourier coefficients of their elements. In particular, the quantities

q1(v) = 0.5(Re(v2
100) + Im(v3

100)),

q2(v) = 0.5(Re(v3
010) + Im(v1

010)),

q3(v) = 0.5(Re(v1
001) + Im(v2

001))

vanish for functions from any of the four subspaces not associated with the repre-
sentation W0. It is convenient to use the qi to describe symmetries of attractors,
because a symmetry si ∈ H transforms these three quantities in the same way as
ϑ−1(si) ∈ O transforms the three coordinates of a vector.
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Figure 8. The quantities qi(v(t)), for (a) i = 1–3 and (b)–(d) i = 1 (vertical axis) versus time
(horizontal axis) for (a) R = 13.05, (b) R = 13.1, (c) R = 13.12 and (d) R = 13.14.
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Figure 9. Projection of the trajectory in the saturated regime into the complex plane
q1(v(t)) + exp( 2

3πi)q2(v(t)) + exp(− 2
3πi)q3(v(t)) for (a) R = 13.05 and (b) R = 13.1.

(c) Bifurcations to Z3-symmetric attractors

Beyond the Hopf bifurcation, for R > R0, we observe the appearance of eight
symmetrically related attracting periodic orbits with symmetry Z3 (see table 1).
Plots of the quantities qi(v), i = 1–3 (shown in figure 8a for one of the orbits
for R = 13.05) are shifted by one-third of the period. The third-order symmetry
s1 = ϑ(ρ111) permutes the values of the qi,

q1(u) = q2(v), q2(u) = q3(v), q3(u) = q1(v),
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Figure 10. Poincaré section q1(v(t)) = 0 of attractors for (a) R = 13.1, (b) R = 13.117,
(c) R = 13.1175, (d) R = 13.118, (e) R = 13.12 and (f) R = 13.14. Horizontal axis, q2(v(t));
vertical axis, q3(v(t)).

where u = s1(v). Other symmetries from the group H permute the values and may
also change signs, e.g. for u = s2(v),

q1(u) = q2(v), q2(u) = −q1(v), q3(u) = q3(v),

and for u = s3(v),

q1(u) = q2(v), q2(u) = q1(v), q3(u) = −q3(v).

Application of symmetries from H yields eight symmetric attractors with all eight
possible combinations of signs of time averages of the three quantities (note that time
averages of qi for any i do not vanish). Thus signs of the time averages of qi label
the eight attractors (for example, see time-series for the (+ + +) orbit in figure 8a).
Projection of the trajectory for R = 13.05 in the saturated regime into the complex
plane q1(v) + exp(2

3πi)q2(v) + exp(−2
3πi)q3(v) is a circle (see figure 9a), indicating

that this trajectory possesses the symmetry S1. For 13.06 � R � 13.09, the solution
is also periodic.

At the interval 13.05 � R � 13.13, the system has eight symmetry-related attrac-
tors. Bifurcations of each of them are apparently not affected by existence of its
seven symmetric counterparts at this interval of the Reynolds number. Bifurcations
of only one of the eight attractors will be described in what follows, the other seven
evidently undergoing the same bifurcations.

For R = 13.1, the behaviour is quasi-periodic: a torus with the second frequency,
f2 ≈ 0.0017, much smaller than the first one, f1 ≈ 0.043 (cf. parts (a) and (b)
of figure 11), emerges in a Hopf bifurcation from the periodic orbit at R = R1
(13.09 < R1 < 13.1). The second frequency is visible in the time evolution of q1(v)
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Figure 11. Frequency spectrum of q1(v(t)) for (a) R = 13.05, (b) R = 13.1, (c) R = 13.117,
(d) R = 13.1175, (e) R = 13.118 and (f) R = 13.12. Horizontal axis, frequency (Hz).

for R = 13.1 (see figure 8b). Figure 9b, showing projection of the trajectory in the sat-
urated regime into the complex plane q1(v)+exp(2

3πi)q2(v)+exp(2
3πi)q3(v), demon-

strates that the attractor lacks the S1 symmetry. Figure 10a, showing a Poincaré
section of the attractor, also suggests that the attractor is a torus.

The next bifurcation at R = R2 (13.1 < R2 < 13.11) is torus doubling with
emergence of the frequency 1

2f2 (cf. parts (a) and (b) of figure 10, and (b), (c) of
figure 11). In contrast to the well-known Feigenbaum scenario for period doubling
of periodic orbits, torus-doubling bifurcation sequences usually terminate after a
few doublings (Arnédo et al. 1983) and, in our case, we get transition to a 3-torus
(possessing three main frequencies (see figures 10c, 11d)) at R = R3 (13.117 < R3 <
13.1175). At R = 13.1175, close to the point of bifurcation, the emerging frequency
f3 is very close (but not exactly equal) to 1

18f2. f3 varies with R much faster than
f1 and f2 (see parts (d)–(f) of figure 11). Attractors found in computations are as
follows: R = 13.1177—a 3-torus; R = 13.118—a 2-torus with the main frequencies
f1 and 1

14f2 (see figures 10d, 11e); R = 13.119—a 2-torus with the main frequencies
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f1 and 1
10f2; R = 13.1195—a 2-torus with the main frequencies f1 and 1

16f2; and
R = 13.12 and 13.13—chaotic (see figures 8c, 10e, 11f).

These results are obtained with the resolution of 163 harmonics. When the res-
olution is increased to 243 harmonics, the sequence of bifurcations is not affected,
but the values of R at which the bifurcations occur slightly change: the torus dou-
bling takes place at 13.12 < R < 13.125; the transition to the 3-torus takes place at
13.125 < R < 13.13, for R = 13.13 the emerging third frequency remains close to
1
18f2; for R = 13.14, the behaviour is chaotic, resembling the dynamics for R = 13.12
with the 163 resolution.

(d) Bifurcation to fully symmetric chaos

At R = R4 (13.13 < R4 < 13.14), the eight symmetrically related chaotic
attractors join into a single attractor possessing, on average, all symmetries of the
system—a symmetry-increasing bifurcation in the terminology of Chossat & Golu-
bitsky (1988). At R = 13.14, the behaviour becomes intermittent: a trajectory of
the system spends a long time (from 2000 to 150 000 time units in a sample run
of duration of 1.5 million time units) in the vicinity of one of the former chaotic
attractors, then moves to the vicinity of a symmetric copy of the former attractor,
the transition taking ca. 1000 time units. As indicated above, the former attractors
are labelled by signs of time averages of the quantities qi. Computations show that
labels of successive former attractors visited by a trajectory can differ in only one
place (i.e. we observe transitions from (+++) to (++−), (+−+) or to (−++), but
never to, say, (− − +) or (− − −)). Comparison of Poincaré sections (parts (e), (f)
of figure 10) also makes it evident that the attractor under consideration is a union
of eight former attractors. (See, in figure 8d, the behaviour of q1 near the point of
transition from the (− − +) former attractor to the (+ − +) one.)

For 13.14 � R � 13.4 in the vicinity of the trivial steady state, the system possesses
the single chaotic attractor having all the symmetries of the system. As the Reynolds
number is increased, the average time spent by a sample trajectory in the vicinity
of each former attractor decreases. For R � 13.2, there is no intermittency any
more, the solution is chaotic, revealing apparent fast mixing within phase space. We
can neither identify any bifurcation in this interval nor guarantee the absence of
bifurcations.

(e) Interpretation of the sequence of bifurcations

We suggest the following explanation of the observed sequence of attractors. When
R, the only parameter at our disposal, is varied, the eight branches of periodic
attractors with the symmetry group Σ(A) = Z3 (as well as many other unstable
branches) emerge in a generic Hopf bifurcation at R = R0. On varying R, we also alter
the third-order normal-form coefficients and this results in a secondary bifurcation
at R = R1, which is a supercritical Hopf bifurcation (or Sacker–Neimark bifurcation)
to a quasi-periodic attractor (also with Σ(A) = Z3). Note, in particular, that the
frequency introduced in such a secondary Hopf bifurcation must be very small, since,
near bifurcation, all non-trivial solutions of an S1-commuting vector field are periodic
and the higher-order terms will cause only a slow drift between these orbits.

This secondary bifurcation creates a branch that is, however, subject to instabil-
ities brought about by the presence of S1-symmetry-breaking terms. The terms are
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apparently responsible for the torus-doubling bifurcation at R = R2 and also for the
Hopf bifurcation at R = R3. Both torus doubling and transition from a Tn torus to
T (n+1) have been investigated analytically (see Chenciner & Iooss 1979; Iooss & Los
1988 and the references therein). The third frequency that appears varies rapidly
with R and consequently more 2-tori and periodic orbits emerge due to frequency
locking on the 3-torus.

A detailed explanation for the quantitative details of this sequence of bifurcations is
not yet available. In particular, the normal form with S1 symmetry cannot model the
three-frequency quasi-periodicity, and hence it cannot explain why we observe this
particular sequence of bifurcations. Moreover, when general torus bifurcations are
investigated analytically, usually the dynamics of the system cannot be determined
in a certain region of the parameter space (Chenciner bubbles) (Los 1989). In our
case, one can therefore conjecture that, for R > R1, there exists a ‘fat fractal’ set
of parameters with positive measure on which there are quasi-periodic attractors;
within the gaps of this set, there are resonances of non-quasi-periodic attractors and
complicated bifurcation sequences can occur. Thus the sequence of bifurcations is
likely to be more complex than the one outlined in the previous section; due to
limitations of numerical investigation, we have not attempted to locate and identify
all bifurcations.

The transition at R = R4 to fully symmetric chaos is a crisis where unstable invari-
ant sets on a basin boundary merge with an attractor to create a more symmetric
attractor (Chossat & Golubitsky 1988). It is very similar in character to another
secondary bifurcation, also observed in the normal form from Z3 to full symmetry
(see figure 7). In the normal form, we observe a transition from a Z3 quasi-periodic
attractor via a Z4 quasi-periodic attractor to fully symmetric chaos that, at first, is
highly intermittent. These transitions occur under a small change in the normal-form
coefficient in the presence of the normal-form terms breaking the S1 symmetry. This
sequence could be truncated to the one observed at R = R4.

5. Discussion

We have presented a detailed investigation of the generic Hopf bifurcation with the
symmetry O acting as rotations of a cube for an irreducible representation on C3.
We consider a general system defined by the third-order normal form and a particular
hydrodynamical system that has this group of symmetries. For the generic bifurcation
problem, we classify the possible primary branches and their stability and, among
other things, find the possibility of direct bifurcation to fully symmetric chaos or
to tori and show that the periodic orbit branching is determined by the third-order
truncation of the normal form.

The third-order normal form exhibits a rich variety of bifurcations because of the
available dimensions; this is reflected in the secondary bifurcations of the hydro-
dynamical system. The normal form can be used to analytically explain the first two
bifurcations of the hydrodynamical system: emergence of periodic orbits and their
transition to eight symmetrically related stable tori; for each of the orbits and of
the tori with Σ(A) = Z3. These bifurcations are followed by torus doubling and
appearance of the third frequency; it becomes progressively more difficult to iden-
tify subsequent bifurcations. The sequence is concluded with a symmetry-increasing
bifurcation, where eight attractors, each possessing a symmetry group Σ(A) = Z3,
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join into one with full symmetry, Σ(A) = O. (Note that all attractors A observed in
numerical simulations with R > R0 have point symmetry T (A) that is trivial.) This
is also reproduced in the normal form. Although this occurs over a small range of
Reynolds numbers, we see that many different dynamical behaviours occur within
this range.

Neither analytical nor numerical approaches currently provide an explanation of
all bifurcations occurring in the hydrodynamical system. This suggests an approach
for a further analysis: we are in the process of obtaining the relevant normal-form
coefficients for the Hopf bifurcation of the hydrodynamical system to enable us to
numerically investigate the details of the bifurcations. A paper is currently in prepa-
ration (Podvigina 2003b) that confirms the observed primary bifurcation for the
simulations discussed here.

Further analysis of normal form related to Hopf bifurcation with symmetry O
would be helpful, e.g. investigation of secondary bifurcations of the observed branches
of periodic solutions. It is of interest either to establish the existence of robust hete-
roclinics between invariant sets in the system defined by the normal form or to rule
them out. The unfolding of the bifurcation by adding symmetry-breaking terms, say,
from O to D4, and then to no symmetry, could further aid in the understanding of
the primary instability of ABC flows for the more general cases A = B �= C and
A �= B �= C.

Investigation of bifurcations of the solutions of the Navier–Stokes equations for
Reynolds numbers larger than those considered here is presumably possible by the
study of interaction of the steady-state and Hopf bifurcations; both of these are
identified in Podvigina & Pouquet (1994) and Podvigina (1999a,b).

The ABC flow instabilities we examine here are restricted to perturbations that
have the same spatial periodicity as the flow. As it was proven analytically in Libin
& Sivashinsky (1990), Libin et al. (1987) and Moffatt (1986), the flow is unstable to
long-wavelength perturbations for R � 1. It is of interest to identify the resultant
sequence of bifurcations; however, this task is beyond the scope of this paper.
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Dombre, T., Frisch, U., Greene, J. M., Hénon, M., Mehr, A. & Soward, A. 1986 Chaotic stream-

lines in the ABC flows. J. Fluid Mech. 167, 353–391.
Ermentrout, G. B. 2000 xppaut (dynamical systems software). (Available from http://

www.math.pitt.edu/˜bard/bardware/.)
Galanti, B., Sulem, P. L. & Pouquet, A. 1992 Linear and non-linear dynamos associated with

ABC flows. Geophys. Astrophys. Fluid Dynam. 66, 183–208.
Galanti, B., Sulem, P. L. & Pouquet, A. 1993 Influence of the period of an ABC flow on its

dynamo action. In Solar and Planetary Dynamos, Proc. NATO Advanced Study Institute
Cambridge, September 1992 (ed. M. R. E. Proctor, P. C. Matthews & A. M. Rucklidge),
pp. 99–103. Cambridge University Press.

Galloway, D. J. & Frisch, U. 1984 A numerical investigation of magnetic field generation in a
flow with chaotic streamlines. Geophys. Astrophys. Fluid Dynam. 29, 13–18.

Galloway, D. J. & Frisch, U. 1986 Dynamo action in a family of flows with chaotic streamlines.
Geophys. Astrophys. Fluid Dynam. 36, 53–83.

Galloway, D. J. & Frisch, U. 1987 A note on the stability of a family of space-periodic Beltrami
flows. J. Fluid Mech. 180, 557–564.

Gilbert, A. D. 1991 Fast dynamo action in a steady chaotic flow. Nature 350, 483–485.
Gilbert, A. D. 1992 Magnetic field evolution in steady chaotic flows. Phil. Trans. R. Soc. Lond.

339, 627–656.
Golubitsky, M. & Stewart, I. N. 1985 Hopf bifurcation in the presence of symmetry, Arch. Ration.

Mech. Analysis 87, 107–165.
Golubitsky, M., Stewart, I. N. & Schaeffer, D. 1988 Groups and singularities in bifurcation

theory 2. Applied Mathematical Science, vol. 69. Springer.
Guckenheimer, J. & Holmes, P. 1988 Structurally stable heteroclinic cycles. Math. Proc. Camb.

Phil. Soc. 103, 189–192.
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