Exploiting Contextual Change in Context-Aware Retrieval

Peter J. Brown
Department of Computer Science
University of Exeter
Exeter EX4 4PT
United Kingdom

P.J.Brown@exeter.ac.uk

ABSTRACT

Information retrieval systems are usually unaware of the
context in which they are being used. We believe that ex-
ploiting context information to augment existing retrieval
methods can lead to increased retrieval precision. This ap-
proach is particularly important with the development of
wireless mobile information appliances, such as PDAs. Many
of these devices are aware of the user’s physical context, and
this has led to the evolution of context-aware applications.
Such applications can automatically utilise the user’s cur-
rent context, e.g. location or ambient temperature. Context-
Aware Retrieval is related to traditional Information Re-
trieval and Information Filtering, but is potentially more
challenging due to the often continuous changes in user con-
text. To meet these challenges we suggest a potential ad-
vantage of Context-Aware Retrieval: this is that the current
context is often changing gradually and semi-predictably. In
this paper we suggest new methods based on a context-diary
and caching aimed at improving both the precision of rele-
vant retrieved information and the speed/availability of re-
trieval. The methods can be used, in principle, on top of
existing retrieval systems.

1. INTRODUCTION

Information retrieval technology has continually grown to
meet challenges presented by new forms of usage. One new
and expanding application environment is that of wireless
mobile devices such as PDAs. It is natural to suggest that
users will want to retrieve information while using these net-
worked mobile appliances. With mobile applications some
aspects of the user’s context, e.g. their location, are often
available, and this context can affect what information is
relevant to the user. Indeed there are existing applications
in areas such as tourism where the user’s current context
may be the sole driver of what is retrieved.

We are interested in such context-aware retrieval of in-
formation. To be exact we are interested in retrieving in-
formation that is pertinent to the wuser’s current context.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC 2002, Madrid Spain

Copyright 2002 ACM 1-58113-445-2/02/03 ...$5.00.

Gareth J. F. Jones
Department of Computer Science
University of Exeter
Exeter EX4 4PT
United Kingdom

G.J.FJones@exeter.ac.uk

As well as tourist applications, this is needed by context-
aware applications such as general information aids for mo-
bile users (e.g. exhibition visitors, motorists or inhabitants
of Cooltown [7]). Other context-aware applications are use-
ful on static computers as well as mobile ones, where the
context may be the user’s computing context, e.g. the doc-
ument they are reading; examples of these applications are
ones that supply reminders based on the user’s current con-
text (e.g. ‘when you were last in a similar context, you
accessed document XXX — which gives information about
creating electronic links’). This class of application is more
generally covered by standard relevance feedback and per-
sonalisation methods; we are are more interested in applica-
tions where additional context information beyond the tex-
tual document content is available.

As all these applications move from laboratory to mar-
ketplace, and deal with increased amounts of information
and much richer contexts, we believe they can gain from
developing retrieval methods that are better designed to in-
corporate context information into the retrieval process. A
particular challenge of this technology comes from the ob-
servation that context is often changing continuously. Ex-
isting context-aware applications have only explored the use
of small well structured datasets. New systems need to be
more flexible to handle large amounts of unstructured data
and be easily usable by a wide range of users. We draw a
parallel with the overall discipline of Information Retrieval,
which has moved on from the early Boolean systems to the
best-match ranked retrieval systems of today; the latter are
highly successful both in performance and in delivery of rel-
evant information, and they can be applied to any sort of
user need.

The main focus of this paper is how analysis of change in
the current context can lead to improved retrieval precision
and to better retrieval speed. Our emphasis throughout is
on simple methods such as linear prediction. Qur emphasis
is also on postulating ideas and questions: we have built an
experimental system to investigate these ideas, but it will
be a while before we have definitive results — indeed part
of the research challenge of our work is to design evaluation
strategies and data sets. Obviously there is future scope for
more elaborate approaches, perhaps based on Al algorithms,
but we believe there are many unanswered questions even
with simple approaches.

The structure of the remainder of the paper is as follows.
Section 2 introduces the basic concepts of Context-Aware
Retrieval; Section 3 then discusses the retrieval process. In
Section 4 we discuss the importance of change in the cur-

rent context, and in Section 5 how to keep a record of this
in the form of a Context-Dairy. Section 6 introduces the
idea of the Context-of-Interest, which may differ slightly
from the actual current context, and describes how this dif-
ference can be used to improve performance. Continuing
the performance theme, Section 7 outlines methods to im-
prove retrieval speed and a caching technique, and Section
8 then gives some ideas on tuning the retrieval algorithms.
Finally we outline our current experimental Context-Aware
Retrieval framework in Section 9.

2. CONCEPTS OF CONTEXT-AWARE RE-
TRIEVAL

2.1 Representing User Context

The basic components of Context-Aware Retrieval (CAR)
are: a document collection, which contains the documents
that may be retrieved annotated with details of their asso-
ciated contexts, and the user’s current contert. The current
context normally consists of a set of separate fields; typically
most or all of these are set by sensors (e.g. GPS for Loca-
tion), but the sensor-derived fields may be augmented by
other fields set by the user or application (e.g. Interests or,
more generally, fields representing a user profile). Fields can
be of various data types, such as numbers, two-dimensional
or three-dimensional locations, sets, texts, images, etc.

Often numerical values will be ranges rather than single
points: for example a Location may be represented by a
circle or rectangle, and a Temperature field by a range of
temperatures. Fields may be structured, e.g. representing
a Location field in a tree of levels of abstraction with ‘My
office’ at a high level and the physical location at a lower
level. Structured fields are used, for example, in MemoClip
[1] and in CybreMinder [4] — both systems for supplying
reminders when the fields of a user’s context match some
previous situation: the idea is that retrieving documents
relating to the previous situation will help in the present
one.

In this paper, however, we assume for simplicity that fields
are unstructured name/value pairs. Thus a field may have
the name ‘Location’ and a value giving a location. It is easy
to represent most aspects of physical context as name/value
pairs, but for more human-related aspects of context (e.g.
mood, current activity) it may well be a research problem to
derive the values — see Pepys [10], for how activity in the of-
fice (e.g. a meeting) was guessed from low-level sensors. Our
interest is retrieval rather than representation/derivation of
context, so we assume the name/value pairs have been con-
structed.

2.2 Retrieval Paradigms

CAR is related to the well established fields of Information
Retrieval and Information Filtering. To make this relation-
ship clearer we distinguish two CAR paradigms as follows:

e proactive: some or all of the documents in the doc-
ument collection contain a triggering condition, and
when this matches the current context the document
is retrieved. This has parallels with Information Fil-
tering; the triggering condition has the role of the pro-
file, and the current context acts as the current doc-
ument; when the current context changes, a new cur-
rent document is derived and a new retrieval takes

place. One difference with Information Filtering is
that the triggering conditions (profiles) are specified
by the provider of the document collection, not by the
user. They apply to all users.

e interactive: the current context is used to derive a re-
trieval query which is applied to the document collec-
tion in the standard manner used in information re-
trieval. Retrieval may be initiated directly by the user
or automatically by the application (e.g. whenever the
current context has changed). The current context is
converted into a standard IR query.

A crucial property of many context fields is that they are
continuous: as the user’s context changes new information
may need to be retrieved. Such continuous applications nor-
mally require fast retrieval, so that the user has the illu-
sion that new information arrives immediately there is any
change in their context. This is absolutely different from the
‘one-oft’ nature of traditional information retrieval requests,
and presents many research challenges, especially given the
constraints of high precision and fast performance.

Finally, an observation on the word ‘context’: this has a
wide variety of interpretations. Some authors [5] have looked
at the coupling of information retrieval and the context of
the information itself (who wrote it and when, whether the
information is ‘official’, whether it has been cited by other,
respected, people). The information’s context can be impor-
tant to the user in evaluating the information, e.g. whether
they believe it to be true. This type of context is not, how-
ever, our interest here: we concentrate on the user’s context.

2.3 Retrieval Environment

Two key properties of retrieval are recall and precision.
As Rhodes and Maes [13] have observed, in CAR precision
is generally the more important, a key observation that influ-
ences many of the ideas presented in this paper. The main
reason is that the user is typically mobile, and is involved
in other tasks. When a retrieved document is brought to
her attention this is an intrusion. This is especially true
when the retrieval was not explicitly asked for by the user.
It is less true in interactive retrieval initiated directly by the
user, though even here, assuming the user is constrained
by a small screen, they cannot easily browse through reams
of information. Overall a useful maxim for the design of
CAR applications is assume each retrieval is an intrusion;
therefore try to make sure that it is relevant. Even if the
information is relevant, it still needs to be presented to the
user in a manner that does not interfere too much with their
other activities. HCI issues are not a prime focus of this pa-
per, though they are, of course, central to the success of
an application. They can affect the way information is de-
livered (e.g. by audio rather than textually) and presented
(e.g. via a ‘ramping’ interface that allows easy transition
between levels of detail, and is suitable for a small screen).
See [13] for more details of HCI issues.

3. CONTEXT-DOCUMENT MATCHING

We believe that a best-match rather than a Boolean ap-
proach is preferable in CAR for the same reasons as it is in
many other retrieval applications. In particular the scores
derived in best-match retrieval provide a building block for
deciding the order in which items are presented to the user
— or whether any items are presented at all; this can help

achieve the goal of high precision. Existing CAR systems
have concentrated on database approaches: we have not
done this, partly because we want our returned documents
to be ranked, and partly because, as contexts become richer
and involve more fields, information becomes less structured.
Moreover they often contain textual fields for which retrieval
methods are better suited.

Our CAR research uses ideas from stick-e notes [2]; stick-e
notes are like ordinary paper Post-it notes, except that they
are attached to an electronic context rather than stuck in a
certain physical location. This electronic context can be a
rich one covering any or all of such contextual fields as lo-
cation, time, temperature, orientation, text of an electronic
document currently being read or composed, state of equip-
ment, camera image, ... Stick-e notes, like many other
CAR systems, use Boolean retrieval. Our new system uses
best-match retrieval. It is not the first CAR system to do so.
Best-match technology is employed in Savant, which is used
for Just-in-time retrieval agents [13]. Savant is designed to
work on existing multi-field document collections, such as
archives of e-mail or news stories. The purpose of the new
ideas presented in this paper is that they could be applied
to any existing best-match CAR system, including Savant.
Thus our interest is not in establishing a new approach to
retrieval, but rather finding augmentations that are apposite
for CAR.

A characteristic of ordinary best-match information re-
trieval is that, provided there is not a complete mismatch,
the application always delivers some documents, even if all
the retrieved documents have low scores. The assumption is
often made that the user would rather have something than
nothing at all. In CAR, on the other hand, where retrieval
can be an intrusion, the application may well decide to ig-
nore all the results of a retrieval if the retrieved documents
have low scores. Best-match retrieval potentially provides
the wherewithal to do this, though picking thresholds is al-
ways a hard problem [15]; it is our hope that augmenting
the retrieval process with contextual information can make
this process more reliable.

3.1 Matching with Multiple Context Fields

As we have said, a characteristic of CAR is that the cur-
rent context is typically divided into separate fields (e.g. the
retrieval process needs to match the user’s Location field,
their Temperature field, their Current-need field, etc.). The
documents in the collection are, we assume, similarly di-
vided into fields, and each document has the same overall
format as a current context. For example a document about
a tourist site might have a (large) textual field giving a de-
scription of the site, together with other fields giving the
context in which the site would be of interest (its location,
its opening hours, etc.). In theory some of the contextual
fields could be derived automatically from the document
content (e.g. if the document is about The Tower of London
its Location field could be set to the location of this Lon-
don landmark), but at present our fields are set explicitly.
(The symmetry between current context and document has
benefits, as we shall see later: for example, in a ‘memory
aid’ application, a set of previous current contexts could be
placed in a document collection, and used as an object for
retrieval. This allows users to retrieve past contexts similar
to their present one.) A retrieval operation, when matching
a document against the current context, involves matching

individual fields and then combining the results to obtain
an overall score for the match. Only a subset of the fields
may be ‘active’ in the sense that they are involved in the
retrieval. (In essence CAR has similarities to traditional
bibliographic retrieval, where documents have fields such as
“Title’, ‘Author’, ‘Date’, ‘Abstract’, etc.). The following fac-
tors — which we discuss in more detail later — are pertinent
to an overall score for CAR:

(1) The algorithm for calculating a score to measure how
well two fields (one in the query derived from the user’s
context, and one derived from the document) match.
Such algorithms will usually depend on the nature of
the fields: an algorithm for matching two locations will
be different to an algorithm for matching two dates,
which in turn will be different to an algorithm for
matching two textual fields. Matching of textual fields
has been extensively studied, and we can use standard
best-match term weighting strategies, such as those
adopted in the Okapi system [14] or the SMART sys-
tem [16]; matching of other field types is much more
open to experiment.

(2) The relative weights of fields; for example a Location
field may have twice the weight of a Temperature field.
(A weight is called a bias in [13]). Determining such
weights for optimal retrieval performance in individual
applications is very much an open research question;
one issue is the amount of context evidence, including
not just its current value, but how it may be changing.

(3) An algorithm for combining (1) and (2) above into
an overall score. Often this algorithm computes a
weighted arithmetic or geometric mean.

All of the above three offer scope for tuning to improve
precision. Our experimental system allows any of the three
to be changed dynamically, i.e. between one retrieval and
the next. Thus an application could, for example, increase
the relative weight of a field that was changing fast — we
mention later this example, which is also covered in [13].
(We think it relatively unlikely that the application would
want to change (3) above dynamically, e.g. to suddenly
switch from an arithmetic mean to a geometric one, but it
is possible if necessary.) We refer to the above three the
retrieval plug-ins of our experimental system.

The focus of our work has so far been on users who are
independent of each other rather than collaborating in their
retrieval. In collaborative systems further types of weight-
ing are possible: e.g. weightings that encourage a user to-
wards (or even away from) another colleague whose location
is known. Issues relating to collaborative systems are not
explored further in this paper.

4. THE NATURE OF CONTEXT CHANGE

In our previous work [3] we analyzed the relationship be-
tween, on the one hand, CAR, and, on the other hand, tra-
ditional IR (Information Retrieval) and IF (Information Fil-
tering). One of our conclusions is that CAR has elements
of both IR and IF, but is potentially harder than either of
them: (a) because the current context is changing, often
continuously, and the document collection may be changing
too, and (b) because CAR often needs near-continuous and
fast retrieval.

To counter all the potential difficulties of CAR, it is im-
portant to try to find something that can give CAR an ad-
vantage. We believe that one potential advantage is that
the current context is usually changing gradually and semi-
predictably. This potential advantage is a focus in the rest
of this paper.

In some applications there will be fields of the current
context that do not change gradually and predictably. This
will apply especially to fields set by the user: their Interest
field may, for example, go from documents whose Content
field relates to architecture to documents about transport
systems. (Perhaps, however, even in this case a clever Al
program would have some success at prediction.) Paradox-
ically when a predicted change does not occur, this in itself
can be a significant event that could cause extra weight to be
given to the changed field (e.g. the temperature suddenly
dropping in an industrial context). In our case, following
our keep-it-simple aim, we only set out to exploit fields that
are easy to analyze and predict.

There are, of course, other aspects of change in addition
to change in the current context. For instance there may be
change in the document collection and/or change resulting
from adaptive feedback from the user concerning the rele-
vance of previously-delivered documents. Such aspects of
change have already been studied in conventional IR and IF
— though some aspects of feedback may relate specifically to
context. Change in the current context, which is germane
to CAR, is much more an open field, and that is why we
concentrate on it here. In order to make use of change in
context we need to keep a record of previous contexts and
expected future contexts; to achieve this we explore, in the
next Section, our proposal of the Context Diary.

5. THE CONTEXT DIARY

If we wish to analyze change in the current context we
need to maintain a history of it. Clearly the more wide-
ranging the history, in terms of users and events covered,
the more information is available to adapt future CAR be-
haviour. On the other hand the more useful this information
is, the more it is a danger to personal privacy, particularly in
applications covering interacting groups of people. We will
assume here a compromise position where the history relates
to a single user, and has access controls that are acceptable
to that user.

History can be maintained automatically by the applica-
tion; for example a record of the current context may be
added to the history:

e every N minutes,

e whenever the current context changes by more than a
certain threshold amount,

e whenever any retrieval request occurs,

e whenever user feedback indicates that a particular cur-
rent context was important.

History may be confined to those fields that are easy to
analyze and predict; for example, location and temperature.

Interestingly, history can sometimes be generalised to in-
clude the future as well as the past. For example, if the
user’s diary says he is planning to be at a meeting at a cer-
tain location in two hour’s time, then this can be recorded

as a ‘future’ item in the history of their Location field, and
may well turn out to be valuable in making intermediate
predictions. Thus, in this paper from now on we will not
use the word ‘history’ to describe the record of contextual
values: instead we will use the term Context Diary. The
Context Diary can cover both past and future (though, be-
cause the past is certain and the future is not, the detailed
mechanisms for storing future events may have some spe-
cial properties, e.g. their probability of occurrence, which
may itself be estimated from past experiences). The Con-
text Diary may be derived from an existing calendar/diary
system and/or from an electronic notification system such as
Khronika [9] and its successors; such systems are most valu-
able when they supply multiple contextual fields, such as a
time and a place. The Context Diary can also derive infor-
mation from weather forecasts, e.g. a likely temperature at
a certain location at a certain future time. Of course as time
goes by, future diary events can become past diary events —
but perhaps only if they are detected as really happening,
e.g. that sensor values indicated that a user really did at-
tend a scheduled meeting or alternatively that the meeting
was missed, which is itself a contextual element that may
have implications for the future.

In our current experiments the Context Diary, as the
above discussion implies, is indexed by time, but it could
be indexed by any contextual field, e.g. Location. Moreover
it could be based on a concept such as user trails, which are
a combination of Location and Time fields.

The Context Diary has three potential uses: (a) to detect
change — clearly if we want to detect when a current value
changes we need to know its past value(s); (b) to predict;
(c) as an aid to the retrieval process (e.g. to eliminate ‘been
there, seen it’ items). More subtly the Context Diary can be
used as the document collection to be retrieved from (each
entry in the diary counting as a document); this can enable
the user to retrieve contexts similar to their present one, in
the manner of a memory prosthesis [8].

6. THE CONTEXT-OF-INTEREST

In many CAR applications, particularly mobile ones, the
user may often not in fact be interested in information re-
lating to their current context: instead they are likely to
be interested in a context ‘just ahead’. This is an example
of what we refer to from now on as the context-of-interest.
For example the context-of-interest of a traveller or tourist
might be set with the aim that they retrieve information
just before they need it. The Context Diary can be used,
together with the current context, to predict the context-
of-interest. This predicted context-of-interest is then passed
to the retrieval system in place of the true current context,
with the aim of retrieving documents that are more relevant
to the user’s needs at the time of delivery.

The following are examples of how fields within the context-
of-interest may be set:

e a Location field may be set to a point (or, more likely,
a range of values) ahead of the user’s current location,
taking into account their direction of travel, since the
user is more likely to be interested in sites ahead of
rather than behind them.

e the Time field can be set to a value somewhat in the fu-
ture. In one sense the Time field is an extreme because
(a) its advance is totally predictable, and (b) there is

a sharp cut-off in usefulness between information re-
lating to past time and future time. As an example of
(b) assume a document relates to a museum and has
a Time field with value 9.00am to 5.00pm represent-
ing its opening hours; if the current time is 4.59pm,
this will match the document’s Time field; however
the user would be more interested in a building that
was opening at 5.00pm. Thus their context-of-interest
is ahead of the current time.

e 3 field relating to outside temperature would be useful
in determining whether to deliver information about
an open-air café. In most countries temperature is
fairly predictable, and the most relevant temperature
for information delivery is likely to be the tempera-
ture in, say, half an hour’s time, or even the predicted
average temperature over the next two hours. This
information might therefore be used in the context-of-
interest to form part of the decision about whether to
return information about the open-air café. A predic-
tion can be based on the rate of rise/fall of temperature
(derived from analysing the Context Diary), the cur-
rent temperature (as detected by a sensor), and per-
haps the future temperature given by a weather fore-
cast that has been incorporated in the Context Diary.

Of course prediction can be wrong, especially, for the
above examples, in the evaluation of a future Location value.
Sometimes a bad prediction will lead to the retrieval of in-
formation that is less relevant than if there had been no
attempt at prediction. Thus a goal of our research is to find
out how much the gains counterbalance the losses. So far
the indications are that modest predictions - taking a small
rather than a large leap into the future — are winners, at
least in tourist applications.

Finally the context-of-interest can be used to improve the
setting of the current context. Some sensors give occasional
totally wrong values, and others periodically fail to work
(e.g. GPS in a tunnel). Prediction can be used for checking
and to smooth over difficult periods; the result should be an
improvement in the relevance of delivered documents, and
an elimination of some irrelevant ones.

7. APPLICATION OF THE CONTEXT-OF-
INTEREST

The context-of-interest also has value in improving per-
formance when: (1) retrieval is slow, or (2) connection to
the document collection is only periodically available.

7.1 Compensating for Slow Retrieval

The time taken to complete the retrieval process is of-
ten a key parameter in user assessment of search engines.
Retrieval speed is thus an important concern in the devel-
opment of CAR technologies. If retrieval takes an average
of two minutes because of limited processing or communi-
cation resources, then, even if the user wants information
about their current context, they will want it to be about
their predicted current context two minutes after the re-
trieval request. Thus the latter should be supplied to the
retrieval engine. (This example, incidentally, offers a partial
escape if a prediction turns out to be wrong: if the user sud-
denly changes direction after 30 seconds, thus invalidating
their predicted Location, the previous retrieval request can
be aborted and a new one initiated.)

To turn this example back-to-front, the same technique
can be used when the processing of each retrieval request
is slow, but the retrieval engine is currently idle. During
this otherwise idle time the retrieval engine can be asked
to retrieve information for a predicted future context: if the
prediction turns out to be correct, and if the application asks
for a retrieval for the predicted context, then response will
be immediate since the retrieval has already been done. This
can help somewhat to meet the CAR challenge of providing
near-continuous high speed retrieval.

7.2 Context-aware Caching

In practice we have observed that successive retrievals of-
ten yield much the same documents, but with scores grad-
ually changing as the current context changes. This leads
to the idea of using the set of documents yielded on one re-
trieval as a cache. Subsequent retrievals use this cache as
the document collection to be retrieved from. The cache
improves subsequent retrieval speed: the cache is typically
much smaller than the original document collection, and
thus retrieval from it is likely to be much faster.

The usage of a context-aware cache is similar to the way
virtual memory is used. In cases where the application is
continuously connected to the retrieval engine it can con-
tinue using a context-aware cache until the user strays out-
side the predicted range of contexts-of-interest. A bad pre-
diction is not a tragedy, but a good prediction can lead to
a big improvement in retrieval speed. Even in cases where
a cache needs to be abandoned, its replacement cache can
often be created by updating rather than completely replac-
ing the previous one; updating can represent a considerable
saving of bandwidth.

Context-aware caches work best when retrieval has the
property that a small change in the current context will
lead to a small change to the documents retrieved and their
scores. Our feeling is that this will usually be the case, but
we need to finish our experiments to verify it. Obviously,
however, there will be exceptions as there are discontinuities
both in the natural world and the man-made world.

To create a cache, the appropriate documents must be
extracted from the document collection. The simplest way
to do this is to make a retrieval request and use the retrieved
documents as the cache for subsequent retrievals. A crude
approach would be to make a retrieval request for the current
context, and to set a low threshold: the retrieved documents,
i.e. those that match the current context at least in a small
way, are then used as a cache. This crude approach has
the disadvantage that if matching of fields is designed to
give a quickly reducing score as differences increase (e.g.
a difference in location of more than a mile gets a score of
zero), then the cache will soon become invalid as the current
context changes.

An improvement of the crude approach to extracting the
cache is the following. Instead of using the current context
as the query, the approach is to use the union of all current
contexts likely to occur while the cache is in use. Thus the
query will typically cover a range of locations that the user
might reach during the lifetime of the cache, the range of
times for which the cache is needed, the range of temper-
atures likely to be encountered, and so on. These ranges
are set on the basis of prediction. This wide-ranging query
is fed to the retrieval engine, and the retrieved documents
whose score exceeds some threshold are then used as the

context-aware cache.

A cache is also invaluable when the user is only period-
ically connected to the document collection, e.g. because
of physical limitations or cost. For instance in fieldwork
applications [11], the fieldworker may download a cache in
the morning and use it for a whole day. At the other end of
the time spectrum a user employing wireless communication
may employ a cache for a few minutes to combat commu-
nication discontinuities or charges. Generally, as in these
examples, the cache will be in the memory of the mobile
device, but it is also possible for servers to use caches.

8. USING CONTEXT CHANGE AND LEARN-

ING TO IMPROVE PRECISION

The theme of the above discussion is that the use of the
context-of-interest can lead to improvements in both preci-
sion and retrieval speed. We now concentrate just on preci-
sion, and on other ways to use analysis of change to improve
it.

In terms of improving precision we will exploit a mixture
of (a) higher level ideas, such as the context-of-interest, and
(b) selection and adaptation of matching algorithms, in par-
ticular the algorithms for matching of fields, and the weight-
ing of fields. As we have said, we believe that algorithms for
field matching need to depend on the nature of the field. As
an example, Jones and Brown [6] have postulated two pos-
sible algorithms for matching Location fields. As we have
already suggested in this paper, an algorithm for matching
the Time field on a document (which we assume relates to
opening hours) with the Time field on the current context
might give a score of zero if an attraction is about to close.
If we assume the Context Diary is also available to these
algorithms, they can take account of change. For example
an algorithm relating to a tourist might assume that the
tourist prefers not to backtrack their route, and thus doc-
uments whose Location relates to positions already visited
get a low score.

Setting the relative weights of fields is an obvious way of
tuning the retrieval algorithm. Some of these weights will
be permanent: e.g. if you believe the claim that context-
aware applications depend on ‘location, location, location’,
then the Location field gets a high weight. Sometimes the
relative weights will be adjusted by the user (‘I am especially
interested in the effects of my heart rate [as measured by a
field representing a heart rate sensor]’). On top of these we
believe there is scope for changing weights dynamically to
improve precision, following the experience of the methods
used by the Jimminy system [12]. In particular we plan to
investigate the following conjectures:

e a changing field should be given more weight than a
static one.

e a field whose rate of change has altered should get
higher relevance. An example would be a previously
static field that had suddenly started to change. (If
this conjecture is true there is a roundabouts-and-swings
situation; such a change would mean that previously-
made predictions would be wrong, thus losing perfor-
mance, but precision might be gained by adding weight
to the suddenly changing field.) This relates to our ear-
lier comment that an unpredicted change in a field is
a significant event that should cause the field to have
greater weight.

In addition well-known IR techniques such as relevance
feedback can be used to adjust weightings. The Context
Diary provides a mechanism for recording and using this.

9. EXPERIMENTAL SYSTEM

We have built an experimental system to begin explo-
ration of the ideas presented above. The prototype is writ-
ten in Java to aid portability and to facilitate usage over the
web, and includes a retrieval engine that covers both proac-
tive and interactive retrieval. Ideally we would have liked to
base the prototype round an existing retrieval engine, but
the need to cover both proactive and interactive retrieval —
thus covering both IR and IF aspects — and the need for ex-
perimentation in context-aware matching algorithms led us
to build our own engine. Figure 1 shows a block diagram of
the operation of the prototype system. In order to improve
modularity our architecture is based on a pipeline model.
A typical use of a pipeline is as follows; we assume in the
example that the end-user is a tourist:

(1) a pre-processor takes as input the tourist’s current con-
text. Using the Context Diary it predicts the context-
of-interest, which is then passed to stage (2). The pre-
processor also calculates field weights, based on the
way fields are changing, as recorded by the Context
Diary.

(2) the first retrieval stage is a proactive retrieval using
a document collection about tourist attractions. It
uses as the current context the context-of-interest sup-
plied by stage (1). It uses as retrieval plug-ins the field
weights calculated by stage (1); it might also use some
further retrieval plug-ins supplied by the application
designer, e.g. an algorithm for matching locations.
The output is a set of retrieved documents; each such
document has an overall score and each matched field
within it has a score too.

(3) the second retrieval stage is an interactive retrieval,
with components designed to factor in the user’s in-
terests. This stage uses a completely different ‘current
context’: not the tourist’s physical current context,
but one representing user preferences. This current
context is used as a retrieval query, and represents the
tourist’s current interests, e.g. that the Body field of a
document should contain the word ‘architecture’. This
stage takes as input the documents retrieved at stage
(2) and produces as output a subset of them; this sub-
set will have the original scores changed, according to
how well the tourist’s interests appear to be matched.
(Conceptually stages (2) and (3) can be regarded as
one, with the user’s interests and their current physi-
cal context treated as a single entity; in implementa-
tion terms, however, it may be convenient to separate
them.)

(4) the post-processing stage takes the retrieved documents
output from stage (3) and massages the scores. For
example, if retrieval has been unexpectedly slow, the
massaging might take account of how the current con-
text has changed since it was supplied in stages (1)
and (3). As another example, the post-processor might
use information in the Context Diary to decrease the
scores of documents whose Location fields corresponded
to places the user had already visited.

DOCUMENT USER CURRENT
CONTEXT DIARY COLLECTION PROFILE REVISED CONTEXT REVISED
l i l RETRIEVED l RETRIEVED
CURRENT CCI)’N\I'ITIIEEI;(;S?'F ‘ RETRIEVED DOCUMENT DOCLLIJSMTENT

CONTEXT DOCUMENTS LIST
— @ @ ©) @ —

FIELD
WEIGHTINGS

Figure 1: Experimental CAR retrieval prototype pipeline.

(5) those documents from stage (4) whose overall score is
above a certain threshold are presented to the user.

The system does not currently include any user feedback
functionality to modify field weights and user interest pro-
files, but we plan to add and explore these as our work
develops.

10. SUMMARY

Our belief is that CAR will become an important technol-
ogy in mobile applications, and there will be an increasing
need to improve CAR performance both in terms of preci-
sion and speed. In this paper we have presented a number of
ideas that can be used to augment retrieval engines to make
them good CAR vehicles. A key to the implementation of
our ideas is maintaining a Context Diary of past and possi-
bly future values of the fields of the current context. This
can be used:

e to derive a ‘context-of-interest’, which might derive
better retrieval results than using the current context.

e to help in building context-aware caches.

e to help write effective ‘retrieval plugs-ins’ to fine-tune
retrieval algorithms.

We hope that these ideas will provide a platform for tack-
ling the future demands of production-quality CAR. We be-
lieve there is a large scope for more detailed research and
experimentation in each of the above three areas, and we
hope the ideas presented here might act as catalysts to these
investigations.

Acknowledgements

Peter Brown is grateful both to the Leverhulme Foundation
and to Exeter University for supporting this work. Both
authors are grateful to Lindsey Ford for his implementation
work.

11. REFERENCES

[1] Beigl, M. ‘MemoClip: a location-based remembrance
agent’, Personal Technologies, 4, 4, pp. 230-233, 2000.

[2] Brown, P.J., Bovey, J.D. and Chen, X. ‘Context-aware
Applications: from the Laboratory to the
Marketplace’, IEEE Personal Communications, 4, 5,
pp- 58-64, 1997.

[3] Brown, P.J. and Jones, G.J.F., ‘Context-aware
retrieval: exploring a new environment for information
retrieval and information filtering’, Personal and
Ubiquitous Computing 2001, In Press.

[4] Dey, A.K. and Abowd, G.D. ‘CybreMinder: a
context-aware system for supporting reminders’, in
Thomas and Gellersen (Eds.) Handheld and ubiquitous
computing, HUC 2000, Springer, pp. 172-186, 2000.

[5] Dourish, P., Bellotti, V., Mackay, W. and Chao-Ying
Ma. ‘Information and context: lessons from a study of
two shared information systems’, Proceedings
C00CS’93, Ca., USA, pp. 42-51, Nov. 1993.

[6] Jones., G.J.F. and Brown, P.J., ‘Information access
for context-aware applications’, Proceedings of ACM
SIGIR 2000, Athens, pp. 382-4, July 2000.

[7] Kindberg, T. et al. ‘People, places, things: web
presence for the real world’, Tech-Report HPL-200-16,
HP Labs., 2000.

[8] Lamming, M.G., Brown, P.J., Carter, K., Eldridge,
M., Flynn, M., Robinson, P. and Sellen, A. ‘The
design of a human memory prosthesis’, Computer
Journal, 37(3), 153-163, 1994.

[9] Lovstrand, L. ‘Being selectively aware with the
Khronika system’, Proc. ECSCW’91, Amsterdam, The
Netherlands, pp. 265-277, 1991.

[10] Newman, W.M., Eldridge M.A. and Lamming, M.G.
‘Pepys: generating autobiographies by automatic
tracking’, Proc. ECSCW’91, Amsterdam, The
Netherlands, September 1991.

[11] Pascoe, J., Morse, D.R. and Ryan, N.S., ‘Developing
personal technology for the field’, Personal
Technologies 2, 1, pp. 28-36, 1998.

[12] Rhodes, B.J. ‘The wearable remembrance agent: a
system for augmented memory’, Personal
Technologies, 1, 1, pp. 218-224, 1997.

[13] Rhodes, B.J. and Maes, P., ‘Just-in-time information
retrieval agents’, IBM Systems Journal, 39, 4, pp.
685-704, 2000.

[14] Robertson, S.E., Walker, S., Jones, S.,
Hancock-Beaulieu, M.M., and Gatford, M. ‘Okapi at
TREC-3'. In Harman, D.K., editor, Qverview of the
Third Text REtrieval Conference (TREC-3), pp.
109-126. NIST, 1995.

[15] Robertson, S., and Walker, S. ‘Threshold Setting in
Adaptive Filtering’, Journal of Documentation, 56, 3,
pp. 312-331, 2000.

[16] Singhal, A., Buckley, A., and Mitra, M. ‘Pivoted
Document Length Normalization’, Proceedings of
ACM SIGIR 1996, Zurich, pp. 21-29, August 1996.

