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Abstract

This paper addresses the problem of using the Karhunen-Lo�eve transform with partial data.

Given a set of empirical eigenfunctions we show how to recover the modal coe�cients for each

gappy snapshot by a least-squares procedure. This method gives an unbiased estimate of the data

that lay in the gaps and permits gaps to be �lled in a reasonable manner. In addition, a scheme

is advanced for �nding empirical eigenfunctions from gappy data. It is shown numerically that

this obtains spectra and eigenfunctions that are close to those obtained from unmarred data.
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1 Introduction

A main purpose of this paper is to address the following question: How much image information

is necessary for the restoration of a full image from a partial image, if it is known that the image

belongs to a certain well-de�ned class of images? (Alternatively, how much degradation, by deletion

of pixels, can such an image su�er and still be recovered?) Such questions are prompted by a

number of applications in which image information is collected as an ensemble of like images and

due to technical or natural circumstances some or all of the images are marred by gaps in the

data. Many examples of this sort occur for data gathered from remote sensing satellites. As an

illustration we mention the presence of cloud cover as a natural obstruction which leaves gaps in

data records[1]. Although the language and illustrations presented here come from image analysis,

the methodologies apply to the wider arena of databases having support in higher dimensions.

While our deliberations may be relevant to image compression, this is not pursued here.

We �rst address the problem of recovering a full image from a marred image when the properties

of an ensemble of like images are known. The methods rely on the Karhunen-Lo�eve expansion for

the ensemble and in the second part of the article we address the problem of �nding the Karhunen-

Lo�eve expansion from a marred ensemble.

In order to deal with the issues involved we reconsider the Rogues Gallery problem which was

formulated and solved in references [2] and [3]. Brie
y stated this is the problem of analyzing an

ensemble of images of human faces. A snapshot of a face will be denoted by � = �(x) where �

represents deviation in gray level from the ensemble mean gray level at pixel location x = (x; y). If

the faces are indexed by n, the ensemble is denoted by f�ng, where 1 � n � N and N represents

the number of faces in the ensemble. Normalization and other related details may be found in

[2, 3]. It was shown there that there exists an optimal representation in the sense that the average

error

� = hk��
MX
n=1

an n(x)k2i (1)

is minimal for all M. Here, k � k2 denotes the usual L2 norm and h�i denotes the average over the

ensemble. The minimal value of � is obtained if the basis elements,  n, satisfy the eigenfunction
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problem, Z
K(x;y) n(y)dy = �n n(x) (2)

( n;  m) =

Z
 n(x) m(x)dx = �nm ; (3)

where

K(x;y) = h�(x)�(y)i =
1

N

NX
n=1

�(x)�(y) (4)

is the two point correlation function. This is the essence of the Karhunen-Lo�eve (K-L) procedure

or Principal Components Analysis (PCA), also known under a variety of other designations, and

yields to standard numerical procedures. In what follows f n(x)g, which appear as eigenfunctions

of the correlation operator, will be referred to as the empirical eigenfunctions. The K-L procedure,

and variations of it, have been rediscovered a number of times. A very modern form of it goes

back to Schmidt[4]. (For a description and extension see Sirovich and Everson[5].) Stewart[6] has

recently reviewed the history of the method and a review of its use in turbulence theory appears

in Berkooz et al.[7] Turk and Pentland[8] have subsequently made similar calculations to those

presented in [2, 3] and use empirical eigenfunctions for face recognition. O'Toole and Abdi have

used empirical eigenfunctions to investigate perception of race, sex and related studies[9, 10]. Kelly

[11] has used a scheme similar to that advanced here for estimating modal coe�cients of gappy

data in an oceanographic context.

2 Marred Faces

With the use of the empirical eigenfunctions,  n, which here we may call eigenfaces, only a relatively

small number of parameters enter into the speci�cation of a particular face. In quantitative terms it

was found that on average �fty eigenfaces account for about 93% of the variance based on departures

from the mean. [2] for a description of the ensemble and normalization. This should be compared

with the O(104) gray levels required to specify each snapshot.

This implies that for some face, �(x), a suitable approximation can be obtained from a limited

3



summation,

�(x) �
NX
n=1

an n(x); (5)

where the coe�cients, an, are obtained from the usual inner product,

an = (�;  n) (6)

and N represents the number of basis functions needed to meet some speci�ed error bound. Equa-

tion 5, looked at in another way, states that in the presence of perfect information (zero noise) we

only need know the gray levels, �(x), at N pixel locations.

To investigate this assertion we will consider marred faces and then investigate how well they

can be reconstructed. We express a masked face by

~�(x) = m(x)�(x) (7)

where m = 0 on the mask and m = 1 elsewhere. The challenge is to write ~�(x) in the form 5

~�(x) � m(x)

NX
n=1

~an n(x) (8)

and from this determine a best set of coe�cients ~an. Once this is done we can inquire as to how

well � is captured by
P
N

n=1 ~an n. Part of the problem involves the choice of N .

The inner product (6) can no longer be used to �nd the coe�cients, because it requires infor-

mation from the full range of x, i.e. the �n are not necessarily orthogonal over the support of ~�,

s[ ~�] However, we can then use a least-squares criterion to achieve a best �t of the form (5). That

is, we minimize the error

E =

Z
s[ ~�]

dx

 
~�(x)�

NX
n=1

~an n

!2

(9)

The minimization of E leads to

 
~��

NX
n=1

~aa n;  k

!
s[ ~�]

= 0 (10)
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which requires that the residual be orthogonal to  k for k = 1; : : : ; N , where as indicated the inner

product is over the support of ~�, s[ ~�]. The Hermitian matrix

Mkn = ( k;  n)s[ ~�] (11)

is non-negative and in principle O(N).

If we write

fk = (�;  k)s[ ~�] (12)

then in vector notation, we seek the unknown coe�cients ~ak from

M~a = f (13)

In the event that s[ ~�] is su�ciently dense in the space then M � I, which among other prop-

erties, says that the eigenvalues of M are close to unity, and ~ak � (�;  k)s[ ~�]. In the present

instance, if we denote the eigenvalues by �n and the corresponding orthonormal eigenvectors by vn

the solution to (13) is then given by

~a =

NX
k=1

1

�n
(vn; f)vn (14)

Thus, on intuitive grounds, the construction becomes questionable if the �k depart signi�cantly

from unity; this is made exlicit in the Appendix.

To illustrate the nature of this construction consider the mask shown in Figure 1a. This is

a relatively extreme mask which obscures ninety percent of the pixels in a randomly chosen way.

This was used to mask a face, not belonging to the original ensemble used to determine the eigen-

functions. The result of applying the above procedure, �nding the ~a from (13) and using N = 50

eigenfunctions, is shown in Figure 1b. The original unmasked face is shown in Figure 1c and the

projection of the original face onto 50 eigenfunctions is shown in Figure 1d. Though the procedure

does not recover the original face exactly, the construction is visually very close to the projection

onto 50 eigenfunctions which utilizes the entire area and is the best that may be achieved with 50
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functions.

We underline the fact that the masked face did not enter into the determination of the eigenfaces.

When the face to be reconstructed is a member of the ensemble used to construct the eigenfunctions

both the reconstructed face and the projected face are closer to the original. Figure 2 show the

result of a reconstruction for a face that was a member of the original ensemble.

In carrying out this construction we have taken N = 50 in (10). This, as Figure 3 shows,

is an optimal choice for the number of �tting functions when the fraction of unobscured pixels

p = 0:1. Figure 3 shows the mean squared error,
R j� �PN

n=1 ~a�j2dx, averaged over 48 faces not

part of the ensemble. The bottom curve corresponds to p = 1. Here the entire face is unmasked,

the coe�cients are determined by the simple inner product and the error is the best that may be

attained for a particular N , though it is necessarily larger than
P
n=N+1 �n. When p � 0:2 the

least-squares procedure performs well for all N .

In Figure 4 we show the mean squared error versus N averaged over the 238 faces comprising the

original ensemble. The errors are signi�cantly smaller here than for the previous case, re
ecting the

fact that the empirical eigenfunctions are optimally suited to this particular ensemble. Again, lower

curve corresponds to p = 1, for which the entire face is unmasked, the coe�cients are determined

by the simple inner product and the error is the best that may be attained for a particular N . In

fact, this best error is given by
P
n=N+1 �n. Clearly, when p � 0:05 the least-squares procedure

performs well.

The basic reason for the ability of the procedure just presented to recover the marred regions

depends, in part, on the fact that only a limited number of �tting functions are needed in order

to well approximate a full face, suitably normalized and satisfying other reasonable requirements.

This number, which might appropriately be called, the dimension of face space, is roughly 50. This

estimate is greatly dependent on the use of the empirical eigenfunctions, which span face space in

an optimal manner. Other basis functions can require many more �tting functions.

If we take this as a nominal value, then only 50 coe�cients an need be determined in (10).

Since O(500) pixels are not masked by the 10% mask it is clear why the least-squares �t leads

to a successful answer. It is at least intuitively clear that a su�ciently masked image cannot
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correctly furnish the smaller scales. Since the eigenfunctions resolve successively smaller scales

with increasing index, N , using too many eigenfunctions results in a deterioration of the �t. This

behavior results from a trade-o� between the possibility of a better �t using more eigenfunctions

and the fact that M increasingly departs from the identity as the amount of information (number

of pixels) available to determine each coe�cient decreases. When the unmasked area is su�ciently

large (p > 0:05 when the face belongs to the original ensemble and p > 0:2 when it does not) using

more eigenfunctions always results in a better �t. A more detailed analysis and estimates for the

optimum N given p are presented in the Appendix.

One further aspect of the analysis merits comment. It is important that the image which

lies beneath the mask be a member of the class from which the empirical eigenfunctions were

obtained; in this instance eigenfunctions were obtained from an ensemble of shaven, Caucasian

males, though it is known that they are suitable for female faces. In Figure 5 we show the result of

reconstructing a monkey face from under 50% mask. (The monkey face was scaled and normalized

in exactly the same manner as the human faces.) The unobscured face is shown at the left; the

reconstruction, using n = 100 eigenfunctions, from a p = 0:5 random mask in the middle, and the

reconstruction using 220 eigenfunctions and the entire area at the right. The mean squared errors

are approximately an order of magnitude larger for the monkey face than out-of-ensemble human

faces. It is clear that the human eigenfunctions are unsuited to the monkey face and such wide

departures from the class as bearded faces. The reconstruction can only select human components

of the simian face. All of this implies that some law governs the organization of a human face.

While the law remains unknown, our results imply that no more than O(50) dimensions are needed

for a reasonable characterization of face space.

3 Marred Eigenfunctions

Next we explore the determination of the eigenfunction set f n(x)g if only marred data are avail-

able. For this purpose we consider an ensemble of masks, fmn(x)g, with the value of each mn(x)

either zero or unity depending on whether the pixel x is masked or not masked, respectively. The
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masks are randomly generated and we will characterize a mask by p, the fraction of unmasked

pixels.

We denote the ensemble of marred faces by f~�(x)g. Each marred face is of the form

~�(x) = mn(x)�(x) (15)

where �(x) is chosen from the original ensemble. Each face may occur more than once. If P

denotes the total number of pixels then there exist 2P possible masks, and the masks may be

conveniently regarded as all di�erent. Thus the ensemble f~�(x)g may be regarded as a signi�cantly

larger ensemble than f�(x)g.
The object of this section is to present an algorithm for the construction of the eigenfunctions

and to show the results of this procedure. We will be content here to demonstrate existence,

convergence and related questions by means of numerical investigations.

To start what will become an iterative procedure we de�ne the average value at pixel location

x by

h~�(x)i =
1

M(x)

X
n�S[x]

~�n(x); (16)

where S[x] is the set of indices at which mn(x) is unity and M(x) is the number of indices in this

set for pixel location x. This average is simply the average over all the available information at the

location x.

As a �rst step of an iterative procedure each ~�n(x) is repaired by �lling in missing pixels

by the average values at those locations. We denote this repaired ensemble by f~�(0)n (x)g. Since

this ensemble is de�ned everywhere we can employ the Karhunen-Lo�eve procedure to generate

f (0)
n (x)g, a complete orthonormal system. Next we obtain f~�(1)n (x)g by �tting each ~�n(x) of the

original ensemble by a superposition of R eigenfunctions f (0)
n (x)g as follows: Set

�̂(1) =
RX
n=1

a(1)
n
 (0)
n
(x) (17)

and determine the set fa(1)n g by minimizing the criterion function over the pixels where data is
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available; that is, minimize

~En =

Z
(~�n � �̂(1)

n
)2mn(x)dx (18)

The repaired snapshot, ~�
(1)
n is now obtained by �lling in the masked pixels with the �̂

(1)
n :

~�(1)
n
(x) =

8><
>:

~�n(x) if mn(x) = 1

�̂
(1)
n (x) if mn(x) = 0

(19)

This procedure is carried out for each ~�n and each mn(x).

The set f~�(1)n g is now de�ned everywhere and hence through K-L generates f (1)
n (x)g, an or-

thonormal complete system. The iteration is now clear and we next discuss the results.

4 Results

The iteration scheme is demonstrated on an ensemble of 286 faces masked so that 40% of the face

is obscured. A typical example, denoted ~�53(x) is shown in Figure 6. Each mask consists of a union

of squares with randomly distributed centers. The width of each square was drawn from a Poisson

distribution with mean width 3 pixels.

Also shown in Figure 6 are the intermediate snapshots ~�
(1)
53 ,

~�
(2)
53 ,

~�
(5)
53 ,

~�
(10)
53 and ~�

(20)
53 as the

iteration proceeds. At each stage the faces were repaired with R = 30 eigenfunctions  
(k)
n (cf.

equation 17). This R was judged to be large enough to capture the essential features of \face

space", but not large enough to prohibit accurate determination of the ~a
(i)
n .

The convergence of the eigenvalue spectrum is illustrated in Figure 7, which shows the principal

60 eigenvalues, �n, after 1, 2, 10 and 20 iterations, together with the spectrum derived from the

unmarred ensemble. The dominant eigenvalues display a clear convergence towards those of the

unmarred spectrum. The \step" at index 30 is a consequence of repairing the faces with R = 30

eigenfunctions. In fact, since only 30 eigenfunctions are used one cannot hope to achieve better

eigenfunctions and eigenvalues than those produced by repairing (using the scheme outlined above)

the marred data with 30 eigenfunctions derived from perfect data. We denote these eigenfunctions

and eigenvalues by �n and �n. Figure 8 compares the spectra from the unmarred faces (�n),
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from the marred faces repaired with 30 unmarred eigenfunctions (�n) and from iteration 20 of the

scheme (�
(20)
n ). The iterative scheme, which lacks information about the perfect eigenfunctions,

well approximates the initial portion of the other two spectra.

Although the eigenvalues are in good agreement, it remains to be checked that the eigenfunctions

from the iterative scheme approximate the eigenfunctions from the unmarred data. Of relevance

here is not the convergence of individual eigenfunctions, but of the spaces spanned by groups

of eigenfunctions. Assessing the convergence of the eigenfunctions therefore requires a method of

comparing subspaces. Let E and F be the projectors de�ning a pair of subspaces, each of dimension

d. Then the trace of the Hermitian matrix, TrEFE measures the commonality of the subspaces. If

the subspaces are identical TrEFE = d; if they are disjoint TrEFE = 0. We denote by Cd(en; fn)

the trace of EFE, where E and F are projectors for the subspaces spanned by the collections

of vectors en and fn. The commonality between the subspaces spanned by the �rst 30 unmarred

eigenfunctions and the eigenfunctions derived from the faces repaired with unmarred eigenfunctions

is given by C30( n; �n) = 29:4.

Figure 9 shows Cd( ; ~ 
(k)) versus d for iterations k = 1 & 20. The rate of convergence is shown

in Figure 10 in which C30( ; 
(1)) and C30(�;  

(1)) are plotted against iteration number. Even

after a single iteration there is considerable overlap between the �rst 7 eigenfunctions. The rate

of convergence is initially rapid, slowing as the limit is approached. After 20 iterations there is

a very good agreement between the eigenfunctions from the iteration scheme and the unmarred

eigenfunctions; visually, they are indistinguishable. Pursuing the iteration further improves the

match, but the rate of convergence is slow; after 80 iterations C30( ; 
(1)) = 26:51, which is to be

compared with 26.26 after 20 iterations. It is possible that Newton's method or other schemes in

which more eigenfunctions are introduced as the iteration proceeds would enhance the rate. We

remark that  
(k)
n approach the �n more closely and more rapidly.
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5 Summary

We have addressed the problem of using the Karhunen-Lo�eve transform with partial data. Given a

set of eigenfunctions we have shown how to recover the modal coe�cients for each gappy snapshot

by a least-squares procedure. This method gives an unbiased estimate of the data that lay in the

gaps and permits that gaps to be �lled in a reasonable manner. In addition we have advanced a

scheme for �nding empirical eigenfunctions from the gappy data and have shown numerically that

it yields a spectrum and eigenfunctions that are close to those obtained from unmarred data.
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6 Appendix

This appendix gives a more thorough discussion of the errors inherent in �tting a face with N em-

pirical eigenfunctions when a fraction p of the pixels are unobscured. We can express an unmasked

face by a superposition of the empirical eigenfunctions:

�(x) =
X
n

an n(x) : (20)

If the number of faces in the ensemble equals the number of pixels describing a face then the  n(x)

are complete (even if this is not true a complete set can always be determined). Since the purpose

of this appendix is to explore the interplay of the fraction, p, of unmasked pixels with a truncation

number, N , we do not dwell further on this point.

For the truncation N we write

�(x) =

NX
n=1

an n(x) + r(x) (21)
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where the residual r depends on N :

r(x) =
X
n>N

an (x) : (22)

Note that when the face being �tted belongs to the ensemble from which the eigenfunctions were

determined the mean size of the residual is given by <k r k2>= P
n>N

�n. Thus if a masked face

is written as ~� = m(x)�(x), then

~� =

NX
n=1

anm(x) n(x) + ~r(x) (23)

with

~r(x) =
X
n>N

anm(x) (x): (24)

From this it follows that f in (13) can be expressed as

f = Ma+ e; (25)

where ay = (a1; : : : ; aN ),

ek =
X
n>N

an( k;  n)s[ ~�] ; (26)

and M is given by (11). Thus from (13)

~a = a+M�1e (27)

and the accuracy of the approximation depends on k M�1 k, which in turn is measured by the

smallest eigenvalue of M.

The form of M is given by (11). As before, we denote the fraction of unobscured pixels by p.

The total number of pixels is denoted by T . Since ( n;  n) = 1, we estimate  = O(1=
p
T ) at a

pixel location. The entries of M are determined by sums of pT terms. In the application at hand

T = O(104) and p is not smaller than O(10�2). It is therefore reasonable to expect that the central
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limit theorem will apply to these sums.

From these preliminary considerations we can express the symmetric matrix M as

M = pI + S (28)

where S is symmetric and has entries which are Gaussian distributed and of mean zero. If s denotes

an entry of S, then

P (s) =
1

�
p
2�pT

exp
�s2
�2pT

(29)

The variance, �2 is somewhat problematic. For relatively large index  n(x) is locally sinusoidal. If

we adopt this as a hypothesis it then follows that �2 = O(1=T 2), and (29) takes the form,

P (s) =

s
T

2�p
exp

�s2T
p

(30)

This implies that the o�-diagonal terms ofM are O(
p
p=T ), and hence that the ratio of o�-diagonal

to on-diagonal terms is O(1=
p
pT ). A series of numerical experiments con�rms the Gaussian nature

of the entries of S and also that the estimate for the ratio is sound (see Figure 11 and Table 1).

According to Wigner's semi-circle theorem[12, 13], a symmetric random matrix of order N,

whose entries have zero mean and variance �2 has the eigenvalue density

�(�) =
1

2�N�2

q
4N�2 � �2: (31)

The theorem applies to S and since eigenvalues of M are p plus the eigenvalues of S it follows that

the eigenvalues of M are such that

p� 2

s
pN

T
< � < p+ 2

s
pN

T
: (32)

If we take the vanishing of the smallest eigenvalue of M as a criterion for the breakdown of the

scheme, then this occurs for

N =
pT

4
(33)
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In �gures 3 and 4 we display the errors incurred for various p for the cases of faces not belonging

to the ensemble and belonging to the ensemble which determined the eigenfunctions  n. Given the

rough nature of the estimate the criterion (33) is not bad. The two cases di�er as a result of the

fact that <k r k2> is signi�cantly smaller when the faces belong to the ensemble which determines

the  n.
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Figure Captions

Figure 1 Reconstruction of a face, not in the original ensemble, from a 10% mask. The recon-

structed face (b) was determined using 50 empirical eigenfunctions and only the white pixels

shown in (a). The original face is shown in (c) and a projection (using all the pixels) of the

face onto 50 empirical eigenfunctions is shown in (d).

Figure 2 Reconstruction of a face from a 10% mask. The reconstructed face (b) was determined

using 50 empirical eigenfunctions and only the white pixels shown in (a). The original face,

which was a member of the ensemble is shown in (c) and a projection (using all the pixels)

of the face onto 50 empirical eigenfunctions is shown in (d).

Figure 3 Mean squared error versus the number of �tting eigenfunctions for snapshots that were

not part of the original ensemble. Di�erent curves show the error for di�erent unmasked

areas, p. When p = 1 the entire picture is unmasked and the mean squared error is the best

that may be attained for a given number of �tting eigenfunctions.

Figure 4 Mean squared error versus the number of �tting eigenfunctions for snapshots that were

members of the original ensemble. Di�erent curves show the error for di�erent unmasked

areas, p. When p = 1 the entire picture is unmasked and the mean squared error is the best

that may be attained for a given number of �tting eigenfunctions.

Figure 5 Reconstruction of a monkey face using eigenfunctions derived from human faces. Left:

unobscured face. Middle: reconstruction from a p = 0:5 random mask, using 100 eigenfunc-

tions. Right: reconstruction using 220 eigenfunctions and the entire area.

Figure 6 A 40% masked face ~�53and the intermediate snapshots ~�
(1)
53 ,

~�
(2)
53 ,

~�
(5)
53 ,

~�
(10)
53 and ~�

(20)
53 as

the iteration scheme proceeds. At each stage the masked regions have been repaired with

R = 30 eigenfunctions derived from the snapshots from the previous iteration.

Figure 7 Eigenvalue spectrum, �n, after 1, 2 and 20 iterations. The solid line shows the spectrum

derived from the unmarred snapshots.
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Figure 8 Eigenvalue spectrum, �
(20)
n , after 20 iterations compared with the unmarred spectrum,

�n, and the spectrum, �n, derived from the snapshots repaired with eigenfunctions from the

unmarred ensemble.

Figure 9 Commonality of subspaces spanned by the unmarred eigenfunctions,  n, and the repaired

eigenfunctions,  k
n
, after k = 1 and k = 20 iterations.

Figure 10 Convergence with iteration of the subspaces spanned by the repaired eigenfunctions and

the unmarred eigenfunctions (squares) and the subspaces spanned by the repaired eigenfunc-

tions and the eigenfunctions derived from marred data repaired with perfect eigenfunctions

(triangles).

Figure 11 Empirical probability densities, P (s), of the o�-diagonal elements of the matrix M,

illustrating the Gaussian nature of the distribution. The matrices were generated at the

following parameters: (a) p = 0:7, N = 100; (b) p = 0:7, N = 50; (c) p = 0:1, N = 100.

Table 1 Ratio of the mean size of the diagonal elements to the o�-diagonal elements of the matrix

M, divided by
p
pT , for various values of p and N . Except when p � 1, the estimate that

the ratio is O(
p
pT ) is veri�ed.
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N p Normalized

ratio

10 0.06 1.47

100 0.06 1.14

150 0.06 1.13

200 0.06 1.12

10 0.25 1.18

100 0.25 1.31

150 0.25 1.27

200 0.25 1.29

10 0.5 2.72

100 0.5 1.66

150 0.5 1.55

200 0.5 1.54

10 0.75 3.01

100 0.75 2.11

150 0.75 2.20

200 0.75 2.16

10 0.95 5.28

100 0.95 4.98

150 0.95 4.59

200 0.95 5.05

Table 1: Ratio of the mean size of the diagonal elements to the o�-diagonal elements of the matrix

M, divided by
p
pT , for various values of p and N . Except when p � 1, the estimate that the ratio

is O(
p
pT ) is veri�ed.
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a b

c d

Figure 1: Reconstruction of a face, not in the original ensemble, from a 10% mask. The recon-

structed face (b) was determined using 50 empirical eigenfunctions and only the white pixels shown

in (a). The original face is shown in (c) and a projection (using all the pixels) of the face onto 50

empirical eigenfunctions is shown in (d).
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a b

c d

Figure 2: Reconstruction of a face from a 10% mask. The reconstructed face (b) was determined

using 50 empirical eigenfunctions and only the white pixels shown in (a). The original face, which

was a member of the ensemble is shown in (c) and a projection (using all the pixels) of the face

onto 50 empirical eigenfunctions is shown in (d).
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Figure 3: Mean squared error versus the number of �tting eigenfunctions for snapshots that were

not part of the original ensemble. Di�erent curves show the error for di�erent unmasked areas, p.

When p = 1 the entire picture is unmasked and the mean squared error is the best that may be

attained for a given number of �tting eigenfunctions.
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Figure 4: Mean squared error versus the number of �tting eigenfunctions for snapshots that were

members of the original ensemble. Di�erent curves show the error for di�erent unmasked areas, p.

When p = 1 the entire picture is unmasked and the mean squared error is the best that may be

attained for a given number of �tting eigenfunctions.

23



Figure 5: Reconstruction of a monkey face using eigenfunctions derived from human faces. Left:

unobscured face. Middle: reconstruction from a p = 0:5 random mask, using 100 eigenfunctions.

Right: reconstruction using 220 eigenfunctions and the entire area.
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1 2

5 10 20

Figure 6: A 40% masked face ~�53and the intermediate snapshots ~�
(1)
53 ,

~�
(2)
53 ,

~�
(5)
53 ,

~�
(10)
53 and ~�

(20)
53 as

the iteration scheme proceeds. At each stage the masked regions have been repaired with R = 30

eigenfunctions derived from the snapshots from the previous iteration.
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Figure 7: Eigenvalue spectrum, �n, after 1, 2 and 20 iterations. The solid line shows the spectrum

derived from the unmarred snapshots.
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Figure 8: Eigenvalue spectrum, �
(20)
n , after 20 iterations compared with the unmarred spectrum, �n,

and the spectrum, �n, derived from the snapshots repaired with eigenfunctions from the unmarred

ensemble.
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Figure 9: Commonality of subspaces spanned by the unmarred eigenfunctions,  n, and the repaired

eigenfunctions,  k
n
, after k = 1 and k = 20 iterations.
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Figure 10: Convergence with iteration of the subspaces spanned by the repaired eigenfunctions and

the unmarred eigenfunctions (squares) and the subspaces spanned by the repaired eigenfunctions

and the eigenfunctions derived from marred data repaired with perfect eigenfunctions (triangles).
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Figure 11: Empirical probability densities, P (s), of the o�-diagonal elements of the matrix M,

illustrating the Gaussian nature of the distribution. The matrices were generated at the following

parameters: (a) p = 0:7, N = 100; (b) p = 0:7, N = 50; (c) p = 0:1, N = 100.
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