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Abstract

Blind source separation with non-stationary

mixing, but stationary sources is consid-

ered. The linear mixing of the independent

sources is modelled as evolving according to

a �rst order Markov process, and a method

for tracking the mixing and simultaneously

inferring the sources is presented. Observa-

tional noise is included in the model. The

technique is illustrated with numerical ex-

amples.

1 Introduction

Over the last decade in particular there

has been much interest in methods of blind

source separation and deconvolution (see [9]

for a review). One may think of the blind

source separation as the problem of identify-

ing speakers (sources) in a room given only

recordings from a number of microphones,

each of which records a linear mixture of

the sources, whose statistical characteristics

are unknown. The casting of this problem

(which for source separation is often referred

to as Independent Component Analysis -

ICA) in a neuro-mimetic framework [2] has

done much to to simplify and popularise the

technique. More recently still the ICA solu-

tion has been shown to be the maximum-

likelihood point of a latent-variable model

[11, 3, 12]

Here we consider the blind source separa-

tion problem when the mixing of the sources

is non-stationary. Pursuing the speakers in

a room analogy, we address the problem

of identifying the speakers when they (or

equivalently the microphones) are moving.

The problem is cast in terms of a hidden

state (the mixing proportions of the sources)

which we track using dynamic methods sim-

ilar to the Kalman �lter.

2 Theory

In common with static ICA we assume a

generative model in which there are M in-

dependent sources whose probability den-

sity functions are pm(s
m). The sources are

mixed by a matrix At which, unlike static

ICA, is allowed to vary with time. The ob-

servation xt 2 R
N at time t (t = 1; :::T ) is

a linear mixture to which is added observa-

tional noise, wt:

xt = Atst +wt (1)

The mixing matrix must have at least as

many rows as columns (N � M ), so that

the dimension of each observation is at least

as great as the number of sources. The ob-

servational noise is taken to be normally dis-

tributed, with zero mean and covariance ma-

trix R.

Orthodox ICA takes the mixing matrix to

be constant in time and assumes that the

observations are noise-free. An unmixing

matrix W (the inverse of A, up to multi-

plication by a diagonal matrix and a per-

mutation matrix) can be found by minimis-

ing the mutual information between the un-

mixed sources, ŝt = Wxt. Attias [1] has sig-

ni�cantly developed ICA by introducing In-

dependent Factor Analysis, which includes

observational noise and so bears the same

relation to ICA as factor analysis does to

PCA.

Here we permitAt to vary with time. The

dynamics of At are modelled by a �rst order

Markov process. If we let at = vec(At) be

the N �M -dimensional vector obtained by
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Figure 1: Graphical model describing non-

stationary ICA

stacking the columns of At, then at evolves

according to

at+1 = Fat + vt (2)

where vt is zero-mean Gaussian noise with

covariance Q, and F is the state transition

matrix; in the absence of a priori informa-

tion we take F to be the identity matrix.

The state equation (2) and the statistics of

vt de�ne the density p(at+1jat).

A full speci�cation of the state must in-

clude the parameter set � = f�mg, m =

1:::M , which describes the source densities:

p(sj�) =

MY
m=1

p(sm j�m) (3)

These parameters are taken to be static, but

they must be learned as data are observed.

A full description of the source model is de-

ferred to section 2.1. Figure 1 illustrates

the graphical model describing the condi-

tional independence relations of the non-

stationary ICA model.

The problem is now to track At (and

to learn �) as new observations xt become

available. If Xt denotes the collection of

observations fx1; :::;xtg, then the goal of

�ltering methods is to deduce the proba-

bility density function (pdf) of the state

p(at jXt). This pdf may be found recursively

in two stages: prediction and correction. If

p(at�1 jXt�1) is known, the state equation

(2) gives a prediction of the state at time t:

p(at jXt�1) =Z
p(at jat�1)p(at�1 jXt�1) dat�1 (4)

As the datum xt is observed, the predic-

tion may be corrected via Bayes' rule

p(at jXt) = Z�1p(xt jat)p(at jXt�1) (5)

where the normalisation constant Z is

known as the innovations probability:

Z = p(xt jXt�1) (6)

=

Z
p(xt jat)p(at jXt�1) dat

The likelihood of the datum xt given the

mixingmatrix at is p(xt jat) which is de�ned

by the observation equation (1).

The prediction (4) and correction/update

(5) pair of equations may be used to step

through the data, alternately predicting the

subsequent state and then correcting the es-

timate when a new datum arrives.

2.1 Source Model

The source densities are a priori unknown

and must be modelled. Orthodox ICA uses

an apparently �xed source model, although

scaling of the mixingmatrix tunes the model

to particular sources [5, 4]. To separate

sources with tails lighter than Gaussian a

more 
exible source model must be used.

Lee et al [10] switch between sub- and super-

Gaussian source models, and Attias has

used mixtures of Gaussians [1] which per-

mit multi-modal sources. We have found

generalised exponentials to be e�ective for

separating sub and super-Gaussian sources

[5] and we use them to model the sources

here. Thus we model each source density as

p(sm j�m) = z expf�

����s
m � �m

wm

����
rm

g (7)

where the normalising constant is

z =
rm

2wm�(1=rm)
(8)

The location of the density is set by �m and

its width by wm. When rm = 1 the source

has a Laplacian density; when rm = 2 the

generalised exponential is a Gaussian, and

for large rm the pdf approaches a uniform

density.

Rather than making strictly Bayesian es-

timates of the model parameters �
m =

frm; wm; �mg, the maximum a posteriori

(MAP) estimate of At is used to estimate st,

after which maximum-likelihood estimates
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of the parameters are found from sequences

fsm
�
gt
�=1. Finding maximum-likelihood pa-

rameters is readily and robustly accom-

plished [5]. Each st is found by maximising

logp(st jxt; At), which is equivalent to min-

imising

(xt �A�

t
st)

TR�1(xt �A�

t
st) +

MX
m=1

���� s
m

t

wm

����
rm

(9)

where A�

t
is the MAP estimate for At. The

minimisation can be carried out with a

pseudo-Newton method, for example. If the

noise variance is small, st � A
y

t
xt, where

A
y

t
= (AT

t
At)

�1AT
t
is the pseudo-inverse of

At.

2.2 Prediction

Since the state equation is linear and Gaus-

sian the state transition density is

p(at jat�1) = G(at � Fat�1; Q) (10)

where G(�;�) denotes the Gaussian density

function with mean zero and covariance ma-

trix �.

We represent the prior density

p(at�1 jXt�1) as a Gaussian:

p(at�1 jXt�1) = G(at�1 � �
t�1;�t�1)

(11)

Prediction is then straight-forward:

p(at jXt�1) =

G(at � F�
t�1; Q+ F�t�1F

T ) (12)

2.3 Correction

On the observation of a new datum xt the

prediction (12) can be corrected. Since the

observational noise is assumed to be Gaus-

sian its density is

p(wt) = G(wt; R) (13)

The pdf of observations p(xt jAt) is given by

p(xt jAt) =

Z
p(xt jAt; �; st)p(st j�) dst

(14)

and since the sources are assumed station-

ary

p(xt jAt) =

Z
p(xt jAt; s)p(sj�) ds

=

Z
G(xt �Ats; R)

MY
m=1

pm(s
m) ds (15)

We emphasise that it is in equation (15) that

the independence of the sources is modelled

by writing the joint source density in fac-

tored form.

Laplace's approximation can be used to

approximate the convolution (15) for any

�xed At when the observational noise is

small; otherwise the integral can be evalu-

ated by Monte Carlo integration. The cor-

rected pdf p(at jXt) of equation (5) is then

found by drawing samples, AtjXt from the

Gaussian of equation (12) and evaluating

equation (15) for each sample.

The mean and covariance of the corrected

p(at jXt) are found from the samples and

the density approximated once again by a

Gaussian before the next prediction is made.

Rather than representing the state densi-

ties as Gaussians at each stage more 
exibil-

ity may be obtained with particle �lter tech-

niques (see, for example, [8]). In these meth-

ods the state density is represented by a col-

lection of \particles," each with a probabil-

ity mass. Each particle's probability is mod-

i�ed using the state and observation equa-

tions, after which a new independent sample

is obtained using sampling importance re-

sampling before proceding to the next pre-

diction/observation step. Though compu-

tationally more expensive than the Gaus-

sian representation, these methods permit

arbitrary observational noise distributions

to be modelled and more complicated, pos-

sibly multimodal, state densities. The ap-

plication of particle �lter methods to non-

stationary ICA is described elsewhere [6].

3 Results

Here we illustrate the method with two ex-

amples.

In the �rst example a Laplacian source

(p(s) / e�jsj) and a source with uniform

density are mixed with a mixing matrix

whose components vary sinusoidally with

time:

At =

�
cos !t sin!t

� sin!t cos!t

�
(16)

Note, however, that the oscillation fre-

quency doubles during the second half of the

simulation making it more di�cult to track.

Figure 2 shows the true mixing matrix and

the tracking of it by non-stationary ICA.
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Figure 2: Tracking a mixture of a Laplacian

and Gaussian sources.

Like orthodox ICA, this method cannot

distinguish between a column of At and a

scaling of the column. In �gure 2 the al-

gorithm has \latched on" to the negative

of the �rst column of At, which is shown

dashed. We resolve the scaling ambiguity

between the variance of the sources and the

scale of the columns of At by insisting that

the variance of each source is unity; i.e., we

ignore the estimated value of wm (equation

7), instead setting wm = 1 8m and allow-

ing all the scale information to reside in the

columns of At.

To provide an initial estimate of the mix-

ingmatrix and source parameters static ICA

was run on the �rst 100 samples. At times

t > 100 the generalised exponential param-

eters were re-estimated every 10 observa-

tions. Figure 3 shows that the estimated

source parameters converge to close to their

correct values of 1 for the Laplacian source

and \large" (truncated at 20) for the uni-

form source.

Estimates of the tracking error are pro-

vided by the covariance, �t, of the state

density (equation 11). In this case the true

At lies within one standard deviation of the

estimated At almost all the time. We re-

mark that it appears to be more di�cult

to track the columns associated with light-

tailed sources than heavy-tailed sources,

while the columns pertaining to Gaussian

sources are hardest to follow. In �gure 2,

A11 and A21 mix the Laplacian source, and

the uniform source is mixed by A12 and
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Figure 3: Online estimates of the generalised

exponential parameters rm during the tracking

shown in �gure 2.

A22 which are tracked less well, especially in

the second half of the simulation. We sus-

pect that the di�culty in tracking columns

associated with nearly Gaussian sources is

due to the ambiguity between a Gaussian

source and the observational noise which is

assumed to be Gaussian.

It is easy to envisage situations in which

the mixing matrix might become brie
y sin-

gular. For example, if the microphones are

positioned so that each receives the same

proportions of each speaker the columns of

At are linearly dependent and At is singular.

In this situation At cannot be inverted and

source estimates (equation 9) are very poor.

To cope with this we monitor the condition

number ofAt; when it is large, implying that

At is close to singular, the source estimates

are discarded for the purposes of inferring

the source model parameters, frm; wm; �mg.

In �gure 4 we show non-stationary ICA

applied to Laplacian and uniform sources

mixed with the matrices

At =

�
cos 2!t sin!t

� sin 2!t cos !t

�
(17)

where ! is chosen so that A1000 is singu-

lar. Clearly the mixing matrix is tracked

through the singularity although not so

closely as when At is well conditioned. Fig-

ure 5 shows the condition number of the

MAP At. The normalising constant Z =

p(xt jXt�1) in the prediction equation (12)

is known as the innovations probability and

measures the degree to which a new da-

tum �ts the dynamic model learned by the

tracker. Discrete changes of state are sig-
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Figure 4: Tracking through a singularity. The

mixing matrix is singular at t = 1000.

nalled by low innovations probability. Fig-

ure 5 also shows the innovations probability

for the mixing shown in �gure 4: the pres-

ence of the singularity is clearly re
ected.

4 Smoothing

The �ltering methods presented estimate

the mixing matrix as p(At jXt). They are

therefore strictly causal and can be used

for online tracking. If the data are anal-

ysed retrospectively future observations (x� ,

� > t) may be used to re�ne the estimate of

At. The Markov structure of the genera-

tive model permits the pdf p(at jXT ) to be

found from a forward pass through the data,

followed by a backward sweep in which the

in
uence of future observations on at is eval-

uated. See, for example, [7] for a detailed

exposition of forward-backward recursions.

Figure 6 illustrates tracking both by

smoothing and causal �ltering. As before

the elements of the mixing matrix vary si-

nusoidally with time except for discontinous

jumps at t = 600 and 1200. Both the �lter-

ing and forward-backward recursions track

the mixing matrix; however the smoothed

estimate is less noisy and more accurate,

particularly at the discontinuities. Note

also that the following the discontinuity at

t = 1200 the negative of the �rst columm of

At is tracked.
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Figure 5: Top: Condition number of the MAP

estimate of At. At t = 1000 the true mixing ma-

trix is singular. Matrices with condition num-

bers greater than 10 were not used for estimat-

ing the source parameters. Bottom: Innova-

tions probability p(xt jXt�1).

5 Conclusion

We have presented a method for blind source

separation when the mixing proportions are

non-stationary. The method is strictly

causal and can be used for online tracking

(or \�ltering"). If data are analysed retro-

spectively forward-backward recursions may

be used for smoothing rather than �ltering.

In common with most tracking methods,

the state noise covariance Q and the ob-

servational noise covariance R are param-

eters which must be set. Although we

have not addressed the issue here, it is

straight-forward, though laborious, to ob-

tain maximum-likelihood estimates for them

using the EM method [7].

Although we have modelled the source

densities here with generalised exponentials,

which permits the separation of a wide range

of sources, it is possible to both generalise

or restrict the source model. More compli-

cated (possibly multi-modal) densities may

be represented by a mixture of Gaussians.

On the other hand, if all the sources are re-

stricted to be Gaussian the method becomes

a tracking factor analyser. In the zero noise
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Figure 6: Top: Retrospective tracking with

forward-backard recursions. Bottom: Online

�ltering of the same data. Dashed lines show

the negative of the mixing matrix elements.

limit the method performs non-stationary

principal component analysis.

Finally we remark that current work con-

centrates on tracking the sources them-

selves. This is important when successive

samples from each (independent) sources are

not independent [12].
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