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Abstract
Bayesian classification is currently of considerable interest. It pro-

vides a strategy for eliminating the uncertainty associated with a par-
ticular choice of classifier-model parameters, and is the optimal decision-
theoretic choice under certain circumstances when there is no single
“true” classifier for a given data set. Modern computing capabilities
can easily support the Markov chain Monte Carlo sampling that is
necessary to carry out the calculations involved, but the information
available in these samples is not at present being fully utilised. We
show how it can be allied to known results concerning the “reject op-
tion” in order to produce an assessment of the confidence that can be
ascribed to particular classifications, and how these confidence mea-
sures can be used to compare the performances of classifiers. Incor-
porating these confidence measures can alter the apparent ranking of
classifiers as given by straightforward success or error rates. Several
possible methods for obtaining confidence assessments are described,
and compared on a range of data sets using the Bayesian probabilistic
nearest-neighbour classifier.
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1 Introduction

Bayesian methods have been advocated in principle for many years (Lind-

ley, 1965; DeGroot, 1970), but their application has been hampered in

practice by the computational intractability of many of the concomitant

(high-dimensional) integrals. This state of affairs has been revolutionised in

recent years by the development of Markov Chain Monte Carlo (MCMC)

methods (see, e.g., the review by Brooks, 1998) and their reversible-jump

(RJ) extensions (Green, 1995). These methods allow samples to be drawn

from posterior distributions that are known only up to a constant of propor-

tionality, thereby sidestepping the evaluation of the difficult integrals and
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replacing other integrals by straightforward averages (or related simple sum-

mary statistics) of sampled values. The sampling process must usually be

run for a very long time to allow the generated Markov Chains to stabilise at

the required stationary distributions, but current computing power makes

light of this demand. Consequently, there has been an explosion in the use

of RJMCMC methods for statistical modelling in the past ten years.

One specific area of interest in such methods is that of discriminant anal-

ysis, or supervised classification. In essence here the problem is to define a

suitable function of p features x′ = (x1, x2, . . . , xp) that will best distinguish

between g a-priori groups or populations, and that can be used to classify

future unidentified individuals most accurately to their correct population.

A set of individuals with known population membership is generally avail-

able for deriving the function (usually termed the classifier) and assessing

its performance. If this set is large enough then it can be split into two inde-

pendent parts to deal with these two aspects, the first part for training the

classifier and the second part for testing its efficacy, but if the set is not large

then some form of data resampling (such as jackknifing or bootstrapping)

must be employed for the performance assessment. This whole area has now

been studied for many years and there are many possible ways of deriving

classifiers and determining their efficacies (McLachlan, 1992; Hand, 1997).

A full Bayesian approach has only recently become viable, for the reasons

outlined above, but the appropriate technology has been rapidly developed

(Denison, Holmes, Mallick and Smith, 2002).

However, although the derivation of classifiers and the estimation of their

classification performance has been worked out for a range of possible models

and classifier types, other important aspects have received less attention.

One such aspect, namely the confidence that can be ascribed to a particular

classification result, is important in general but especially so in safety-critical

systems such as medical diagnosis or air-traffic collision alert systems. We

therefore focus in this paper on methods for deriving confidence measures

about classifications in a Bayesian context. In section 2 we summarise the

main features of Bayesian classification, in section 3 we derive two possible

confidence measures and compare them on a range of data sets for one
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particular classifier family, in section 4 we discuss how these measures can be

used to choose between competing classifiers, and some concluding remarks

are made in section 5.

2 Bayesian Classification

Bayesian classification is conducted within a parametric framework, so let us

assume that the classifier C(x, θ) comes from a family of models depending

on the predictors x as well as on a set of parameters θ′ = (θ0, θ1, . . . , θq).

For example, a linear classifier belongs to the family C(x, θ) = θ0 + θ1x1 +

θ2x2+ . . .+θpxp of all linear combinations of the predictors, with coefficients

and constant term comprising the set of parameters. Applying the classifier

to an individual x yields the values of one or more classification scores

on which the classification of x is made; frequently these scores are the

posterior probabilities of group memberships for x. However, in general θ is

unknown. The classical single-classifier approach replaces it by an estimate

derived from the training data D, say, and assesses the resulting classifier’s

efficacy by finding the proportion of each group that is misclassified in the

test data T , say. Different methods of estimation make different demands on

the data; for example, least squares estimates make no specific assumptions

about D, but simply try to match observed and predicted classes as closely

as possible, while for maximum likelihood estimation it is also necessary to

postulate a probability model so that the likelihood of D can be obtained

and maximised.

For a Bayesian approach we need to specify a joint prior distribution

π(θ) for the classifier parameters, form the likelihood L(D|θ) of the training

data using an appropriate probability model, and hence obtain the posterior

distribution of the parameters,

π(θ|D) =
π(θ)L(D|θ)∫
π(θ)L(D|θ)dθ

.

The Bayesian classifier is then the expected value of C(x, θ) over this pos-

terior distribution, C(x|D) =
∫

C(x, θ)π(θ|D)dθ. This is known as the

predictive classification score. If the classification scores are the posterior

probabilities of group membership then these predictive values are often
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denoted by p(y|x,D), where y is the group label variable.

Evaluating the above two integrals can in general be very difficult, par-

ticularly when the dimensionality of θ is large, but from its definition the

Bayesian classifier will obviously be well approximated by the mean of

C(x, θ) over a large sample of independent observations from π(θ|D). MCMC

will enable such a sample to be drawn without having to evaluate the integral

in the denominator of π(θ|D). We just need to ensure that the MCMC ac-

ceptance probabilities are chosen so that π(θ|D) is the limiting (stationary)

distribution, run the chain for a preliminary (burn-in) period to ensure sta-

tionarity has been reached, and then sample (say) every 7th value to ensure

independence of observations. Each value then yields a single observation

from π(θ|D), so substituting them in turn into C(x, θ) for the particular x

to be classified and averaging the results produces the Bayesian classifier.

This is just an example of Bayesian averaging, which is used much more

generally in modelling (Hoeting, Madigan, Raftery and Volinsky, 1999). Of

course, the Bayesian approach does not preclude the choice of a single “best”

classifier, as one can simply be selected from the set of classifiers gener-

ated by the sampling process; the classifier obtained from the “maximum

a-posteriori” (MAP) value of θ would be an obvious choice. However, an av-

eraged classifier not only usually produces better overall performance than

the single MAP classifier, it is also the optimal decision-theoretic choice

when there is no single “true” classifier that is being sought from among

the family C(x, θ) (Denison et al, 2002, pp 28-29). So it is the most appro-

priate one to use in many practical cases. The Bayesian approach has now

been implemented for many different families of classifier, and details may

be found, for example, in Denison et al (2002); we use the nearest neighbour

family in the illustrations below. Also, as this is the form most commonly

encountered in practice, we will assume that the classifier delivers posterior

probabilities of group membership and therefore will denote the Bayesian

predictive scores by p(y|x,D); we comment on some implications of this

assumption in the final section.
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3 Measures of Confidence

3.1 Methodology

A traditional method of reducing the risk of misclassification is by means

of the reject option (surveyed in Fukunaga, 1990), whereby we do not au-

tomatically accept the outcome of the classifier for all points in the sample

space, but hold back any points about whose classification we have doubts

with the aim of handling these points subsequently by different procedures.

If the resultant cost is less than the cost of wrong classification then such a

procedure will improve classification reliability. We can label points x held

back in this way as having UNSURE classification, and all other points as

having SURE classification. Among the latter will be ones that are classified

correctly and others that are classified incorrectly by the chosen classifier,

so adopting such an approach will lead to three categories of points in a

test set: those whose classification is SURE and CORRECT, those whose

classification is SURE but INCORRECT, and those whose classification is

UNSURE.

The question is, how should the holding back of points be determined?

Various possibilities have been mooted (see, e.g., Bishop, 1995), but Chow

(1970) showed that theoretically the optimal rejection rule is to hold back

x if its maximum posterior probability of allocation to any group is less

than a threshold t. Different values of t will lead to different proportions of

UNSURE points.

In practice, of course, the posterior probabilities of allocation have to

be estimated. If we use the Bayesian approach they are given by the val-

ues of p(y|x,D) for each possible setting of y, so x will be held back if

maxy{p(y|x,D)} < t. Choosing a value of t and applying the classifier to

all the points in the test set will identify the points to be classified and

the points to be held back, thereby generating estimated probabilities of

SURE CORRECT, SURE INCORRECT and UNSURE classifications for

the given populations at the chosen value of t. We will call this procedure

the standard reject method.

However, there are several problems with this approach. First, the choice
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of threshold t is clearly arbitrary and there are no real guidelines as regards

appropriate values to choose. In two-class problems t obviously has to be

greater than 0.5, but choice of a reasonable level above this value is heavily

data-dependent. In multi-class problems there is the additional difficulty

of catering for the many ways in which posterior probabilities can be dis-

tributed among the classes. But most tellingly, basing the UNSURE clas-

sification purely on maxy{p(y|x,D)} pays no regard to actual outcomes of

classifications and hence to the confidence we can place in them. For ex-

ample, a classifier might consistently deliver correct classifications of points

for which p(y|x,D) is around 0.6, whereas it might occasionally misclassify

points for which p(y|x,D) is around 0.8. Setting t at 0.7 would reject the

former points but not the latter.

So the above discussion suggests that we should prefer a method that

incorporates actual classification performance and that can be interpreted

in terms of familiar quantities. The Bayesian scheme is ideally suited to

this framework, as we have all the individual classification scores for each

classifier making up the MCMC sample. These are all plausible classifiers

that might have been used individually from the chosen family of classifiers.

Moreover, they are not just a random selection from this family as the

less likely members will be downweighted in the MCMC sampling, so they

carry valuable information about the process. In particular, they give some

indication about the likely variability of classification results, so we ought

to make use of this information in formulating confidence measures. One

way of doing so would be to classify each point in the test data by each

of these individual classifiers; any point x that is classified to the same

group by more than a proportion t of classifiers could be deemed a SURE

classification, otherwise the classification is UNSURE. Here we convert each

classifier result into a discrete variable (group to which x is classified) and

then obtain the average of the incidences in each category, so the result is

still a posterior probability of allocation and hence falls within the scope

of Chow’s result. We will call this the envelope procedure, as there is an

envelope of classifications associated with each point.

This procedure counteracts the main objections raised above to the stan-
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dard reject method. It uses consistency of actual classifications, so only la-

bels points as UNSURE if they are unreliable in their classification rather

than simply if their posterior probabilities of group membership are not

high. There are no extra problems encountered in multi-class problems, as

we are still looking to see whether points are consistently classified to a sin-

gle class or distributed over several classes in the MCMC sample. Finally,

and most usefully, the probabilities are now related to long-run classification

performance so can be interpreted in familiar confidence-region fashion. For

example, if we set t at 0.8 then we deem a point to be UNSURE if fewer

than 80% of the MCMC samples classify that point to the same group, i.e.

our confidence in classification of that point is less than 80%.

3.2 Applications

To illustrate the utility of this envelope approach, we apply it to a number of

data sets from the UCI Machine Learning repository. However, first we must

choose a family of classifiers. Many choices are possible, but to maintain flex-

ibility while keeping the parameter dimensionality low we focus on k−nearest

neighbour classifiers. The standard (classical) k−nearest neighbour classi-

fier is very straightforward. To classify an observation x′ = (x1, . . . , xp) into

one of g groups y = (1, . . . , g) we:

1. define a metric in the x−space (usually Euclidean distance);

2. find the k training set members closest to x;

3. classify x to the majority group among these k.

The value of k can either be set by the user or chosen from D by some

data-based procedure, e.g. cross-validation.

Holmes & Adams (2002) have given a probabilistic formulation of this

process, and this enables a Bayesian approach to be taken. They define

p(y = i|x, β, k) =
exp(aiβ/k)∑
i exp(aiβ/k)

,

where ai is the number of group i individuals among the k nearest training

set neighbours of x (i = 1, . . . , g), so that ai/k is the proportion of such
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individuals, and the parameter β reflects the influence of neighbours on the

group probabilities: the greater the value of β, the higher the probability

of belonging to the group that has the majority of neighbours. Thus the

predictive scores are given by

p(y = j|x,D) =
∫

p(y = j|x, β, k)π(k, β|D)dkdβ,

where π(k, β|D) is the joint posterior distribution of the parameters β, k.

To obtain the posterior distribution we need the likelihood of the training

data

L(D|β, k) =
n∏

i=1

exp(aijiβ/k)∑
j exp(aijβ/k)

,

where aij is the number of the k nearest neighbours to the ith observation

that belong to group j and ji is the group to which the ith observation

belongs. We also need to formulate a prior distribution π(k, β) for the two

parameters. In the case of prior ignorance it is suggested that π(k, β) =

π(k)π(β) where π(k) is a uniform distribution between 1 and min(n, 200)

and π(β) is a half-normal distribution with large variance. Using a standard

MCMC strategy, any proposed move to a new classifier from the current

parameter settings (β, k) to new settings (β′, k′) is accepted if u, a draw from

a U [0, 1] distribution, is less than min
{
1, L(D|β′,k′)π(β′,k′)

L(D|β,k)π(β,k)

}
, and otherwise the

current values of β and k are retained.

We now illustrate the envelope method of assessing classifier confidence,

and show how it relates to the standard reject method. To do this we apply

both methods to a number of data sets, but in order to avoid problems that

arise with the reject method in multi-class data we consider only two-class

sets here. One of these sets is a synthetic set devised by Ripley (1994)

and augmented with a further Gaussian function: it thus comprises five

Gaussian components, 3 contributing to one class and 2 to the other (full

details are given in Fieldsend et al, 2003). The other four sets are from

the UCI Machine Learning Repository; they are the Wisconsin, Ionosphere,

Pima, and Sonar data sets respectively. The data-set details are given in

Table 1 (number of predictors, p; size of training set, D; size of test set, T ).

Also shown in the table are the overall classification performances, i.e. the

percent correct classification of the test set, for each data set.
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Table 1: Data set details and overall classification performances

Data Set p D T % correct
Pima 8 512 256 77.1

Synthetic 2 250 1000 88.6
Sonar 60 138 70 87.1

Ionosphere 33 200 151 94.7
Wisconsin 9 455 228 99.6

To compare the envelope and reject methods we need to compare the

proportions each method assigns to the three categories SURE CORRECT

(SC), SURE INCORRECT (SI) and UNSURE (U). In order to do this we

have found the proportions assigned to each of the three categories by the

envelope method at each of three commonly used threshold values (0.80,

0.95 and 0.99). To standardise the two methods we have then found the

assignments to the three categories for which the reject method gives the

same SI proportion as the envelope method (apart from the Pima 95% region

where we standardised on the SC proportions), together with the reject

threshold value that achieves this assignment. In a couple of cases there was

a range of such values, and in these cases we have quoted the highest value

in the range. All the results are given in Table 2 for each of the five data

sets.

In terms of proportions within each category (SC, U, SI), the two meth-

ods of region construction give very comparable results. Where values differ

between the two methods for a category, the better (i.e. lower SI or higher

SC) value is shown in bold. However, whereas the envelope regions are de-

fined in terms of familiar “confidence coefficient” values, the best matching

reject regions have unpredictable and generally very low probability thresh-

olds. We see that if we require strong consistency of classification (99%)

then success rates (SC) show a fall from the unconditional rates in Table 1,

but if we are prepared to tolerate weaker consistency then there is generally

a closer match between the rates.
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Table 2: 80%, 95% and 99% envelope method regions and best matching
reject method regions for five data sets

Envelope Regions Reject Regions
Data # SC U SI # SC U SI

80% 0.7656 0.0260 0.2083 51% 0.7656 0.0260 0.2083
Pima 95% 0.7552 0.0521 0.1927 53% 0.7552 0.0469 0.1979

99% 0.7448 0.0677 0.1875 54% 0.7552 0.0573 0.1875
80% 0.8780 0.0160 0.1060 54% 0.8760 0.0180 0.1060

Synthetic 95% 0.8740 0.0270 0.0990 57% 0.8710 0.0300 0.0990
99% 0.8700 0.0320 0.0980 57% 0.8680 0.0340 0.0980
80% 0.8429 0.0286 0.1286 51% 0.8429 0.0286 0.1286

Sonar 95% 0.8286 0.0429 0.1286 51% 0.8429 0.0286 0.1286
99% 0.8000 0.0857 0.1143 52% 0.8429 0.0429 0.1143
80% 0.9470 0.0066 0.0464 51% 0.9470 0.0066 0.0464

Ionosphere 95% 0.9470 0.0066 0.0464 51% 0.9470 0.0066 0.0464
99% 0.9338 0.0199 0.0464 51% 0.9470 0.0066 0.0464
80% 0.9781 0.000 0.0219 93% 0.9781 0.000 0.0219

Wisconsin 95% 0.9781 0.000 0.0219 93% 0.9781 0.000 0.0219
99% 0.9781 0.000 0.0219 93% 0.9781 0.000 0.0219

4 Choosing Between Classifiers

4.1 Methodology

Traditionally, classifier system performance has been measured simply by

the percentage of test-set allocations that are correct (or by its complement,

the error rate, or some simple variant depending on problem-specific vari-

ation in the importance of the alternative classifications). Thus whenever

a choice has to be made between competing classifiers, either the success

rate or the error rate is the criterion on which the decision is based. But

this statistic carries no information regarding the confidence with which

the various classifications have been made. We have argued above for the

use of SURE CORRECT, SURE INCORRECT and UNSURE as measures

of confidence in classifications, so a better comparison between classifiers

should be based on simultaneous use of all these measures. To see how this

can be implemented, we draw on the work that has been done in classi-

fier acceptance-reject rates (see, e.g., Giacinto, Roli and Bruzzone, 2000,

for a summary). In particular, Battiti and Cola (1994) have shown that to

compare the performance of different classifiers we need to compare their
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accuracies over a range of different rejection rates (i.e. different threshold

values t), and this can be done by plotting these values in the accuracy-

rejection (A-R) plane. In our case the UNSURE proportions at different

t values correspond to the rejection rates, while “accuracy” is reflected by

either of the SURE categories. We prefer to minimise SURE INCORRECT

rather than maximise SURE CORRECT, so to compare different classifiers

on a data set we compare the curves each produces when SURE INCOR-

RECT is plotted against UNSURE for a range of values of t. The classifier

corresponding to the lowest curve on such a plot is the one to be chosen.

4.2 Applications

To illustrate this methodology, we first need a set of classifiers to compare.

There is an almost unlimited choice available to us, but to keep within a tra-

ditional statistical modelling framework we define a nested set of k−nearest

neighbour classifiers by providing first a simplification and then a general-

ization of the probabilistic classifier introduced above.

The simplified version is obtained by keeping β fixed at 1.0 throughout,

and only sampling over k. Here the probability of x belonging to a particular

group is directly proportional to the preponderance of this group among the

k nearest neighbours of x, and there is thus no possibility of skewing this

probability as the balance of neighbours between groups varies. We call this

version the “simple” classifier as opposed to the other “standard” one.

The generalized version is obtained by expanding the single β param-

eter into a matrix M of parameters to reflect scaling and rotation of the

variables. This is equivalent to replacing the Euclidean metric d(x1,x2) =

{(x1 − x2)t(x1 − x2)}1/2 in step 1 of the k−nearest neighbour process by

an “adaptive” metric d(x1,x2) = {(x1 − x2)tM(x1 − x2)}1/2 where the

(positive-definite) matrix M is chosen to optimise the classification with

regard to differential scales and orientations of the variables. Various ways

can be devised for achieving such an adaptive classifier (see, e.g., Myles and

Hand, 1990, or Hastie and Tibshirani, 1996). Our approach is to take M

= QΛQt, where Λ is a diagonal scaling matrix and Q = exp(S) with S a

skew-symmetric rotation matrix. The proposals are generated by forming
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M ′ =Q′Λ′Q′t, where quantities ri drawn independently from N(0, 0.22) are

added to the diagonal elements of Λ to give Λ′, and Q′ = exp(S′) where

quantities si are drawn independently from N(0, 0.12) and added to elements

of S to give S′. Further details are given by Everson and Fieldsend (2004);

we call this version the “adaptive” classifier.

It is evident that the three classifier versions are therefore nested, with

the simple one being a special case of the standard one and this in turn

being a special case of the adaptive one.

4.2.1 Comparison of envelope and reject methods

To make this comparison as simply and directly as possible, we compare

the two methods on just the simple Bayesian k−nearest neighbour classifier

(i.e. only one parameter k) and the standard Bayesian k−nearest neighbour

classifier (i.e. two parameters k and β) on the five data sets used above;

Figure 1 shows the accuracy-rejection plots for these data sets. The plots

obtained using the envelope method are on the left, and those using the

reject method are on the right; the curve obtained from the simple classifier

is indicated by crosses, that from the standard classifier by open circles.

Figure 1 about here.

The first obvious difference between the envelope plots and the reject

method plots is that the latter stretch across the whole x−axis while the

former generally stop about half-way across. This is because the envelope

plots are determined by the proportion of MCMC classifiers that classify to

each group, and in all data sets there will be at least some points for which

all classifiers allocate to one group. Such points have posterior group alloca-

tion probabilities of 1.0 so can never be categorised as UNSURE whatever

the threshold value of t − even if their estimated posterior probabilities of

classification are not very high. The reject method plots, on the other hand,

are based directly on these estimated posterior probabilities which rarely

approach 1.0 for any data points. Hence the range of possible UNSURE

values is much greater for the reject method than for the envelope method,

and this feature is borne out by the plots. Indeed for some envelope plots
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the range of UNSURE values is either very short or nonexistent (e.g. for

the Wisconsin data). Reference back to Table 2 shows that for these data

sets there are either no or very few UNSURE points at the highest threshold

value, so there cannot be any such points at lower threshold values.

With that proviso, it is evident that the differences between the two

methods of construction are very slight, and that they both give the same

qualitative conclusions regarding the comparison between the simple and

the standard k−nearest neighbour classifiers. Since the simple classifier is

nested within the standard one we would expect the latter to have better

classification performance, and this is generally the case in our examples. For

the Pima, Synthetic and Sonar data sets the curve for the standard classifier

lies distinctly below that for the simple classifier (although there is a small

reversal at the lowest UNSURE value of the Sonar data). In the cases of

Ionosphere the two classifiers give indistinguishable performances, the two

curves virtually coinciding over the range plotted, while the Wisconsin data

(as already noted) has virtually no variability for either classifier.

We have stressed earlier the ease of application of the envelope method

to multi-class data, since the basic operation is no different from that in

the two-class case. We therefore selected two more data sets from the UCI

repository: the Wine data with 3 classes (p = 13,D = 89, T = 89, 96.6%

correct classification) and the Vehicle data with 4 classes (p = 19,D =

564, T = 282, 67.4% correct classification). The accuracy-rejection plots for

these sets are shown in Figure 2 for the envelope method.

Figure 2 about here.

The two classifiers give virtually indistinguishable performances for the

vehicle data, the two curves lying more or less on top of each other, but

for the wine data we have the surprising result that the simple classifier has

better performance than the standard classifier. However, this set of data

is one with small data sets, relatively high number of variables and well-

separated classes, so a difference of one or two classifications is enough to

cause the result observed.
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Table 3: Percentage of correct classifications in the test set for each classifier
and each data set

Classifier
Data Set simple standard adaptive

Pima 76.0 77.1 79.2
Synthetic 87.9 88.6 89.4

Sonar 85.7 87.1 84.3
Ionosphere 94.7 94.7 98.0
Wisconsin 99.6 99.6 98.7
Vehicle 63.8 67.4 77.0
Wine 98.9 96.6 98.9

4.2.2 Comparison of classifiers

We can now turn to comparison of the three versions of k−nearest neighbour

classifier. First, we show in Table 3 the overall classification performances of

each of these versions as judged by the percentage of correct classifications

in the test set T of each data set.

Although there are one or two exceptions evident in the table, the broad

trend of the results suggests that classifier accuracy improves on moving

successively from simple to standard to adaptive, i.e. as the complexity

of the k-nearest neighbour classifier increases. (Although the details are

not shown here, the Bayesian-averaging classifier also generally gives better

results than just the single-best MAP classifier.) However, we have argued

above that such a way of judging classifier performance is too simplistic, and

that we need to examine the SURE INCORRECT versus UNSURE plots

of the classifiers over a range of values of t. In Figure 3 we therefore show

these plots for the test data portion of each of the seven data sets. In each

plot the simple classifier is indicated by crosses, the standard classifier by

open circles, and the adaptive classifier by stars.

Figure 3 about here.

The picture now is less clear-cut than the error rate comparisons would

suggest. The only data set in which the above trend is definitely supported

is the Pima data, where the curve for the simple classifier lies completely

above the curve for the standard classifier, and this in turn lies mostly above
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the curve for the adaptive classifier. Although the standard classifier curve

is not completely above that for the adaptive classifier, it is nevertheless so

for a sufficient part of the range of UNSURE values, so that we can indeed

conclude that for this data set the adaptive classifer is best, the standard

classifier is next best, and the simple classifier is the poorest. We note that

the test set for the Pima data is quite large (256 individuals).

The remaining data sets depart from the expected trend to a greater

or lesser extent. Closest is the Synthetic data, where the simple classifier

is uniformly the poorest again, but there is nothing to choose between the

other two types. However, it is possible to establish the optimal Bayes error

rate for Synthetic data; in this case both standard and adaptive versions

are operating at close to the Bayes level, and such a large test set (1000

observations) permits accurate estimation of classification rates. For the

Vehicle data there is in fact nothing to choose between all three types until

near the very end of the range of UNSURE values, so by analogy with the

Synthetic data result we infer that all three classifiers are operating at close

to the Bayes level. We also note that the Vehicle test set is the second largest

among our data sets (282 individuals). The Wisconsin data has very little

variation across the whole range of classifiers, so can perhaps be discounted,

while the Wine and Sonar data exhibit so many “cross-overs” of curves as

to make any single conclusion meaningless. However, we note that these

latter two data sets have very small test samples (89 and 70 respectively),

so these “cross-overs” are a reflection of the large variability in small data

sets. The one puzzling outcome is for the Ionosphere data, which show the

reverse of the expected trend with the most complex classifier being the

poorest until near the end of the UNSURE range. This result is opposite to

the one suggested by consideration of the straightforward correct/incorrect

dichotomy and would merit further investigation.

We therefore conclude from these experiments that although the addi-

tion of a confidence measure to the usual correct/incorrect assessment of

classifiers is highly desirable, it carries a penalty in terms of sampling vari-

ability. The expected trends show up only generally when samples are large

(particularly when test samples are large), and in small samples the picture
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is considerably less clear.

5 Conclusion

We have shown that Bayesian MCMC methodology can be allied to existing

knowledge on the reject option in classification to produce a quantification

of the confidence that can be ascribed to particular classification outcomes.

One point that can be made here is that a typical Bayesian MCMC classifi-

cation task gathers a vast amount of information, much of which is thrown

away without further use. The envelope method makes use of this infor-

mation, so is very efficient in that it needs little more computation than is

already carried out but with considerable added benefit.

Of the two methods described, the envelope approach offers some di-

rect advantages over the standard reject approach: interpretability in terms

of familiar confidence coefficient terminology, guidance in choice of thresh-

old values, and easy applicability to all types of grouping. However, it

offers a further compelling advantage that has not been mentioned so far,

namely that it is applicable to those classifiers (such as the linear discrim-

inant function, for example) that produce non-probabilistic classification

scores whereas the reject method cannot be used in such cases.

It has been shown that incorporating confidence measures into a compar-

ison of classifiers via the accuracy-rejection plots can make the comparison

less clear-cut than the traditional one based solely on either success or error

rates. This is related to the variability inherent in sample-based classifiers,

which is often ignored when making error rate comparisons. A more realis-

tic assessment might come from comparisons of confidence regions for error

rates (see, e.g., Krzanowski, 2001), but this does not yet seem to be standard

practice.

Indeed, it is surprising that classifier confidence has received so little

attention, considering the emphasis placed on confidence regions in general

statistical practice. The methods described here are easily built in to a

standard Bayesian procedure so should be part of the general classification

tool kit, especially in such areas as safety-critical applications. However,
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some aspects remain to be investigated. For example, what can be done if

the available data are not extensive enough to be split into a training set

D and a test set T ? The standard way of proceeding in the single-classifier

case would be to use a data-based method of error rate estimation such as

leave-one-out, but in our set-up each unit omission in effect creates a new set

D for the MCMC process. So if such a scheme were to be contemplated then

an efficient way of organising the computations would be essential. Similar

considerations of efficiency are paramount if the variability of the results is

to be established using, say, n−fold cross-validation on the (D,T ) splits of

the data.

While such aspects remain to be investigated, we nevertheless feel that

use of the confidence measures described in this paper provide a distinct

step forward in classifier technology.
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Figure 1: Accuracy-rejection plots for the 2-group data sets; envelope
method on left, reject method on right, circles for general classifier and
crosses for simple classifier.
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Figure 2: Accuracy-rejection plots for the multi-group data sets using the
envelope method; circles for the general classifier, crosses for the simple
classifier.
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Figure 3: Accuracy-rejection plots for all data sets using the envelope
method; crosses for the simple classifier, circles for the general classifier,
stars for the adaptive classifier.
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