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Abstract

Reasoning from data in practical problems
is frequently hampered by missing observa-
tions. Mixture models provide a powerful
general semi-parametric method for model-
ling densities and have close links to radial
basis function neural networks (RBFs). In
this paper we extend the Data Augment-
ation (DA) technique for multiple imputa-
tion to Gaussian mixture models to permit
fully Bayesian inference of the mixture model
parameters and estimation of the missing val-
ues. The method is illustrated and compared
to imputation using a single normal density
on synthetic data and real-world data sets.
In addition to a lower mean squared error,
mixture models provide valuable information
on the potentially multi-modal nature of im-
puted values, and by modelling the missing
data more accurately, so that higher classi-
fication rates can be achieved compared with
simple mean imputation methods. The DA
formalism is extended to a classifier closely
related to RBF networks to permit Bayesian
classification with incomplete data; the tech-
nique is illustrated on synthetic and real-
world datasets. This efficient technology en-
ables us to perform Bayesian imputation,
parameter estimation and classification sim-
ultaneously for data with missing values.

1 INTRODUCTION

Measured data are frequently marred by missing val-
ues. When data are plentiful it may be sufficient to
discard the incomplete observations, but utilising all
the available information for learning and inference is
generally important, and it is often necessary to clas-
sify or predict an outcome from incomplete predictors.

For example, trauma room or intensive care unit med-
ical data, such as blood pressure, heart rate, injury
type, etc., collected in extremis are often incomplete,
but it is necessary to make predictions from these data.

Many methods for filling in, or imputing, missing
values have been developed (see [Little and Rubin,
2002] for a comprehensive treatment); simple meth-
ods are to replace missing values by the mean of the
observed values or to regress missing values from the
observed data. Maximum likelihood learning via the
Expectation-Maximisation (EM) algorithm [Dempster
et al., 1977], in which the missing observations are re-
garded as hidden variables, permits inference of miss-
ing values and takes account of the additional uncer-
tainty in parameters caused by missing observations
[Ghahramani and Jordan, 1994].

In a Bayesian framework the Data Augmentation (DA)
algorithm, introduced by Tanner and Wong [1987], is
the natural analogue of the EM algorithm; it amounts
to Gibbs sampling from the joint posterior distribu-
tion of the parameters and the missing values. Since
many samples are drawn for the missing variables DA
is a multiple imputation (MI) technique [Rubin, 1987].
The DA algorithm has been widely used for missing
value imputation under the assumption of a normal
model [Schafer, 1997]. In this paper we use data aug-
mentation for the inference of missing values and para-
meters of mixture models. Mixture models are well
known as a flexible semi-parametric density model,
capable of modelling a wide range of densities. Diebolt
and Robert [1994] developed a Gibbs sampling scheme
for sampling from the posterior parameter distribution
of uni-dimensional mixture models, which we extend
to the multi-dimensional mixtures in order to incorpor-
ate DA. Mixture models are closely related to radial
basis function (RBF) neural networks. In a similar
manner to Tr̊avén [1991] and Sykacek [2000], for clas-
sification problems with missing data we utilise a mix-
ture model with separate mixing coefficients for each
class to model class conditional densities. The mixture



model structure permits the easy incorporation of DA
and allows class membership information to influence
the imputation of missing values.

This paper is organized as follows. In section 2 we
briefly review the Data Augmentation algorithm and
describe how it is applied to the single multivariate
normal model which forms the basic building block for
the mixture models described in section 3. Illustrative
results for mixture models are also presented in section
3, after which the use of mixture models as the basis
for classifiers is described and illustrated in section 4.
The paper concludes with a brief discussion.

2 DATA AUGMENTATION

We partition each datum x = (x1, . . . , xp)
T into the

observed components xobs and the (possibly empty)
missing components xmis. The goal of Bayesian infer-
ence with missing data is to describe the joint posterior
distribution p(θ, Xmis |Xobs) of the model parameters
θ and the missing values Xmis having observed the
data Xobs. By Xobs and Xmis we mean all the ob-
served and missing values respectively.

The DA algorithm [Tanner and Wong, 1987] uses

Gibbs sampling to draw samples {θ(t), X
(t)
mis} from

the joint distribution: In the Imputation step miss-
ing values are imputed by simulating from the con-
ditional predictive distribution of Xmis based on the
observed data, p(Xmis |Xobs, θ

(t−1)). In the Posterior

step the data, completed with the simulated X
(t)
mis, is

used to draw new parameters θ(t) from the posterior

distribution p(θ |X
(t)
mis, Xobs). After the usual burn-in

period to ensure convergence, the draws {θ(t), X
(t)
mis}

form a Markov chain whose stationary distribution is

p(θ, Xmis |Xobs). The imputed samples X
(t)
mis may be

histogrammed to show the posterior distribution of

the imputed samples, or {θ(t), X
(t)
mis} can be used for

Monte Carlo integration for predictive purposes.

2.1 Single multivariate normal

Schafer [1997] provides an extensive discussion, which
we summarise here, of the DA algorithm for the im-
putation of missing values when the data are assumed
to be independent and drawn from a normal distribu-
tion with mean µ and covariance Σ.

I-step. The t-th imputation step consists of making
a draw of the missing values given the current paramet-
ers θ(t) = {µ(t),Σ(t)}. It is straightforward to show
that the distribution of missing values given the ob-
served values is

xmis ∼ N (µ
(t)
m|o,Σ

(t)
mm|o) (1)

where, omitting for clarity the (t) superscripts,

µm|o = µm + ΣT
omΣ−1

oo (xobs − µo) (2)

and
Σmm|o = Σmm −ΣT

omΣ−1
oo Σom (3)

in which the mean and covariance are partitioned in
the same manner as x with m and o subscripts de-
noting the components corresponding to missing and
observed variables:

µ =

(

µo

µm

)

Σ =

(

Σoo Σom

Σmo Σmm

)

(4)

P-step. The normal-inverted Wishart density is the
conjugate prior for the mean and covariance matrix:

Σ ∼ W−1(m,Λ), µ |Σ ∼ N (µ0, τ
−1Σ) (5)

where m, Λ, µ0 and τ > 0 are hyperparameters. In
the P-step, using the data completed with the draws in
the I-step, new means µ(t+1) and covariance Σ(t+1) are
drawn from their normal-inverted-Wishart posterior
for which the parameters are:

m′ = m + N (6)

Λ′ = [Λ−1 + NS +
τN

τ + N
(x − µ0)(x − µ0)

T ]−1 (7)

µ′
0 =

N

τ + N
x +

τ

τ + N
µ0 (8)

τ ′ = τ + N (9)

where N is the number of observations and x and S

are the sample mean and covariance respectively.

2.2 Example: Old Faithful data

As an illustrative example and for contrast with the
mixture case, we show the results of imputation on the
Old Faithful dataset [Hardle, 1991]. The data consists
of 298 observations of 2-dimensional continuous vari-
ables: the duration (in minutes) of the eruption, and
waiting time (in minutes) before the next eruption. 68
of the observations do not have a value for the waiting
time until the next eruption.

Using non-informative priors, we learn posterior dis-
tributions for the mean and covariance of the distri-
bution and impute 5000 samples from the posterior
distribution for each of the missing values. Figure 1
shows the data, while Figure 2 shows histograms of
the imputed values for 4 representative missing values.
These results highlight the inadequacies of the single
multivariate normal model for these data, which are
clearly comprised of two clusters. The result of using
a single normal model is rather diffuse unimodal im-
putations, reflecting the fact that the single Gaussian
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Figure 1: Old Faithful data: Waiting time between
eruptions (ordinate) plotted versus eruption duration
(abscissa). Dots mark the complete samples. Hori-
zontal lines indicate the waiting time for 4 samples for
which the duration is missing.

is forced to account for both clusters. Note that the
imputed values for points A and D show a bias to-
wards higher values (A) and lower values (D), reflect-
ing the orientation of the posterior covariance matrix,
but there is no hint of multi-modality in the imputa-
tions for points B and C. These considerations lead us
to consider imputation using mixture models.

3 DA FOR MIXTURES

Mixture models provide a very general semi-
parametric model for arbitrary densities and they have
been extensively investigated [see, for example, Tit-
terington et al., 1985]. Their structure makes them
amenable to Gibbs sampling, so that DA for miss-
ing values may be naturally incorporated into learn-
ing. In addition to unconditional density estimation,
they may be simply modified to form classifiers with
a structure similar to RBF neural networks. Max-
imum likelihood inference of mixture model parameter
values is frequently carried out via the Expectation-
Maximisation (EM) algorithm [Dempster et al., 1977],
and Ghahramani and Jordan [1994] showed how to
obtain maximum likelihood estimates for missing data
within the EM framework. Diebolt and Robert [1994]
described MCMC schemes for Bayesian inference of
the parameters of unidimensional mixture model with
a fixed number of components. Here we extend their
work to multidimensional mixtures, permitting simul-
taneous inference of missing values.
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Figure 2: Histograms of the imputed eruption duration
values for the 4 missing values indicated by horizontal
lines in Figure 1, using a single multivariate normal
model. Letters A-D refer to the horizontal lines in
Figure 1.

We consider M -component mixture models,

p(x) =

M
∑

j=1

wjp(x |θj), (10)

with non-negative mixing coefficients wj summing to
one, and component densities p(x |θj). We focus on
the common Gaussian mixture model (GMM), so that
the parameters of each component density are a mean
µj and a covariance matrix Σj . Inference in mix-
ture models is facilitated by the introduction of latent
variables zn, which indicate which mixture compon-
ent generated the observation xn; znj = 1 if the jth
component generated xn, otherwise znj = 0.

For Gaussian mixture models, normal-inverse Wishart
densities are the natural (conjugate) priors over the
parameters of each component:

Σj ∼ W−1(mj ,Λj) (11)

µj |Σj ∼ N (µ0j , τ
−1
j Σj) (12)

and we place a symmetric Dirichlet prior over the vec-
tor of weights, w = (w1, . . . , wM ) :

w ∼ D(α, . . . , α) (13)

With complete data, the Gibbs sampling scheme of
Diebolt and Robert [1994] can be extended to multidi-
mensional Gaussian mixture models. The t-th sweep
of the sampling comprises draws as follows:

1. Indicator variables

z(t)
n ∼ M(h

(t)
n1 , . . . , h

(t)
nM ) (14)



where M denotes the multinomial-1 density and
hnj is the responsibility taken by the jth compon-
ent for the xn:

h
(t)
nj =

wjN (xn |µj ,Σj)
∑M

i=1 wiN (xn |µi,Σi)
(15)

where wj , µj and Σj all refer to the samples from
the (t − 1)-st sweep.

2. Component parameters are drawn from their
posterior densities, with the ‘data’ contributing to
the jth component indicated by the n for which
znj = 1. Expressions for the normal-inverse-
Wishart parameters for each of the M compon-
ents are given by (6) – (9), with N replaced by
Nj =

∑

n znj and

xj =
1

Nj

∑

n

xnδnznj
(16)

Sj =
1

Nj

∑

n

(xn − xj)(xn − xj)
T δnznj

(17)

where δnznj
is the Kronecker delta.

3. Mixing coefficients are drawn from their pos-
terior densities, which are also Dirichlet:

w′ ∼ D(α + N1, . . . , α + NM ) (18)

These three steps form the P-step of a DA algorithm.
In the corresponding I-step, the missing values are
filled in by sampling from the component that, at the
t-th step takes responsibility for the observation with
the missing values. Thus if xn has missing values, im-
putations are made from the conditional Gaussian dis-
tribution (1), in which the appropriate µj and Σj are
the samples from the P-step with j such that znj = 1.

In the majority of the work reported here we have used
non-informative priors for the parameters of the com-
ponent distributions and the weights. However, it can
also be helpful to adopt an empirical Bayes approach.
Thus one may set weak priors on component means
µj to be equal to the overall mean of the data and
weak spherical priors on the Λj so that the covari-
ance of the dataset is shared out equally among the
M components. It is also helpful to choose α to be
slightly informative (α > 1), encoding the belief that
the mixture components carry responsibility for equal
numbers of data points. Non-informative α may result
in insufficient data points being associated with a com-
ponent, in which case we adopt Diebolt and Robert’s
[1994] strategy and skip the Gibbs updates paramet-
ers of that component on this sweep. We initialise the
Gibbs sampling Markov chain with K-means cluster-
ing, which itself is bootstrapped either by ignoring re-
cords with missing observations or using simple mean
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Figure 3: Histograms of the imputed eruption dura-
tion values for the 4 missing values indicated by hori-
zontal lines in Figure 1 using a two component mixture
model.

imputation. In any case we find that after a few sweeps
memory of the initialisation is lost. In the results re-
ported here we have used 500 or 100 burn-in sweeps.

3.1 Example: Old Faithful data

We illustrate DA for mixture models on the Old Faith-
ful data previously discussed in section 2.2. As we
noted there, it is reasonable to model these data with a
two-centre model, and the minimum description length
(MDL) criterion [J.Rissanen, 1978] concurs with this.
Figure 3 shows histograms of the imputed values for
the data points indicated by the horizontal lines A-
D. The imputations for points B and C are clearly
multi-modal, reflecting the likelihood that the missing
value in each case might have been generated by either
cluster. In addition, the imputed values for points A
and D are less dispersed than the imputations shown
in Figure 2 because only one component takes respons-
ibility for each of them.

3.2 Example: Synthetic and Iris data

We also generated a synthetic dataset consisting of 100
observations from a 3-centre mixture model.1 The ef-
ficacy of the mixture model DA algorithm for different
proportions of missing data was assessed using this
dataset by deleting (at random) a proportion of the
values and comparing the mean imputed values with
the known original value. This synthesis of an incom-

1The model parameters were w = (0.5, 0.25, 0.25);
µ

1
= (0,−0.2)T

, µ
2

= (2, 2)T
, µ

3
= (2,−2)T ; Σ1 =

( 0.625 −0.217
−0.217 0.875 ); Σ2 = ( 0.224 −0.137

−0.137 0.976 ); Σ3 = ( 0.238 0.152
0.152 0.413 ).



% Mean 1 centre 3 centres
10% 4.352 1.59 4.582 0.73 3.60 0.87
20% 4.279 1.08 4.387 0.44 3.78 0.74
30% 4.310 0.88 4.360 0.34 3.69 0.64
40% 4.300 0.76 4.425 0.33 3.80 0.53
50% 4.379 0.66 4.440 0.21 4.00 0.57

Table 1: Mean squared error per data point for mean
imputation, single centre and three centre imputation.
Columns show the MSE and standard deviation over
1000 (mean imputation) and 50 (1 & 3 centres) syn-
thetic datasets.

plete dataset and imputation from it was repeated 50
times for each of the missing proportions, and we re-
port averages over the 50 repeats.

Table 1 compares the mean squared error for mean
imputation, imputation using a single Gaussian and
mixture model imputation with three centres. It
can be seen that the single centre DA is little bet-
ter than mean imputation in this situation, although
there is less variability in its results. Mixture model
DA provides better imputation than either of the
other methods, although there is significant variability
between the synthesised datasets.

We find a similar pattern with incomplete datasets
synthesised in the same manner from the famous four-
dimensional, Fisher iris dataset [Fisher, 1936; Blake
and Merz, 1998], which consists of 150 observations,
50 from each of three different classes. Figure 4 shows
that the mean squared error per data point (over 10
repeats) for mixture model DA is slightly lower than
for imputation from a single Gaussian.

Although, in both these cases, the MSE between the
posterior mean imputed value and the ‘true’ value is
lower for mixture model DA, we emphasise that com-
paring the mean of the posterior imputed value with
the true value is rather insensitive and hides the prin-
cipal advantage of the method, which is its ability to
capture multi-modality in the imputed values.

4 CLASSIFICATION

Although unsupervised density modelling may be a
goal in its own right, the task of many machine learn-
ing and statistical modelling efforts is to classify new
data based on the knowledge of training data com-
prised of features xn and the corresponding classes
tn. In order to take advantage of information resid-
ing in incomplete training data as well as to be able to
classify incomplete observations, we model class con-
ditional densities using mixtures. The mixture model
foundation of these classifiers makes them amenable
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Figure 4: Fisher iris data. Mean squared error versus
percentage of records with missing data using one and
three centre imputation.

to Gibbs sampling and DA algorithms.

The classifiers are built on an architecture proposed
by Tr̊avén [1991] and used by Sykacek [2000] for input
feature selection. Its structure is akin to that RBF
neural networks, and we note that Dybowski [1998]
has proposed a similar mixture model for maximum
likelihood based imputation.

The class conditional probability density for each class
k = 1, . . . , K is modelled as:

p(x | k) =

M
∑

j=1

wkjp(x |θj) (19)

Thus the mixture components p(x |θj) are common
to all classes, but each class conditional probability
is a separate linear combination of the components.
The non-negative weights wkj satisfy the constraint:
∑

j wjk = 1 for each k.

The posterior probability for class k is therefore:

p(k |x) =
Pk

∑M

j=1 wkjp(x |θj)

p(x)
(20)

where Pk is the prior probability of class k, and p(x) =
∑K

k=1 p(x | k)Pk .

Inference for this classifier can be achieved via Gibbs
sampling in similar manner to the unsupervised mix-
ture models. In addition to usual normal-inverted-
Wishart priors over the component parameters, we
place a separate Dirichlet prior, but with common
hyper-parameter α, over each of the weight vectors:

wk ∼ D(α, . . . , α) (21)
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Figure 5: Synthetic two-class data. Circles and crosses
mark complete observations from the two classes. The
bold dashed line indicates the Bayes decision bound-
ary; the bold solid line marks the posterior average
decision boundary using data in which 50% of obser-
vations had a missing variable. Horizontal lines show
the x2 coordinate of an observation for which the x1

coordinate is missing.

In addition we place Dirichlet priors over the prior
class probabilities:

P ∼ D(δ, . . . , δ) (22)

Generally the prior counts are set to be non-
informative, δ = 1. Let η1, . . . ηK be the counts per
class and η1k, . . . , ηMk be the number of targets of class
k assigned to each component. Then Gibbs sampling
for complete data proceeds as outlined for the uncondi-
tional mixture model with the following modifications:

• Indicator variables for xn is drawn from a mul-
tinomial distribution based on the target tn:

zn ∼ M(hn1, . . . hnM ) (23)

where

hnj =
wjtn

N (xn |µj ,Σj)
∑M

i=1 witn
N (xn |µi,Σi)

(24)

• Weights are drawn from their conditional pos-
terior densities:

wk ∼ D(α + η1k, . . . , α + ηMk) (25)

• Prior proportions are drawn from their condi-
tional posterior densities:

P ∼ D(α + η1, . . . , α + ηK) (26)
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Figure 6: Histograms of posterior imputations of x1 for
data corresponding to the four horizontal A-D lines in
Figure 5.

• Component parameters are drawn from the
(conditional) posterior normal-inverse Wishart
densities (equations (6) – (9)) with the data con-
tributing to the parameter update determined by
the indicators znj .

• Class allocations. Denoting the inferred class of
xn as yn, samples are drawn from the conditional
posterior class density as:

yn ∼ M(πn1, . . . , πnK) (27)

where

πnk =
p(xn |Θk)Pk

∑K

i=1 p(xn |Θi)Pi

(28)

where Θk denotes the coefficients on which the
k-th class conditional density depends.

Augmenting this classifier to impute missing values is
straightforward. The above Gibbs sampling steps form
the P-step; the I-step consists of imputing missing val-
ues from the centre which (at a particular sweep) takes
responsibility for that (xn, tn) pair, that is the centre
j for which znj = 1. The responsibility hnj is determ-
ined by (24) and we emphasise that the target class
tn plays a central role in determining the responsible
component.

4.1 Illustration

We illustrate the performance of the classifier on a two-
dimensional synthetic data set [Fieldsend et al., 2003]
comprised of 5 Gaussian components, which is a mod-
elled on a dataset used by Ripley [1994] for classifier
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Figure 7: Classification performance for mean and DA
mixture imputation plotted against the percentage of
missing values for the synthetic data shown in Figure
5. The horizontal line marks the Bayes classification
rate.

testing.2 As illustrated in Figure 5, observations gen-
erated by two Gaussian components are allocated to
one class, while observations generated by the other
class are assigned to a second class; the component
weights are such that there is equal prior probability
of an observation from either class. The Bayes error
rate for these data is 9.4%.

Non-informative priors were used during learning on
data in which 50% of 250 observations have a coordin-
ate missing; targets for all the data were present. Fol-
lowing burn-in, samples were generated from the joint
parameter and missing data distribution, and classi-
fications of an additional 1000 complete testing data
examples were made. Figure 5 shows both the Bayes
rule boundary and the 0.5 mean posterior probabil-
ity contour, which reasonably closely approximates the
Bayes decision boundary. We note that the principal
deviations from the Bayes decision boundary are in re-
gions of low data density and the posterior distribution
p(y |x, Xobs) is relatively wide in these regions.

Figure 6 shows histograms of imputations for four ex-
ample data observations whose x1 coordinate is miss-
ing, as indicated in Figure 5. Observation A belongs
to the ‘crosses’ class and, as the histogram shows the
imputed values are concentrated around the cluster
centred at (1, 1). In contrast observation B belongs
to the ‘circles’ class and we draw attention to the fact

2Weights for the five components were
(0.16, 0.17, 0.17, 0.25, 0.25); the component means were
µ

1
= (1, 1)T

, µ
2

= (−0.7, 0.3)T
, µ

3
= (0.3, 0.3)T

,

µ
4

= (−0.3, 0.7)T
, µ

5
= (0.4, 0.7)T ; the covariances were

all isotropic: Σj = 0.03I.
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Figure 8: Pima data. Mean classification performance
plotted against the percentage of records containing a
missing value.

that the imputed values for B are generated almost ex-
clusively from the centres at (−0.3, 0.7) and (0.4, 0.7)
with no contribution from the centre at (1, 1) which
is responsible for the ‘crosses’ observations. Without
class information the imputations for B would extend
to x1 > 1. Observations C and D are more com-
plicated, receiving contributions from several centres.
We emphasise again that the mixture model permits
multimodal imputations, MCMC methods allow visu-
alisation of the full posterior and class membership
provides significant conditioning for the imputations.

Figure 7 shows that the performance of the classifier on
250 observations from this synthetic data using both
mean and DA mixture model imputation against the
proportion of missing values (deletions at random from
the complete data). The classification rate plotted rep-
resents the mean classification rate on 1000 test data
points repeated over at least 5 different realisations of
the incomplete data set. Even when a large propor-
tion of the observations are missing, it is interesting
to note that using the mixture model parameters are
not only getting better imputation but also are suf-
ficiently well estimated to permit better classification
rates compared with mean imputation.

Finally, we show in Figure 8 the results of artificially
deleting values from the nine-dimensional Pima data-
set.3 These results were obtained by again deleting,
at random, observations from a proportion of the re-
cords and using a classifier based on three-centre mix-
ture model (as suggested by MDL). The deletion pro-
cess and classification process was repeated five times.
The classification rates with complete data are com-
parable with other work [e.g. Sykacek, 2000] and decay

3Available from http://www.stats.ox.ac.uk.



only slowly as the proportion of records with a missing
value becomes large.

5 CONCLUSIONS

In this paper we have shown how the data augment-
ation mechanism may be simply extended from single
multivariate models to general mixture models, and
also to a classifier with a structure similar to RBF net-
works. The mixture model architecture is particularly
suitable for Gibbs sampling and makes for straightfor-
ward incorporation of data augmentation, which itself
can be viewed as a Gibbs sampling step.

Although mixture models have previously been used
for imputation in a maximum likelihood framework,
the MCMC methodology permits the posterior dens-
ity of the imputed values to be recovered. As we have
shown, these densities are often multimodal, a charac-
teristic that is inevitably missed by point estimates.

The results presented here were obtained using mix-
ture models with full covariance matrices and non-
informative priors. Modelling even moderately high-
dimensional data with full covariance matrices and im-
proper priors can lead to difficulties as very few obser-
vations are associated with each mixture component.
Current work is investigating the efficacy of restrict-
ing the covariance matrices to be spherical or diagonal,
which has the additional benefit of simplifying setting
of priors. These simplifications will also facilitate a re-
versible jump MCMC approach to the data augmenta-
tion and classification via mixture models [Richardson
and Green, 1997].

Finally, we remark that extending the Bayesian mix-
ture model formulation to the kernel density estimator
limit, in which each observation is associated with a
mixture component, is a promising avenue for imputa-
tion in high dimensional data.
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