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Abstract

The classical matrix Procrustes problem seeks an orthogonal matrix, U , which most closely

transforms a given matrix into a second matrix. We consider the Procrustes problem in which

the requirement that the columns of U be orthonormal is relaxed to orthogonality. Closed form

solutions cannot be found, but numerical schemes to �nd the best matrix (in the Frobenius

norm) are advanced. Numerical examples are given and the of the orthogonal Procrustes matrix

alternative to L�owdin orthogonalization is discussed.

1 Introduction

The villain Procrustes forced his victims to sleep on an iron bed; if they did not �t the bed he cut

o� or stretched their limbs to make them �t. The classical Procrustes matrix problem (Horn and

Johnson 1985; Golub and Loan 1983) asks how closely a matrix A 2 Rm�n can be approximated

by a second, given, matrix B 2 Rp�n multiplied by a matrix U 2 Rm�p with orthogonal columns.

Using the Frobenius norm, we therefore have the following problem:

minimize kA� UBk2 with UTU = Ip (1)

Since U has orthonormal columns,

kA� UBk2 = TrATA� 2TrABTUT + TrBTB (2)

Consequently (1) is equivalent to the problem of maximizing TrABTUT. The maximizing U may

be found in terms of the singular value decomposition (SVD) of ABT . If

ABT = W�ZT; (3)

where � = diag(�1; :::; �p), is the SVD of ABT we have

TrABTUT = TrW�ZTUT = TrWTUZ� = Tr T� =

pX
i=1

tii�i �

pX
i=1

�i (4)

where T = WTUZ is an orthogonal matrix. The trace is maximized when T = Ip so that U = WZT,

which may be recognized as the orthogonal polar factor of ABT.
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The orthogonal Procrustes problem might properly be called the orthonormal Procrustes prob-

lem since the condition imposed on U is that it's columns be orthonormal. In this note we discuss

the Procrustes problem in which the demand of orthonormality is relaxed to orthogonality. If

D 2 Rp�p is a diagonal matrix we consider the following problem:

minimize kA� UBk2 with UTU = D2: (5)

The companion problem, which is no longer equivalent to (5), is stated in term of di�erent A 2

R
m�p, B 2 Rm�n and U 2 Rn�p,

minimize kA�BUk2 with UTU = D2: (6)

In each case, we do not assume that D is a priori known. Our victims must sleep with their

limbs held orthogonal, but they will not be amputated or stretched if they don't match the bed's

dimensions.

The classical matrix problem �nds applications in factor analysis and statistics (Gower 1984;

Green 1952), in structural identi�cation (Beattie and Smith 1992), in robotics and, when B � I ,

in the re-orthogonalization of a basis. Watson (Watson 1994) gives numerical schemes to solve the

orthogonal Procrustes problem using the Schatten p-norms. The current study is motivated by the

analysis data derived from the optical imaging of the visual cortex (Everson et al. 1997).

2 A� UB

2.1 Tandem algorithm

The easier problem is (5) and we address this �rst. If D is known the substitution U = V D, where

V TV = Ip reduces (5) to the classical problem:

minimize � = kA� V DBk2 with V TV = Ip; (7)

and V is the found in terms of the orthogonal polar factor ofABTD, which we denote by OPF(ABTD)

On the other hand, if D is unknown, but V is known, a solution may be found by di�erentiating �

with respect to the vector d = diag(D):

@�

@dk
= �2

mX
i=1

�
ABT

�
ik
Vik + 2dk

nX
i=1

B2
ki: (8)

Setting the left hand side to zero yields dk and we note that there is no need to check the uniqueness

or character of the turning point since � is quadratic in d.

These two minimizations may be iterated in tandem to solve the full problem (5). Thus we

have the following iteration scheme:

d1 = (1; :::; 1)T (9a)

Repeat until converged; i = 1; 2; 3::: (9b)

Obtain (classical) Vi = OPF(ABTDi) (9c)

Obtain (eq. (8)) di+1 by minimizing kA� ViDi+1Bk
2 (9d)

Go to (9b): (9e)
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Iteration, i.

Figure 1: Convergence of the tandem iteration (9). The di�erences between � at each stage of the iteration
and � for the fully converged solution are plotted as crosses (9c) and triangles (9d).

Since at each stage � is decreased the scheme converges, though not necessarily to the global

minimum. In fact, convergence is linear. This is illustrated in Fig. 1 for matrices A 2 R10�5 and

B 2 R3�5 whose entries are random numbers drawn from a uniform distribution between 0 and 1.

The di�erence between � at each stage of the iteration and � for the solution converged to machine

precision (� 10�16) is plotted. Crosses at integer abscissae indicate � from (9c) and triangles at

half-integer abscissae represent � from (9d). The values of � corresponding to the classical and fully

converged U are 5.16 and 3.61, and the �nal d = (1:91; 1:24; 0:94).

We remark that at every stage of the iteration D is a diagonal matrix and V has orthonormal

columns, so that each approximation to the solution lies on the manifold of admissible solutions.

Although (9c) �nds Vi as the orthogonal polar factor of AB
TB, which at �rst sight requires the

(expensive) SVD of ABTD, we mention that e�cient iterative methods to calculate the orthogonal

polar factor are available (Higham 1986).

2.2 Conjugate gradient

Instead of (9), � may also be minimized by a more direct numerical scheme in which the conjugate

gradient method is used to optimize D and V simultaneously.

We wish to consider all candidate matrices V 2 Rm�p with orthonormal columns. Let V0 be

the solution to the classical Procrustes problem for A and B, that is, the orthogonal polar factor

of ABT. Then any V may be expressed as

V = V0G; (10)

where G 2 Rp�p is an orthogonal matrix. Clearly G has determinant �1. Further, since G = V T
0 V

and det(G) is a continuous function of G, the determinant of G for the V that minimizes � must

be the same as det(V T
0 V0) = +1.

Since G is orthogonal with determinant +1, it may be parameterized by p(p�1)=2 independent

quantities or angles (the analogues of Euler angles). Several di�erent parameterizations are possible;
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we choose to represent G as a product of p(p � 1)=2 Givens or Jacobi elementary plane rotation

matrices, which are matrices of the form

G(i; j; �) =

2
666666666664

1 � � � 0 � � � 0 � � � 0
...

. . .
...

...
...

0 � � � cos(�) � � � sin(�) � � � 0
...

...
. . .

...
...

0 � � � � sin(�) � � � cos(�) � � � 0
...

...
...

. . .
...

0 � � � 0 � � � 0 � � � 1

3
777777777775

; (11)

where the trigonometric factors occur at the intersections of the ith and jth rows and columns.

Suppressing, for conciseness, the coordinate planes (i; j) in which the rotations take place, G is

expressed as:

G = GT
1 (�1)G

T
2 (�2) : : : G

T
p(p�1)=2(�p(p�1)=2) (12)

The order of the coordinate planes in which the rotations take place is not unique: we mention two

possible choices below.

To �nd expressions for @�=@�q we need only consider the term

TrATUB = TrATV0GDB (13)

= TrATV0G
T
1G

T
2 : : :G

T
q (iq; kq; �q)G

T
q+1 : : :G

T
p(p�1)=2DB (14)

= TrHqG
T
q
(iq; kq; �q)Tq; (15)

where

Hq = ATV0G
T
1G

T
2 : : :G

T
q�1 and Tq = GT

q+1 : : :G
T
p(p�1)=2 DB (16)

are the head and tail of the product, and are independent of �q. We therefore have

@

@�q
TrHGT

q (i; k; �q)T = � sin �q

nX
l=1

HliTil � cos �q

nX
l=1

HliTkl

+cos �q

nX
l=1

HlkTil � sin �q

nX
l=1

HlkTkl;

(17)

where the dependence ofH and T on q has been suppressed. It is now straightforward to implement

a conjugate gradient scheme to minimize � with respect to the p(p+1)=2-dimensional vector whose

�rst p elements are the diagonal elements of D and whose remaining elements are the angles �q.

Although the conjugate gradient formulation permits minimization of D and G simultaneously,

any bene�t is by far outweighed by the overhead of repeated evaluations of � and its derivatives

that are necessitated by the conjugate gradient minimization.

As noted above, there are several ways in which to choose angles �q and coordinate plane rota-

tions (iq; jq) which represent G. A natural sequence is the order in which the elements of G might

be zeroed (with successive premultiplications by Gq) in forming its (trivial) QR decomposition.
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That is, as illustrated for a 4 � 4 matrix in (18), the (iq; jq) are chosen to annihilate the lower

triangle of G working up each column starting on the left:
2
664

� � � �

3 � � �

2 5 � �

1 4 6 �

3
775 : (18)

Givens elimination of the (i; j)th element requires a rotation in the (j � 1; j) plane, which implies

rotations in the following sequence of planes:

(p� 1; p); (p� 2; p� 1); (p� 3; p� 2); : : : : : : (2; 3); (1; 2);

(p� 1; p); (p� 2; p� 1); (p� 3; p� 2); : : : : : : (2; 3);
...

(p� 1; p); (p� 2; p� 1); (p� 3; p� 2);

(p� 1; p); (p� 2; p� 1);

(p� 1; p):

(19)

It has been our experience, however, that this sequence is numerically inferior to the sequence which

makes a single rotation in every pair of coordinate planes:

(1; 2); (1; 3); : : : : : : (1; p� 2) (1; p� 1); (1; p)

(2; 3); : : : : : : (2; p� 2) (2; p� 1); (2; p)
...

(p� 3; p� 2) (p� 3; p� 1) (p� 3; p)

(p� 2; p� 1) (p� 2; p)

(p� 1; p):

(20)

We suspect that the reason for the superiority of (20) over the QR order is that (19) makes repeated

rotations in a few planes (e.g. a total of (p� 1) rotations in the (p� 1; p) plane). A small rotation

may be represented by the di�erence between two or more large clockwise and counterclockwise

rotations. In addition to being numerically poorly-conditioned and thus susceptible to round-o�

error, like the familiar subtraction of two large numbers, it leads to a very 
at minimum, close to

which a rotation in a particular direction may be balanced by a subsequent rotation in the opposite

direction.

2.3 Basis orthogonalization

When B is the identity matrix the classical Procrustes problem seeks the orthogonal matrix, U ,

which most closely approximates A. If the columns, ai, of A are regarded as vectors, then the

columns of U (that is, the columns of a polar decomposition of A) form a basis for the sub-space

spanned by the ai. Such an orthogonalization of a basis is associated with the names of L�owdin (?)

and Poincar�e. Unlike the Gram-Schmidt procedure, this basis is democratic in that a permutation

of the ai yields the same basis vectors { though they may be relabelled. If n > m there are more

vectors, ai, than the dimension of the space and the basis is over-determined. In this case an

orthonormal basis may be found by solving the Procrustes problem with B = Imn 2 Rm�n, the

rectangular matrix with ones down the leading diagonal and zeroes elsewhere.

An alternative basis is provided by the V that minimizes the orthogonal Procrustes problem

kA� VDImnk
2; (21)
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Figure 2: Two dimensional bases generated from the three points marked with crosses. Basis vectors from
L�owdin orthogonalization (dashed), principal components (dotted) and (solid) equation (21).

with D diagonal. This basis is also invariant under permutations of the ai, but confers a weighting

Dii on the ith basis vector, and the basis tends to be aligned with the original vectors.

Fig. 2 shows 3 two-dimensional vectors (marked with crosses) and the bases found by L�owdin

orthogonalization (dashed vectors), equation (21), and the �rst two left singular vectors of A, which

are also known as the principal components (Harman 1960) or empirical eigenfunctions (Sirovich

and Everson 1992) of the three vectors. The principal components, xi, are also the eigenvectors

of ATA, the covariance matrix, so the principal eigenvector maximizes the variance of the faig

projected onto it: �21 = x1A
TAx1=x

T
1 x1 = (1:07)2; the variance of the faig projected onto the

second principal component is �22 = (0:72)2, though in this two-dimensional example the second

principal component is completely determined by the requirement that it be orthogonal to the �rst.

The diagonal elements of D are 0.72 and 0.065.

3 A� BU

In this section we discuss methods for numerically minimizing (6). We point out again that the

matrices A, B and U here are di�erent from the matrices with the same names used in the previous

section.

3.1 Conjugate gradient tandem

A tandem algorithm analogous to (9), which alternately solves linear equations and the classical

Procrustes problem is not possible here. If, as above, U is written in terms of an orthogonal matrix,
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V , and a diagonal matrix, D: U = V D, (6) becomes

minimize � = kA�BV Dk2 with V TV = Ip: (22)

If V is known, then D may again be found by setting the partial derivatives of � with respect to

the elements of d = diag(D) to zero, which yields

dk =
�
ATBV

�
kk
=
�
V TBTBV

�
kk
: (23)

If we regard D as known, (22) is not the classical Procrustes problem, but writing V = V0G and

parameterizing G in terms of p(p� 1)=2 Givens rotation matrices allows a conjugate gradient mini-

mization. Details of the scheme are messy, but they may be found in matlab scripts.1 Combining

these two intermediate steps gives a scheme to minimize (6):

d1 = (1; :::; 1)T (24a)

Obtain (classical) V1 by minimizing kA� BV1k
2 (24b)

Repeat until converged; i = 2; 3; 4::: (24c)

Obtain (eq. (23)) di+1 by minimizing kA� BViDi+1k
2 (24d)

Obtain (conjugate gradient) Vi+1 by minimizing kA�BVi+1Di+1k
2 (24e)

Go to (24c): (24f)

3.2 Schwarz tandem

In order to avoid using the slow and costly conjugate gradient minimization in (24e), we note that

kA�BV Dk2 = k(AD�1 �BV )Dk2 � kAD�1 �BV k2kDk2 (25)

One might hope to �nd an approximation to Vi+1 as the V that minimizes kAD�1
i+1�BV k

2, namely

the orthogonal polar factor of BD�1
i+1A

T.

The iteration scheme that replaces (24e) with this approximation does not, in general, converge

to the minimum of (6), because of the kDk2 factor on the right-hand side of (25). However, as

Fig. 3 illustrates, the modi�ed iteration, which provides a rapid, but crude approximation, can be

followed until kA�BViDik
2 no longer decreases, after which the unmodi�ed scheme can be used.

3.3 Newton tandem

Although the conjugate gradient algorithm incorporates derivative information it is relatively slow.

In order to speed up (24e), we sacri�ce the requirement that each Vi be an orthogonal matrix and

linearize the orthogonality condition. This scheme is based on an algorithm due to Watson (Watson

1994) and his presentation is followed here.

We write U = V (G+H)D, and regard H as a (small) correction to G. Then, to �rst order in

H the orthogonality requirement UTU = D2 becomes

GTH +HTG = Ip �GTG (26)

1
matlab scripts implementing the algorithms presented here are available from

http://camelot.mssm.edu/~rme/procrustes
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Figure 3: Convergence of the iteration scheme (24) using (triangles) conjugate gradient minimization for
(24e) and (diamonds) a modi�cation using the Schwarz inequality (25). Values of � plotted at integer
abscissae result from the step (23); those with integer + half abscissae are from the conjugate gradient or
Schwarz steps. The modi�ed scheme converges rapidly to a � close to the optimum before increasing again.
The matrices were A 2 R10�3 and B 2 R10�5 with elements drawn from a uniform distribution of random
numbers between 0 and 1.

As Watson observed, H satis�es (26) if and only if

H = P + QS; (27)

where Q = G�T, P = (G�T � G)=2 and S is any skew-symmetric matrix. The above-diagonal

elements of S are now the p(p � 1)=2 independent variables determining the orthogonal matrix.

The formation of Q requires, however, a matrix inversion. To circumvent this let E = GTG � Ip
and take

P = �
1

2
GE and Q = G(Ip �E); (28)

which are correct to �rst order in E.

The independent variables may be expressed as a vector s 2 Rp(p�1)=2 formed by concatenating

above-diagonal rows of S:

s = (S12; S13; :::; S21; :::; Sp�1;p)
T; (29)

in which case (27) may be written as

h = p+ Zs; (30)

where h and p 2 Rp
2
�p

2

are formed by concatenating the rows of H and P , while Z 2 Rp
2
�p(p�1)=2

is formed by appropriate rearrangement of the elements of Q.

Neglecting constant terms, the quantity to be minimized becomes

2TrXHD+TrDHTWHD (31)
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where X = (DGTW�ATB) and W = V TBTBV . The quadratic term may be expressed as hTMh,

where W and D have been absorbed into M 2 Rp
2
�p

2

; the form of M is illustrated for p = 2:

2
664

W11D
2
1 0 W12D

2
1 0

0 W11D
2
2 0 W12D

2
2

W21D
2
1 0 W22D

2
1 0

0 W21D
2
2 0 W22D

2
2

3
775 : (32)

Let x be the vector formed by concatenating the columns of X , and ~D be the diagonal matrix

formed from D by repeating its elements p times down the diagonal:

~D = diag(D11; ::: Dpp; D11; :::; Dpp): (33)

Then (31) becomes

2xT ~DZx+ 2pTMZs+ sTZTMZs: (34)

Di�erentiating with respect to the elements of s allows x to be found from a set of linear equations:

0 = ZT ~Dx+ ZTMp + ZTMZs: (35)

Having found s, G may be updated with H constructed via (27), and the process iterated until

convergence.

In fact the updating of d may usefully be incorporated to give a scheme to solve the full problem

(6) as follows:

d1 = (1; :::; 1)T; G1 = Ip; V1 = OPF(ABT) (36a)

Repeat until converged; i = 2; 3; 4; ::: (36b)

Solve (35) for s (36c)

Form Hi from (27) (36d)

Update Gi+1 = Gi +Hi (36e)

(Occasionally) re-orthogonalize Gi+1 (36f)

Vi+1 = ViGi+1; Gi+1 = Ip (36g)

Obtain (eq. (23)) di+1 by minimizing kA�BViDi+1k
2 (36h)

Go to (36b): (36i)

The scheme, as written, includes an occasional updating of di; if the update is omitted on

a particular loop of the iteration the estimate for G is polished, eventually becoming orthogonal

provided that the scheme converges. Before updating D, however, it is important to ensure that

Gi+1 is orthogonal, so that the orthogonality of the columns of Vi is preserved. Failure to do this

results in a �nal V which does not have orthonormal columns. Reorthonormalization is easily

achieved by replacing Gi+1 by its orthogonal polar factor.

The question of how often to update D depends upon the cost of reorthonormalization. Nu-

merical experiments (see, for example, Fig. 4) suggest that it is more e�cient to update D on

every traversal of the loop. In this case the construction of (35) is considerably simpli�ed since

Q = Ip and P = 0, without any approximation. However the convergence rate when updating every

traversal is not double that for updates on alternate traversals, so if the convergence is measured

per update of D it is more e�cient to update less frequently, thus using a better estimate of Gi+1

in the reorthonormalization.
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Figure 4: Convergence of the iteration (36) when D is updated on each traversal of the loop (solid) and on
every other traversal (dashed). The di�erences between � at each stage of the iteration and � for the fully
converged solution are plotted. The matrices were A 2 R20�5 and B 2 R20�8 with elements drawn from a
uniform distribution of random numbers between 0 and 1.

4 Concluding remarks

We have considered the Procrustes problem in which the requirement that the columns of U be

orthonormal is relaxed to orthogonality. Various numerical schemes, which converge linearly, have

been presented.

Although convergence to a global minimum is not guaranteed, numerical searches on small

(p < 10) problems have failed to locate better solutions than those achieved by these schemes. This

is presumably due, in large measure, to the good initial approximation provided by the orthogonal

polar factor when d = (1; :::; 1)T.
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