Inferring the eigenvalues of covariance matrices from limited, noisy data
 
 
          
 RME Home 
 
 DCS Home 
 
 Research 
 
 Teaching 
 
 Publications 
 
 Contact 
 
 Outgoing 
 
 
 Email me
  

Inferring the eigenvalues of covariance matrices from limited, noisy data

R.M. Everson and S.J. Roberts
IEEE Trans. Sig. Proc., 48:7, 2083-2091, 2000.

Abstract

The eigenvalue spectrum of covariance matrices is of central importance to a number of data analysis techniques. Usually the sample covariance matrix is constructed from a limited number of noisy samples. We describe a method of inferring the true eigenvalue spectrum from the sample spectrum. Results of Silverstein which characterise the eigenvalue spectrum of the noise covariance matrix and inequalities between the eigenvalues of Hermitian matrices are used to infer probability densities for the eigenvalues of the noise-free covariance matrix, using Bayesian inference. Posterior densities for each eigenvalue are obtained, which yield error estimates. The evidence framework gives estimates of the noise variance and permits model order selection by estimating the rank of the covariance matrix. The method is illustrated with numerical examples.


Gzipped postscript  (102 kb)     PDF  (299 kb)