
AUTOMATED ASSESSMENT OF VIGILANCE USING COMMITTEES OF RADIAL BASIS
FUNCTION ANALYSERS

StephenRoberts
�
, IeadRezek

�
, RichardEverson

�
, HelenStone

�
, SueWilson

�
& ChrisAlford

�
1. Departmentof EngineeringScience,Universityof Oxford,UK.

�
2. Departmentof ComputerScience,Universityof Exeter, UK.
3. SowerbyResearchCentre,BAE SYSTEMS,Bristol, UK.
4. Universityof Bristol, UK.
5. Universityof theWestof England,Bristol, UK.

INTRODUCTION

It is clearthatwheneverpeopleperformrepet-
itive, boringor long-termtasksa lossin con-
centrationcan occur. Theselapsesin vigi-
lancemay have seriousconsequencesunder
certaincircumstances.Humancognitive pro-
cessesare far from understoodand the pro-
cessesby which individuals have lapsesin
alertnessare many. In this paperwe con-
sider the analysisof the humanEEG during
vigilanceexperimentsas a casestudy in su-
perviseddata analysis. We addressseveral
issueswhich are found in many dataanaly-
sis problems. The issueof finding informa-
tive signalparameterisationsin multi-channel
environmentsis approachedusing a feature
selectionprocess. Subsequentanalysisuses
Bayesiancommitteesof Radial Basis Func-
tion analysers.A comparisonis madeof two
analysisapproaches,thefirst basedon regres-
sion andthe secondsettingthe problemasa
classificationtask with ‘extremal-labeltrain-
ing’. Resultsarepresentedfor arepresentative
sampleof subjects.

�
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METHODOLOGY

Experimental details

A total of 12 healthy volunteerstook part
in this study. Eachperformeda set of four
recordingblocks. A simpletrackingtaskwas
performedin eachrecordingblockalongwith
distractiontasksbasedon reactionto exter-
nal events. Eachblock lastedfor 60 minutes
anddatawasrecordedcontinuouslythrough-
out that time. The tracking task consisted
of keepinga simple ‘flight-simulator’ level.
A total of 8 channelsof EEG wererecorded
alongwith measuresof eyemovementactivity
(two EOGs)andmuscletonein theneck(two
EMGs).All channelswererecordedatafixed
samplerateof 256Hz. Observerswereasked
to maintaina simulatedaircraft in a straight
and level headingusinga joystick to correct
randomerrorson a head-upattitudedisplay.
Distractiontasksconsistedof a reactiontime
task (respondingto an intermittentstimulus)
andanumericaltask.

All observers tracked vertical deviations
better than horizontal ones, however, there
was no significant consistentworseningof
tracking as the task proceeded. In a few
casesperformanceon the tracking task no-
ticeably improved over the first ten minutes.
This seemsto indicate that changesin the
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taskperformancearedueto a combinationof
notonly drowsinessbut alsopsychologicalef-
fectsaswell e.g the subject’s ability to self-
motivate.Wewouldargue,however, thateven
in caseswheredrowsysubjectsperformedthe
taskwell, they hadagreaterpropensitytopoor
performance,andthatthis is relatedto theun-
derlying stateof alertness. We hencechose
to make predictions,basedon thefeaturesex-
tractedfrom theEEGandotherchannels,of a
setof human-scoredlabels.This scoringwas
basedon theEEGandscoredby a humanex-
pert to a set of 6 wake-statestageswhere6
representsthe most ‘alert’ waking EEG and
1 correspondsto EEG indicative of non-alert
drowsiness.

Feature encoding

A numberof featuresderivedfrom physiolog-
ical datahave beenusedto assessbrainstate.
Recentstudiesof sleepEEGdata[1, 2], over
many observers,have found consistentlythat
AR reflectioncoefficients are excellent indi-
catorsof thestateof thecortex. All EEGsig-
nalswerehenceparameterisedover sucessive
5s segmentsusing the reflectioncoefficients
of a 5-th orderautoregressive (AR) model,as
detailed,e.g. in [3]. The � -th reflectionco-
efficient, �
	 , definesthe reductionin residual
signal-modelerror, � , whentheAR modelin-
creaseits orderfrom �
��� to � ,��	���������� �	�� ��	�� � (1)

Weuseanelegantlattice-filterapproachto the
AR model which operatesundera Bayesian
framework [4] in whichuncertaintyin theAR
modelparametersis takenintoaccountandin-
tegratedout.

Also calculatedto a 5s resolutionwerethe
envelopesof the EMG channels(basedon
a simple smoothedrectificationof the high-
frequency activity) andtheblink rate(thefrac-
tion of time eyesareclosed)calculatedfrom
theEOGchannels.

Feature selection

Having extractedAR model coefficients for
the EEG channels(anddifferentialchannels,
i.e. parametersfor the EEG differencebe-
tweentwoelectrodes)andderivedmeasuresof
muscleactivity (from theEMG channels)and
blink ratefrom theEOGwehaveseveralhun-
dredcombinationsof possiblefeatures.Each
of thesecombinationsof featureswas used
in turn as input to a regressoroptimisedso
as to predict the smoothedhuman-scoredla-
bellings.For eachcombinationof featuresthe
regressorwastrainedon onesubjectandone
taskafter which the efficacy of the combina-
tion wasassessedusingthe root meansquare
errorbetweenthepredictedoutputandthetrue
(smoothed)labelsfrom anothertest task. A
committeeof RBF networks,eachusingthin-
platesplinehiddenunits andtrainedundera
Bayesianparadigm[5], was usedfor the re-
gression(seenext section).

We find thatreflectioncoefficientsfrom the
differential channelsbetweenelectrodesO1-
O2 & T3-T4 and electrodeFz-GND (based
on the standard10/20 electrodepositions)
are picked in the best featurecombinations,
as is the blink rate. We note that signals
from theFz electrodehave beenusedin other
vigilance studies[6]. Interestingly, higher-
order reflection coefficients (greaterthan 3)
were found to be uninformative, indicating
thatEEGchangesin vigilancemayindeedbe
dominatedby only oneor two changesin the
spectrum. All resultspresentedin this pa-
per wereobtainedusingthe first threereflec-
tion coefficients from electrodesT3-T4 and
theblink ratemeasure.

Analysis

Figure 1 shows a typical human-scoredla-
belling, scoredinto a set of stageson a 15s
resolution. Stage6 is the most ‘awake’ and
stage1 the least. We seethat the labelling
is characterisedby regionsof relative stabil-
ity and regions of high variability. Regres-
sion or classificationusingthis ‘raw’ scoring
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fails. We have two choices:firstly wemayre-
gardthelevelsof thehumanlabellingasquan-
tisationsof a continuous,smoother, measure
andhencerepresentthetime courseof the la-
bellingusinge.g.a (crude)runningmeanand
variancemeasure.We refer to this approach
as the regression-basedmethod. The second
optionis to taketheapproachadvocatedin [7]
in which only extremal labelsareusedto de-
terminethetrainingset.Thisassumesthatthe
extremesof e.g. wakefulnessanddrowsiness
are more reliably assessedthan the interme-
diatestates. In this casewe take sectionsof
datawith labels5 or 6 to representalertwake-
fulnessand sectionsof datawith label 1 to
representa drowsy state. This allows a stan-
dardclassificationapproachto theproblemin
which �
� alert � data � maybeestimated.We
referto this approachastheextremal-training
method.
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Figure1: Typicalhuman-scoredlabelling.

Radial Basis Function Analysers

Both regression and classification analysis
wasperformedusingcommitteesof Bayesian
Radial-BasisFunction(RBF)analysers,asde-
tailed in [5]. Thebasictheoryandmethodol-
ogy may be found in [8] and is only briefly
reviewedhere.

We considerthe analysisof a datum(fea-
turevector)  associatedwith a target ! . The
RBFoperatesby calculatingtheresponseof a
setof simplenon-linearfunctionsto  . The
functionsare often taken to be Gaussianbut
in this paperwe utilise thin-platesplinefunc-
tions. The response"$#%�& '� of the � -th such
functionis writtenas"(#)�* '�+�-, �$.0/ , (2)

where,1�2�  3�54 # � in which 4 # is thelocation
of thesplinefunctionin thefeaturespace.The
resultantoutputof theRBF, conditionalon an
inputanda givensetof weights,is thence:6 �& '�+�87 9;: #=< #>"$#%�& '�;? <�@BADCFEFG (3)

in which < # are a set of coupling weights,<�@BADCHE is a biasweightand 7I�KJL� a transferfunc-
tion which is linear for regressionand sig-
moidal for classificationapproaches(see[8]
for details).Wemaywrite Equation3 in terms
of a setof latent, or hidden,variablesM such
that 6 �& '�+�87N�OMP� (4)

This is a usefulconceptuallyaswe may look
easily at the densityover M as it is linear in
the parametersof the model. Following the
approachtaken in [5] we utilise a commit-
teeof thin-platesplinenetworks. Committees
of analysersare provably better, on average,
than the meanperformanceof any oneanal-
yser[8] andwith randomlylocatedsplinepo-
sitions(i.e. thesetof 4 # arelocatedatrandom
within theboundsof thedataset)theresultant
systemsbecomeveryrapidto trainastheonly
freeparametersof thesystemaretheweights< # . When 7I�QJR� is linear thesemay besetvia
a matrix pseudo-inverseapproach.When 7I�QJR�
is sigmoidal,however, a non-linearoptimiser
mustbeemployed;in all theresultspresented
herewe useda quasi-Newton methodbased
on the BFGSapproximationsto the Hessian
matrix [9].

Equation3, however, is dependenton the
set of weightsand in a Bayesianframework
theseareintegratedout (the Bayesianframe-
work, in essence,aims to remove unknown
parametersby integratingover them- the in-
terestedreaderis pointedto [10]). Further-
more,aprobabilitydensity, ratherthanapoint
value, may be obtained. For computational
simplicity (andaswe have a largetrainingset
available)we chooseto take the well-known
evidenceapproach,popularisedby MacKay
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[11, 12] and applied to committeesof thin-
plate spline RBFs in [5]. Denotingthe out-
put 6 of the analyserto be generatedby a
mappingfrom thelatentvariable,M (Equation
4), the standardevidenceframework givesa
Gaussiandensityover M with mean M � �* '�S�M$�& +TFU � � (where U � is the weight vector of
most-probablefree parametersi.e. thoseob-
tainedafterthetrainingprocess)andvariance
of: V � �& '�W� �X �& Y� ?�Z([\�& '�Q] � � Z^�& '� (5)

in which
�_ is theestimatednoisevarianceof

the targets(zeroin thecaseof classification),Z`� a 6cb acU evaluatedat U � and ] is the
Hessianmatrix (the matrix of secondderiva-
tivesof the error function with respectto the
weights- the error functionalis leastsquares
for regressionandcross-entropy for classifica-
tion, see[8] for details).

If we take a committeeof suchanalysers,
with weightingcoefficients d A thentheproba-
bility densityon M will bea Gaussianmixture
model.We chooseto parameterisethis model
by a moment-matchedGaussianwhosemean
is just the weightedaverageover committee
members,i.e. Me� :

A d A M �A (6)

andvariancegivenas[5, 13]:V �f&gih'h � V �f ? V �j ? V �kml (7)

in which

V �f representsthe committeevari-
ance,

V �f � var noM �Aqp (8)V �j thetargetnoise(andresidualbias- though
this is assumedto be small comparedto the
target noise for well-formed models) esti-
matedby:

V �j � :
A d AX A (9)

and

V �krl theparameteruncertaintyof thecom-
mittee,V �krl � :

A d A Z [A �& '�Q] � �A Z A �* '� (10)

This is anintuitively pleasingresultastheto-
tal errormayberegardedin a common-sense
mannerasarisingfrom threedistinctcauses.s Thefirst termpenalisesvariantdecisions

betweencommitteemembers,s the secondpenalisesthe committeeas a
wholeif theoutputisassociatedwith are-
gionof inputspacewith hightargetnoise
levelss and the third penalisessolutionswhich
havepoorlysetparameters.

In the caseof the regressionapproach,6 �M . As we regress,however, onto the mean
(smoothed)label setwe do not take into ac-
count the intrinsic variancein the humanla-
belling process. The latter may itself be
predicted. We henceregressonto the two-
dimensionaltargetspacein whichthefirst tar-
get is the meanlabel valueandthe secondis
the(log) variancein thelabellingat thattime.
We considerthe total predictive varianceof
ouroutputto be:tV � �& '�W� V �fOguhvh �& '�Y?xw � �& '� (11)

in which w � thepredictedvarianceof thelabel
set.

Although the networks aretrainedundera
Bayesianparadigm,for theclassificationcase
we do not allow high uncertainty(variance)
in the latent spaceto moderate (see[12, 8],
for example)the resultantoutput probability
asthis resultsin themovementof �y� alert �  '�
for example,to fall towardstheclassprior of
1/2. Given that suchvaluesarethenceinter-
pretedas periodsof loss of vigilancewe re-
gardthisasundesirable.

We notethat,asdiscussedin [5], thin-plate
splines have the pragmatic advantageover
Gaussiansin anRBF analyserin that their re-
sponseincreaseswith distanceaway from the
trainingdataset.Thismeansthatthecommit-
teevarianceescalatesrapidly in regionsout-
side the training data set hencegiving rise
to wide (uncertain)distributionsin the latent
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space.Thisnaturallyscreensagainstestimates
whicharederivedfrom inputdatawhichis in-
consistentwith thatof thetrainingset.

RESULTS

In all the resultspresentedbelow a setof ten
RBF networks wereusedin eachcommittee.
Theresultsarenothighlysensitiveto thenum-
ber of committeemembersand this number
waschosenon the groundsof computational
pragmatism.The numberof splinefunctions
in eachnetwork was set using the evidence
of the model given the data[11, 8, 5]. For
the regressionapproachthis gave rise to net-
workswith tensplines.For classificationeight
weresufficient, however. All dataareshown
smoothedusing an adaptive moving-average
filter of length1 minute(12 featuresamples),
basedonaneigendecompositionof sucessive
datawindows [14]. In theregressioncasethis
filtering takesplaceat the outputof the anal-
yserandin the latentspacefor classification
[15]. For easeof comparisonthe target label
setis alsoshown smoothedto thesameresolu-
tion. Thetrainingsetin all casesconsistedof
two hoursof datafrom two subjectswhowere
thenceexcludedfrom furtheranalysis.

We presentresultsfor both regressionand
‘extremal-trained’classificationfor threerep-
resentativesubjects.Theupperplot of eachof
Figures2, 3 & 4 shows the regression-based
approachwith the thick solid line being the
predictedmeanandthethin linesat z 1 S.D.
from this. The thick dashedline (often hid-
denbehindthe prediction)is the (smoothed)
human-scoredlabelling. The lower plot of
eachfigure shows the resultsof the classifi-
cationapproach,thethick line beingtheprob-
ability of alert wakefulness(scaledso that a
probabilityof unity mapsto label6 andprob-
ability zero to label 0. This enablesa direct
comparisonwith the label set). The label set
itself is shown in theseplotsasthe thin solid
line. Eachplot consistsof four subplotswhich
are the four hour-long recordingblocks for
eachsubject.
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Figure2: SubjectA. Analysisbasedonregres-
sion(topfour plots)andclassification(bottom
four plots).

We see clearly that both approaches,al-
thoughnot perfect,do trackchangesin alert-
ness(asdefinedvia thehuman-scoredlabels)
reasonablywell indicatingthat alertnessmay
be, in principle,estimatedfrom a smallnum-
berof parametersfrom a singleEEGchannel
andeye-movements.We would arguethatal-
thoughthe classificationapproachgives rea-
sonablygoodresultsthereareanumberof fac-
torswhicharenot in its favour:

1. As posterior(class)probabilitiesarebe-
ing estimated,so point estimates,rather
thandistributions,aregenerated.

2. As only extreme-labelled data are
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Figure3: SubjectB. Analysisbasedonregres-
sion(topfour plots)andclassification(bottom
four plots).

utilised, the training set is reducedin
size.

In the regressionapproachwe seegradual
changesin thepredictedvariancein the vigi-
lanceestimatesuchasstartingaround10min-
utesand20 minutesinto thefirst (uppermost)
blocksof, respectively, subjectsA andC. We
alsonotetheexistenceof a rhythmicity in the
vigilancemeasureswith period of orderfive
minutes.This is mostclearlyseenin subjectC
andisnotanartefactof thefilteringor analysis
process.Theorigin of this oscillation,which
wenoteis presentin many of thealertnessin-
dicatorswhich we have analysed,is not cur-
rentlyknown.
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Figure4: SubjectC.Analysisbasedonregres-
sion(topfour plots)andclassification(bottom
four plots).

CONCLUSIONS & FUTURE WORK

The assessmentof vigilance from a small
numberof physiologicalmeasurementsmay
be of importancein safety monitoring in a
numberof professions.We have shown that
ist is possibleto make reasonableestimates
of thestateof alertnessof a subjectbasedon
EEGandeye-movementinformation.Thees-
timatesappearto be fairly robust acrosssub-
jectsusingappropriately-chosenfeaturesfrom
the signals. It is noted, however, that in
generalneitherthe smoothedlabels(human-
scored)nor the resultantestimatedmeasures
correlatewell with the correspondingtrack-
ing performancemeasure. Indeed as dis-
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cussedearlier, the existing experimentaldata
set shows, save for a couple of exceptions,
no trendsof deteriorationin trackingperfor-
manceas the one-hourrecording proceeds.
What we would ideally like then is to deter-
mine changesin the data which are due to
changesin the subjects’copingstrategiesas
well astruechangesin alertness.Wehopethat
new experimentaldatawill shedlight on this.
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