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INTRODUCTION

It is clearthatwheneer peopleperformrepet-
itive, boring or long-termtasksa lossin con-
centrationcan occur Theselapsesin vigi-

lance may have seriousconsequencesnder
certaincircumstancesHumancognitive pro-
cessesre far from understoodand the pro-
cessesby which individuals have lapsesin

alertnessare mary. In this paperwe con-
sider the analysisof the humanEEG during
vigilance experimentsas a casestudy in su-
perviseddata analysis. We addresssereral
issueswhich are found in mary dataanaly-
sis problems. The issueof finding informa-
tive signalparameterisations multi-channel
ervironmentsis approachedising a feature
selectionprocess. Subsequenanalysisuses
Bayesiancommitteesof Radial Basis Func-
tion analysers A comparisoris madeof two

analysisapproacheghefirst basedon regres-
sion andthe secondsettingthe problemasa
classificationtask with ‘extremal-labeltrain-
ing’. Resultsaarepresentedor arepresentate
sampleof subjects.

*Email: sjrob@robots.ox.ac.ulkax: +44 (0)1865
273908.

METHODOLOGY

Experimental details

A total of 12 healthy volunteerstook part
in this study Eachperformeda setof four

recordingblocks. A simpletrackingtaskwas
performedn eachrecordingblock alongwith

distractiontasksbasedon reactionto exter

nal events. Eachblock lastedfor 60 minutes
anddatawasrecordedcontinuouslythrough-
out that time. The tracking task consisted
of keepinga simple ‘flight-simulator’ level.

A total of 8 channelsof EEG wererecorded
alongwith measuresf eye movementactiity

(two EOGs)andmuscletonein theneck(two

EMGSs).All channelsvererecordecdatafixed

samplerateof 256Hz. Obsererswereasled

to maintaina simulatedaircraftin a straight
and level headingusing a joystick to correct
randomerrorson a head-upattitude display

Distractiontasksconsistedf a reactiontime

task (respondingto an intermittentstimulus)
andanumericaltask.

All obsenrers tracked vertical deviations
better than horizontal ones, however, there
was no significant consistentworsening of
tracking as the task proceeded. In a few
casesperformanceon the tracking task no-
ticeably improved over the first ten minutes.
This seemsto indicate that changesin the



taskperformanceredueto a combinationof

notonly drowsinessut alsopsychologicagf-

fectsaswell e.gthe subjects ability to self-

motivate.We would argue,however, thateven
in casesvheredrowsy subjectgerformedhe
taskwell, they hadagreateipropensityto poor
performanceandthatthisis relatedto theun-

derlying stateof alertness. We hencechose
to make predictions pasedn thefeaturesex-

tractedfrom the EEG andotherchannelspf a
setof human-scorethbels. This scoringwas
basedonthe EEGandscoredby a humanex-

pertto a setof 6 wake-statestageswhere 6

representthe most ‘alert’ waking EEG and
1 corresponds$o EEG indicative of non-alert
drowsiness.

Feature encoding

A numberof featuresdervedfrom physiolog-
ical datahave beenusedto asses$rain state.
Recentstudiesof sleepEEG data[1, 2], over
mary obseners, have found consistentlythat
AR reflectioncoeficients are excellentindi-

catorsof the stateof the cortex. All EEG sig-
nalswerehenceparameterisedver sucessie
5s segmentsusing the reflection coeficients
of a5-th orderautorgressve (AR) model,as
detailed,e.qg. in [3]. The p-th reflectionco-
efficient, k,,, definesthe reductionin residual
signal-modeerror, £, whenthe AR modelin-

creasats orderfromp — 1 to p,

Ey = (1 - kﬁ) Ep 1)

We useanelggantlattice-filterapproactio the
AR model which operatesundera Bayesian
framework [4] in whichuncertaintyin the AR
modelparameterss takeninto accountandin-
tegratedout.

Also calculatedo a 5sresolutionwerethe
ervelopesof the EMG channels(basedon
a simple smoothedrectificationof the high-
frequeny actvity) andtheblink rate(thefrac-
tion of time eyesare closed)calculatedfrom
theEOGchannels.

Feature selection

Having extracted AR model coeficients for
the EEG channelqgand differentialchannels,
i.e. parameterdor the EEG differencebe-
tweentwo electrodesanddervedmeasuresf
muscleactvity (from the EMG channelsand
blink ratefrom the EOGwe have severalhun-
dredcombinationf possiblefeatures.Each
of thesecombinationsof featureswas used
in turn asinput to a regressoroptimisedso
asto predictthe smoothedhuman-scoreda-
bellings.For eachcombinationof featureghe
regressomastrainedon one subjectandone
taskafter which the efficagy of the combina-
tion wasassessedsingthe root meansquare
errorbetweerthepredictedutputandthetrue
(smoothed)abelsfrom anothertesttask. A
committeeof RBF networks, eachusingthin-
plate spline hiddenunits andtrainedundera
Bayesianparadigm[5], was usedfor the re-
gression(seenext section).

We find thatreflectioncoeficientsfrom the
differential channelsbetweenelectrode01-
02 & T3-T4 and electrodeFz-GND (based
on the standard10/20 electrode positions)
are picked in the bestfeaturecombinations,
as is the blink rate. We note that signals
from the Fz electrodehave beenusedin other
vigilance studies[6]. Interestingly higher
order reflection coeficients (greaterthan 3)
were found to be uninformatve, indicating
thatEEG changesn vigilancemayindeedbe
dominatedby only oneor two changesn the
spectrum. All resultspresentedn this pa-
per were obtainedusingthe first threereflec-
tion coeficients from electrodesT3-T4 and
theblink ratemeasure.

Analysis

Figure 1 shaws a typical human-scoreda-
belling, scoredinto a setof stageson a 15s
resolution. Stage6 is the most‘awake’ and
stagel the least. We seethat the labelling
is characterisedby regions of relative stabil-
ity and regions of high variability. Regres-
sion or classificationusingthis ‘raw’ scoring



fails. We have two choices firstly we mayre-
gardthelevelsof thehumanlabellingasquan-
tisationsof a continuous,smoother measure
andhencerepresenthe time courseof the la-
belling usinge.g. a(crude)runningmeanand
variancemeasure.We refer to this approach
asthe regression-basednethod The second
optionis to take theapproachadwocatedn [7]
in which only extremallabelsareusedto de-
terminethetrainingset. Thisassumeshatthe
extremesof e.g. wakefulnessanddrowsiness
are more reliably assessethanthe interme-
diate states. In this casewe take sectionsof
datawith labels5 or 6 to represenalertwake-
fulnessand sectionsof datawith label 1 to
represent drowsy state. This allows a stan-
dardclassificatiorapproacho the problemin
which P( alert| data) may be estimated.We
referto this approachasthe extremal-taining
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Figurel: Typicalhuman-scaedlabelling.

Radial Basis Function Analysers

Both regressionand classification analysis
wasperformedusingcommitteesof Bayesian
Radial-Basig-unction(RBF) analysersasde-
tailedin [5]. Thebasictheoryandmethodol-
ogy may be foundin [8] andis only briefly
reviewedhere.

We considerthe analysisof a datum (fea-
ture vector)x associatedvith atargett. The
RBF operatedy calculatingtheresponsef a
setof simple non-linearfunctionsto x. The
functionsare often taken to be Gaussiarbut
in this paperwe utilise thin-platesplinefunc-
tions. The responsep,(x) of the k-th such
functionis writtenas

dr(x) = r’Inr 0

wherer = |x—p,| in which p,, is thelocation
of thesplinefunctionin thefeaturespace The
resultantoutputof the RBF, conditionalon an
inputanda givensetof weights,is thence:

X)=g (Z wror(x) + wbz’as) (3)

in which w; are a set of coupling weights,
Weies 1S @biasweightandg(.) atransferfunc-
tion which is linear for regressionand sig-
moidal for classificationapproachegsee[8]
for details).We maywrite Equation3in terms
of a setof latent or hidden,variablesa such
that

y(x) =g(a) (4)

This is a usefulconceptuallyaswe maylook
easily at the densityover a asit is linearin
the parameter®f the model. Following the
approachtaken in [5] we utilise a commit-
teeof thin-platesplinenetworks. Committees
of analysersare provably better on average,
thanthe meanperformanceof ary one anal-
yser[8] andwith randomlylocatedsplinepo-
sitions(i.e. thesetof u,, arelocatedatrandom
within theboundsof thedataset)theresultant
systemdecomeveryrapidto trainastheonly
free parametersf the systemarethe weights
wg. Wheng(.) is linearthesemay be setvia
amatrix pseudo-imerseapproachWheng(.)
Is sigmoidal,however, a non-linearoptimiser
mustbe employed;in all theresultspresented
herewe useda quasi-Neton methodbased
on the BFGS approximationdo the Hessian
matrix [9].

Equation3, however, is dependenbn the
setof weightsandin a Bayesianframewvork
theseareintegratedout (the Bayesianframe-
work, in essenceaimsto remove unknovn
parameter®y integratingover them- thein-
terestedreaderis pointedto [10]). Further
more,a probabilitydensity ratherthanapoint
value, may be obtained. For computational
simplicity (andaswe have a large training set
available) we chooseto take the well-known
evidenceapproach,popularisedby MacKay



[11, 12] and appliedto committeesof thin-
plate spline RBFsin [5]. Denotingthe out-
put y of the analyserto be generatedby a
mappingfrom thelatentvariable,a (Equation
4), the standardevidenceframevork givesa
Gaussiardensityover a with meana*(x) =
a(x; w*) (wherew* is the weight vector of
most-probabldree parameters.e. thoseob-
tainedafterthetrainingprocesspndvariance
of:

700 = 5o + &' COH8(x) (6)
in which 1 is the estimatedhoisevarianceof
thetamgets(zeroin the caseof classification),
g = Oy/0w evaluatedat w* and H is the
Hessianmatrix (the matrix of secondderva-
tivesof the error function with respecto the
weights- the error functionalis leastsquares
for regressiorandcross-entropfor classifica-
tion, see[8] for details).

If we take a committeeof suchanalysers,
with weightingcoeficients~; thenthe proba-
bility densityon a will bea Gaussiammixture
model. We chooseto parameteris¢éhis model
by a moment-matche@aussiarwhosemean
is just the weightedaverageover committee
membersi.e.

a=) (6)
%
andvariancegivenas|5, 13]:
Ocomm = O¢ + 0¢ + Oy, (7)

in which o2 representghe committeevari-
ance
o = var[a] (8)

c
o2 thetamgetnoise(andresidualbias- though
this is assumedo be small comparedo the
target noise for well-formed models) esti-
matedby:

o? = i 5 (9)

ando?, , theparametenncertaintyof thecom-
mittee,

Oy = Z’Yz‘giT (x)H; 'gi(x) (10)

Thisis anintuitively pleasingresultastheto-
tal errormay be regardedin acommon-sense
mannerasarisingfrom threedistinctcauses.

e Thefirsttermpenalisevariantdecisions
betweercommitteemembers,

¢ the secondpenaliseghe committeeas a
wholeif theoutputis associatewith are-
gionof inputspacewith hightargetnoise
levels

e and the third penalisessolutionswhich
have poorly setparameters.

In the caseof the regressionapproachy =
a. As we regress,however, onto the mean
(smoothed)abel setwe do not take into ac-
countthe intrinsic variancein the humanla-
belling process. The latter may itself be
predicted. We henceregressonto the two-
dimensionatargetspacan whichthefirst tar-
getis the meanlabel valueandthe seconds
the (log) variancein thelabellingatthattime.
We considerthe total predictve varianceof
our outputto be:

52(X) = Ooomm(X) + 5(x)  (12)

in which s? the predictedvarianceof thelabel
set.

Although the networks aretrainedundera
Bayesiarmparadigmfor the classificatiorcase
we do not allow high uncertainty(variance)
in the latent spaceto modeante (see[12, 8],
for example)the resultantoutput probability
asthis resultsin themovementof P( alert|x)
for example,to fall towardsthe classprior of
1/2. Giventhatsuchvaluesarethenceinter-
pretedas periodsof loss of vigilancewe re-
gardthisasundesirable.

We notethat,asdiscussedn [5], thin-plate
splines have the pragmatic advantage over
Gaussiangn anRBF analyselin thattheirre-
sponséncreasesvith distanceaway from the
trainingdataset. This meanghatthe commit-
tee varianceescalatesapidly in regions out-
side the training data set hencegiving rise
to wide (uncertain)distributionsin the latent



spaceThisnaturallyscreensgainsestimates
whicharedervedfrom inputdatawhichis in-
consistentith thatof thetrainingset.

RESULTS

In all theresultspresentedelown a setof ten
RBF networks wereusedin eachcommittee.
Theresultsarenothighly sensitveto thenum-
ber of committeemembersand this number
was chosenon the groundsof computational
pragmatism.The numberof splinefunctions
in eachnetwork was set using the evidence
of the model given the data[11, 8, 5]. For
the regressionapproactthis gave rise to net-
workswith tensplines.For classificatioreight
were sufiicient, however. All dataareshavn
smoothedusing an adaptve moving-average
filter of length1l minute (12 featuresamples),
basedn aneigendecompositiorof sucessie
datawindows[14]. In theregressiorcasethis
filtering takes placeat the outputof the anal-
yserandin the latentspacefor classification
[15]. For easeof comparisorthe targetlabel
setis alsoshavn smoothedo thesameresolu-
tion. Thetrainingsetin all casesonsistedf
two hoursof datafrom two subjectsvhowere
thenceexcludedfrom furtheranalysis.

We presentresultsfor both regressionand
‘extremal-trainedclassificatiorfor threerep-
resentatie subjects.Theupperplot of eachof
Figures2, 3 & 4 shaws the regression-based
approachwith the thick solid line beingthe
predictedmeanandthethin linesat+ 1 S.D.
from this. The thick dashedine (often hid-
den behindthe prediction)is the (smoothed)
human-scoredabelling. The lower plot of
eachfigure shaws the resultsof the classifi-
cationapproachthethick line beingthe prob-
ability of alert wakefulness(scaledso that a
probability of unity mapsto label 6 andprob-
ability zeroto label 0. This enablesa direct
comparisorwith the label set). The label set
itself is shavn in theseplots asthe thin solid
line. Eachplot consistof four subplotavhich
are the four hourlong recordingblocks for
eachsubiject.
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Figure2: SubjectA. Analysisbasedonregres-
sion(topfour plots)andclassificationbottom
four plots).

We see clearly that both approachesal-
thoughnot perfect,do track changesn alert-
ness(asdefinedvia the human-scorethbels)
reasonablywell indicatingthat alertnessnay
be,in principle, estimatedrom a smallnum-
ber of parameterérom a singleEEG channel
andeye-movements.We would arguethatal-
thoughthe classificationapproachgives rea-
sonablygoodresultshereareanumberof fac-
torswhich arenotin its favour:

1. As posterior(class)probabilitiesare be-
ing estimated so point estimatesrather
thandistributions,aregenerated.

2. As only extreme-labelled data are



o
=
5]
N
S
)
S
IN
S
a
o
@
S

o
i
15
N
1<)
w
S
N
S
o
o
@
1=}

o
=
5]
]
S
w
S
N
S
o
=]
@
S

o N A ® O N A O O N A O O N A O

6 6
4t B 4 B
2t B 2t 8
0 ‘ ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘ ‘

0 10 20 30 40 50 60 0 10 20 30 40 50 60
6 T T T T 6 T T T T T
. WWMW’ o |
2F B 2+ B
0 ‘ ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘ ‘

0 10 20 30 40 50 60 0 10 20 30 40 50 60
6 T T I 6 T T T T T
4t B 4 B
2t B 2t 8
0 ‘ ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘ ‘

0 10 20 30 40 50 60 0 10 20 30 40 50 60
6 Ve : : : : 6 : : : \ :
. XFAWWWJ\W . |
2t B 2 B
0 ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘ ‘

|
30 40 50 60
t (minutes)

o
=
5]
N
S

Figure3: SubjecB. Analysisbasedonregres-
sion(topfour plots)andclassificationbottom
four plots).

utilised, the training set is reducedin
size.

In the regressionapproachwe seegradual
changesn the predictedvariancein the vigi-
lanceestimatesuchasstartingaround10 min-
utesand20 minutesinto thefirst (uppermost)
blocksof, respectrely, subjectsA andC. We
alsonotethe existenceof a rhythmicity in the
vigilance measuresvith period of orderfive
minutes.Thisis mostclearlyseenn subjectC
andis notanartefactof thefiltering or analysis
process.The origin of this oscillation,which
we noteis presenin mary of thealertnessn-
dicatorswhich we have analysedjs not cur
rently known.

0 10 20 30 40 50 60
t (minutes)

Figure4: SubjectC. Analysisbasedonregres-
sion(topfour plots)andclassificationbottom
four plots).

CONCLUSIONS & FUTURE WORK

The assessmentf vigilance from a small
numberof physiologicalmeasurementmay
be of importancein safety monitoringin a
numberof professions.We have shovn that
ist is possibleto make reasonablesstimates
of the stateof alertnesf a subjectbasedon
EEGandeye-movementinformation. Thees-
timatesappeatrto be fairly robustacrosssub-
jectsusingappropriately-chosdeaturegrom
the signals. It is noted, however, that in
generalneitherthe smoothedabels (human-
scored)nor the resultantestimatedmeasures
correlatewell with the correspondingrack-
ing performancemeasure. Indeed as dis-



cussecdearlier the existing experimentaldata
set shavs, save for a couple of exceptions,
no trendsof deteriorationin tracking perfor

manceas the one-hourrecording proceeds.

What we would ideally like thenis to deter
mine changesin the datawhich are due to
changedn the subjects’coping strategies as
well astruechangesn alertnessWe hopethat
new experimentaldatawill shedlight onthis.
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