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Abstract

Enforcing sparsity constraints has been shown to be an effective and efficient way to obtain
state-of-the-art results in regression and classification tasks. Unlike the support vector ma-
chine (SVM) the relevance vector machine (RVM) explicitly encodes the criterion of model
sparsity as a prior over the model weights. However the lack of an explicit prior structure
over the weight variances means that the degree of sparsity is to a large extent controlled
by the choice of kernel (and kernel parameters). This can lead to severe overfitting or over-
smoothing – possibly even both at the same time (e.g. for the multiscale Doppler data).
We detail an efficient scheme to control sparsity in Bayesian regression by incorporating
a flexible noise-dependent smoothness prior into the RVM. We present an empirical eval-
uation of the effects of choice of prior structure on a selection of popular data sets and
elucidate the link between Bayesian wavelet shrinkage and RVM regression. Our model
encompasses the original RVM as a special case, but our empirical results show that we
can surpass RVM performance in terms of goodness of fit and achieved sparsity as well as
computational performance in many cases. The code is freely available.

Index terms: sparse regression, kernel regression, smoothness prior, relevance vector ma-
chine.
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1 Introduction

In nonlinear regression a function of interest y is approximated by a linear combination of the
input vector, x, projected onto a (typically fixed) set of nonlinear basis functions, {φm}Mm=1:

y(x) = w0 +
M∑

m=1

wmφm(x) (1)

Thus, provided with a set of N training input vectors {xn}Nn=1 and corresponding targets tn,
the task is to find the M + 1 weights wm that will yield the most faithful approximation to y.
For simplicity the following exposition will assume that the data is mean centered, so that we
can omit the bias w0 and work with M weights. Choosing φ(x) ≡ x regains linear regression.
Frequently the basis functions are derived from kernels centered at each of the observations
φm(x) = K(xm,x) in which case the regression is known as kernel regression, however, the
basis functions may be quite general functions, including for example wavelets, and may form
an over-complete dictionary.

Writing the true signal, y, as an N -vector and wm, the weights, as an M -vector, (1) is conve-
niently written as y = Φw, with the basis functions arranged as the columns of the N ×M
design matrix Φ. Employing the standard assumption of zero-mean Gaussian noise in the
target observations, we have:

t = y + ε, ε ∼ N (0, σ2IN ) (2)

Demanding a sparse representation in the space spanned by a suitable set of such basis func-
tions provides a general strategy to adjust the bias/variance trade-off in regression and clas-
sification problems, as is evinced by the state-of-the-art results achieved by support vector
machines (SVMs) in a variety of domains (e.g. Schölkopf and Smola, 2002). An important ad-
ditional benefit of sparsity is that it also often translates into significant computational savings.

1.1 Sparse Bayesian regression

Whilst in SVM regression a desirable level of sparsity has to be brought about indirectly by
determining an error or margin parameter via a cross-validation scheme, the Bayesian formu-
lation of the regression problem in the relevance vector machine (RVM) (Tipping, 2000, 2001;
Faul and Tipping, 2002; Tipping and Faul, 2003) allows for a prior structure that explicitly
encodes the desirability of sparse representations.

This is done by complementing the standard likelihood function (which follows directly from
the above assumptions):

p(t |w, σ2) = (2πσ2)−
N
2 exp

(
−‖(t−Φw)‖2

2σ2

)
(3)

with an “automatic relevance determination” prior (MacKay, 1992) over the weights:

p(w |α) = (2π)−
M
2

M∏
m=1

α
1
2
m exp

(
−1

2
αmw2

m

)
(4)

that has the effect of “switching off” basis functions for which there is no evidence in the data
(more on this in sec. 2).
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Whilst p(α) is effectively uniform1, a standard inverse gamma prior is placed over the noise
variance σ2:

p(σ2) = IG(σ2 | g, h) =
hg

Γ(g)
σ−2(g+1)e−h/σ2

(5)

where g and h are fixed hyperparameters, usually set to some uninformative value (e.g., g =
h = 10−4).

It should be stressed that in this scheme g and h are the only “true” hyperparameters, in the
sense that unlike everything else that is introduced in extending the standard regression model
(3) by a hierarchical prior (4), (5), they are additional parameters that require specification
by the user (and in the absence of any prior information about p(σ|g, h) just setting them to
some uninformative default will work fine). All the other variables (α etc.) are just nuisance
parameters that can be integrated out or determined by the Bayesian approach.

Thus everything else, including ultimately ŷ, the mean posterior prediction that we wish to
obtain is determined by the values of Φ, t, g and h.

This is the beauty of the Bayesian paradigm – it allows one to reap the benefits of a probabilis-
tic approach, without burdening the model with additional externally-determined parameters
(unlike the SVM, there is no need to expensively determine a regularization parameter via
cross-validation and furthermore confidence intervals, likelihood values and posterior proba-
bilities for the solution can easily be obtained).

The learning of the model parameters proceeds by an elegant type II likelihood maximiza-
tion scheme in which values of α and σ that maximize the log marginal likelihood L(α) =
log p(t |α, σ2) are found iteratively (Faul and Tipping, 2002; Tipping and Faul, 2003). Weights
wm for which the learned precision αm is large are effectively switched off because wm is con-
strained to be close to zero.

1.1.1 Shortcomings of the classical RVM

Although the RVM carries the benefits of a probabilistic formulation, unfortunately it still
does not go far enough in its Bayesian encoding of the sparsity constraint — in practice one
finds that in spite of (4), the choice of highly resolving kernels for data which do not need the
many degrees of freedom offered by these kernels will still result in severe overfitting. This
overfitting is illustrated in Figure 1 by using a symmlet wavelet basis for regression to the
Sinc data set (N = 128, SNR = 2) (Tipping, 2001). As the top-left plot shows, the multi-scale
nature of the symmlet kernel results in drastic overfitting. Employing, for example, Gaussian
or linear spline (lspline; pictured) basis functions2 results in a good fit (bottom-left) and an
apparently sparse solution: only 7 of the 128 available lspline basis functions are not switched
off (have αm <∞) compared with 127 symmlet basis functions.

Closer examination, however, reveals that the Gaussian and lspline bases, which do not con-
tain high frequency basis functions, simply have difficulty fitting the noise. In the case of the
Gaussian kernel (which with a kernel width that gives good results for the Sinc data yields
a very ill-conditioned design matrix3), this is already apparent in the least squares estimate:
choosing coefficients wm to minimize E = ‖t−

∑
m wmφm‖ yields a substantial error that is in

1A Jeffreys’ prior is apparently advocated in (Tipping, 2001), but (Tipping, 2000; Faul and Tipping, 2002; Tipping
and Faul, 2003) and the published implementation use a uniform prior. This is discussed further in see sec. 5.1.

2See sec. A.1 for details of the kernel functions; the lspline examples use r = 3.0.
3Condition number κ = 6× 1018 for N = 128, r = 3.0.
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- - - true signal y · targets t —- mean prediction ŷ
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Figure 1: Classical RVM. The effect of kernel choice on the smoothness of the regression result (Sinc
data left, Bumps data right) when there is no prior over α. Choosing a flexible symmlet-wavelet kernel
(top row) results in drastic overfitting for the Sinc data set (top left; N=128, SNR=2.0). To obtain the
appropriate level of smoothing for the Sinc data one has to resort to a different kernel type, such as
lspline (bottom left). However an lspline kernel cannot resolve the Bumps data (bottom right; N=128,
SNR=7.0) at all.

fact larger than ‖y −
∑

m wmφm‖. The case is a bit more subtle for the lspline kernel, because
unlike the Gaussian kernel, a lspline kernel with a kernel width that gives good results for
(classical) RVM regression can still exactly represent t, just as the symmlet kernel.

However, as illustrated by Figure 2, on comparing individual basis functions from both ker-
nels, it becomes clear that whereas the symmlet basis offers multiscale resolution and hence
can fit a large proportion of the noise with relatively few components, a much greater num-
ber of the exclusively low-frequency basis functions in the lspline kernel are needed to fit a
comparable proportion of the noise.

Consequently the relatively mild enforcement of sparsity of the classical RVM scheme, which
proves insufficient for symmlet kernels, is already enough to prevent overfitting for lspline
and Gaussian kernels.

The sparse regression provided by the RVM with lspline kernels thus partially depends on a
propitious choice of kernel. Although the aforementioned gauss or lspline kernels are suffi-
ciently resolving for the Sinc data, they cannot resolve data with genuine high frequencies such
as the Bumps data (Donoho and Johnstone, 1994) which is therefore severely oversmoothed
(bottom-right of Figure 1), although it poses no problems for the symmlet basis (top-right).

In other words, it is apparent that a crucial aspect of sparsity control (kernel choice) remains
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Figure 2: Basis functions 1, 10, 23, 230 from N = 512 symmlet (left) and lspline kernels (right). Whereas
the symmlet kernel contains components at all frequencies, the lspline kernel only offers low-frequency
components. This explains why the classical RVM’s relatively weak sparseness enforcement suffices for
lspline kernels, but not symmlets.

outside the principled probabilistic framework. Choosing kernel type (and in some cases
width parameters) via cross validation-schemes is not just cumbersome and wasteful on data
and computational resources, it also typically offers only a crude approach to sparsity control,
making it for example difficult or impossible to obtain good results with standard kernels for
multi-resolution data (for a good example see Figure 5 later).

1.1.2 Amending the RVM; outlook and overview

Fortunately a strength of Bayesian models is their inherent extensibility by means of addi-
tional prior structure; here we examine how to incorporate a wavelet-shrinkage inspired,
noise-dependent smoothness prior for RVM models without degrading the efficiency of Tip-
ping and Faul’s (2003) fast RVM scheme (in fact performance can in many cases be significantly
improved due to increased sparsity and the gained ability to obtain good results with wavelet
kernels which allow efficient (O(N)) implementations of operations which are cubic in the
general case). In brief, our prior is of the form, p(αm |σ2) ∝ e−c/(1+σ2αm) (where c is a constant
that controls the level of smoothing) and as is visible from inspection of Figure 3 (c.f. 1), or
indeed the formula itself, it greatly promotes sparsity.

Having outlined the motivation for better prior-controlled sparsity control and briefly intro-
duced our proposed prior in this section, we discuss our smoothness prior in more detail in
section 2. In section 3 we show how the efficient scheme for learning the parameters in (Faul
and Tipping, 2002) may be simply adapted to incorporate the smoothness prior. Results on a
variety of standard datasets showing that it effectively controls sparsity are provided in sec-
tion 4, followed by a discussion of alternative priors and the summary and conclusion in 5.
More detailed theoretical discussions and proofs are relegated to the appendix. A preliminary
report on this work appeared in (Schmolck and Everson, 2005).
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Figure 3: sRVM. The smoothness prior means that enforcing sparsity is no longer mostly relegated to
the choice of kernel. A symmlet kernel (top row) no longer results in drastic overfitting for the Sinc data
set (on the left). The bottom row shows that the smoothness prior typically has no adverse effect when
smoothing is already mandated by the kernel. The data sets are identical to Figure 1.

2 The smoothness prior

On its own (4) does not appear to strongly favour sparsity, but of course the overall effect on
the weights depends on the prior assigned to α. Here we consider only priors of the form
p(α, σ2) =

∏M
m=1 p(αm |σ2)p(σ2). Then, the effective prior on wm is found from:

p(wm |σ2) =
∫

p(wm |αm)p(αm |σ2) dαm (6)

When the prior is a Gamma density, p(αm |σ2) = p(αm) = Γ(αm)−1baαa−1
m e−bαm with hyper-

parameters a and b, then p(wm) is a Student-t density. Tipping (2001) presents a nice graphical
illustration that the joint distribution p(w1, w2) of two Student-t densities concentrates proba-
bility mass close to zero values of w1 and w2 rather than in regions where both w1 and w2 are
non-zero, thus encouraging sparse solutions. In fact, the product of any two super-Gaussian4

prior densities p(wm) in combination with a Gaussian noise model favours posterior solutions
for which one or the other or both wm are close to zero. This may be seen by noting that the
log likelihood (3) is quadratic in w so that if log p(w1, w2) = log p(w1) + log p(w2) ≈ wq

1 + wq
2

with q < 2, then as either coefficient moves away from the coordinate axis the log likelihood
decays more rapidly than the log prior, thus encouraging a sparse posterior solution.

4Densities whose tails decay more slowly than Gaussians.
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The expression (6) with the ARD prior (4) shows that p(wm) is a scale mixture of Gaussians and
so under quite general conditions has positive kurtosis (Clarkson and Barrett, 2001; Lam and
Goodman, 2000). It appears, therefore, since almost any prior on α |σ2 will favour sparsity to
some extent, that there is considerable freedom in its choice.

As it is empirically clear that the p(w) resulting from a uniform p(α |σ2) (henceforward None
prior) does not enforce sparsity strongly enough for flexible kernel types (Figure 1), a well-
founded, sparser prior over α |σ2 is desirable. Since the question of existing and proposed
prior types for the RVM is somewhat convoluted, we postpone a more extensive discussion
till section 5.1, and concentrate for now on a smoothness prior.

As our desire for sparse w is ultimately grounded in beliefs about the complexity and structure
of the signal y, it is in a way natural to work one’s way backwards, viz to fashion the prior
p(α |σ2) so that the mean posterior prediction ŷ reflects these beliefs.

Given the posterior over the weights

p(w|t,α, σ2) =
p(w|t, σ2)p(w|α)

p(t|α, σ2)
= N (w |µ,Σ) (7)

with

Σ = (σ−2ΦTΦ + diag(α))−1 (8)
µ = σ−2ΣΦT t (9)

we obtain
ŷ = Φµ = (Φσ−2ΣΦT )t ≡ St (10)

where S is known as the smoothing matrix (Hastie and Tibshirani, 1990). Note that without the
term diag(α), which can be regarded as a regularization term, St would just be the projection
of t into the column space of Φ, or equivalently, the least squares estimate

ŷLS = Φ(ΦTΦ)−1ΦT t = ΦΦ†t (11)

Thus S computes the regularized or smoothed projection of t. Furthermore the special case
where all αi are identical is equivalent to ridge-regression (Hoerl and Kennard, 1970) with
regularization parameter λ = σ2α (the larger λ, the smoother the estimate, the more all wi

are shrunk towards zero compared to the least squares estimate). The “ridge-regression prior”
p(w|α) = N (0, α−1I) is naturally also just a special case of the ARD prior (4). Of course indis-
criminately shrinking coefficients for relevant as well as irrelevant basis functions is unattrac-
tive, but ridge regression has the convenient property that the amount of shrinking can be
easily quantified.

However, even with an ARD prior, it is possible to quantify the degree of smoothing imposed
by the model by a single number: the degrees of freedom of S, given by its trace:

DF = trS (12)

It is helpful to consider the case of orthonormal basis functions (such as wavelets) so that
ΦTΦ = IM and the trace of the smoothing matrix is seen to be:

DF = trS =
M∑

m=1

(1 + σ2αm)−1 (13)
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In (13) it is evident that basis functions with αm → ∞ make no contribution to the degrees
of freedom, whereas functions with αm = 0 contribute fully; DF thus counts the number of
active basis functions, where the extent to which they are active is measured relative to the
noise magnitude.

These equations make the related roles of α and trS for sparsity control and smoothing ap-
parent. As all αm → 0 we approach the least squares estimate (11). In this case trS = N , there
is no smoothing and the model interpolates the data (indeed for orthormal or invertible Φ, the
least squares estimate is just t). Conversely, as αm → ∞ the corresponding component φm is
turned off (wm = 0). Here trS = 0 and the mean posterior estimate is zero.

As the model typically has roughly as many (for square N ×M design matrix Φ, M = N )
or more parameters (for overcomplete Φ, N < M ) as training examples, the least squares
estimate (all αm → 0) will almost always result in drastic overfitting (never mind severe com-
putational headaches5). Conversely all αm → ∞ will just yield a constant prediction as all
wm = 0. But since the RVM associates an unique hyperparameter αm with each weight wm a
suitable prior over α |σ2 will bring about just the right amount of smoothing for each individ-
ual component when we maximize the posterior probability over the weights p(w | t,α, σ2).
We expect most components to be turned off, hence most αm to be ∞ and thus their cor-
responding weights wm to be 0, but the few relevant components will have finite αm and
wm 6= 0.

2.1 Finding a suitable prior over α or wavelet shrinkage to the rescue

Similar observations lead Holmes and Denison (1999) to choose the following prior structure
for encoding sparsity beliefs for the related problem of wavelet shrinkage:

p(α |σ2) ∝ e−cDF (14)

Since DF may be regarded as the effective number of parameters in the regression problem
with Φ fixed, different choices for the hyperparameter c may be related to different classical
model choice criteria (Holmes and Denison, 1999):

c =


0 None, Bayes factor (so the classical RVM is just a special case)
1 AIC, Akaike information criterion
log(N)/2 BIC, Bayesian information criterion
log(N) RIC, Risk inflation criterion

Thus we are left with 4 different weight variance priors, from least smoothing to most smooth-
ing as follows: None, AIC, BIC, RIC.

Using (13) to compute DF even in the non-orthogonal case yields a convenient prior expression
for an individual αi that does not depend on any of the other αj 6=i and we adopt this form
throughout:

p(αi |σ2) ∝ e−c
PM

i=1(1+σ2αm)−1 ' e−cDF (15)

5Apart from numerical issues, the asymptotic complexity of all standard direct solutions are cubic in M (see, e.g.
(Golub and van Loan, 1989)). However, sparse greedy matrix approximations might be used to enhance the con-
vergence rates (Smola and Schmölkopf, 2000), and iterative schemes with improved convergence properties have
also been developed; in particular backfitting (Hastie and Tibshirani, 1990) which D’Souza et al. (2004) adapted to
a Bayesian EM framework to obtain an O(MN) complexity RVM implementation.
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This approximation finds justification beyond computational and analytical expediency. Firstly,
we have obtained good empirical results with this prior even when orthonormality is not
present (e.g. with various spline kernels and even with overcomplete dictionaries with M =
2N ; see e.g. Figure 7). Secondly, we also ran some tests where, during model runs, we si-
multanously computed the true DF expression and compared it to the approximation above
and have obtained very similar results. Thirdly our prior structure exerts strong pressure to
exclude6 redundant components, hence although the basis functions might not be orthogonal
the eventually included basis functions can be expected to be typically near-orthogonal.

A noteworthy and distinguishing characteristic of the smoothness prior is its noise depen-
dency. The degrees of freedom amounts to a count of the number of active basis functions. As
the noise increases, the DF decrease, i.e. S becomes more strongly smoothing. This is what one
would intuitively expect to happen: everything else staying fixed, if there is no noise (σ2 = 0)
then the observations t ought to equal the true signal y and so should the posterior estimate
ŷ, thus S must be the identity. However as the level of noise increases, more and more of the
targets t has to be explained by the noise and hence S should become more smoothing as the
noise level increases.

Note that this means that basis functions with smaller αm have greater prior support when the
noise is larger, which may appear counter-intuitive at first.

Although (15) is an improper prior, a proper prior may be obtained by restricting αm to a finite
range [L,H]. In this case we may write:

p(αi |σ2) =

{
Ze−c

PM
m=1(1+σ2αm)−1

L ≤ αm ≤ H
0 otherwise

(16)

and the normalization constant Z is given by

Z =(σ−2 + H) exp(−c/(1 + σ2H))− (σ−2 + L) exp(−c/(1 + σ2L))

+ cσ−2[Ei(c/(1 + σ2L))− Ei(c/(1 + σ2H))] (17)

where Ei denotes the exponential integral function (Arfken, 1985). In the work reported here
we choose L = 10−10, H = 1010. This expression is however only needed when we would like
to obtain the posterior probability of the result (see A.6 for how to do so efficiently). Further-
more we note that when σ2H/c� 1 then Z → H .

To summarize: The smoothness prior clearly favours large αm, thus encoding a belief that
the weight wm should be close to zero and consequently a sparse solution. The prior has a
desirable dependency on the noise. The constant c controls the smoothness prior’s severity
(with the least severe prior c = 0 reducing to the classical RVM’s uniform prior). It is also easy
to prove that this prior results in a scale invariant posterior (i.e. our model will give the same
answers if we rescale t→ kt and simultaneously σ → kσ, see A.2).

Apart from the observations t and the choice of kernel Φ, the hyperparameters g, h and c are
the only parameters to be externally specified by the user. Moreover we find that c = log(N)/2,
the value for BIC makes a good default for c, while we can generally, in the absence of any
prior belief about the likely shape of p(σ), just set g, h to 10−4 or some other uninformative
value.

How to effectively learn the other parameter values and estimates is the topic of the next
section.

6i.e. to set the corresponding αi = ∞, peek ahead to sec. 3.2 (14, 15) to see that the corresponding φi play
indeed no role
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3 Implementation

3.1 Overview of implementation properties and strategy

The efficient calculation of MAP point estimates for the model parameters that we are about
to detail is based on the Tipping and Faul (2003) “fast RVM” scheme and rests mostly on three
facts:

1. Our sparsity prior structure ensures that for most real data sets the posterior will peak
in regions with mostly infinite αm and as discussed an infinite value for αm is equivalent
to the exclusion of ith component from the model, so only S � M of the coefficients wm

will be nonzero.

2. Although the introduction of this sparsity prior structure means that some expressions no
longer have convenient closed form solutions, the solutions are still easily and efficiently
found by simple numerical methods in all instances and all the important desirable prop-
erties of the fast RVM that are detailed in (Faul and Tipping, 2002) remain unaffected by
the inclusion of the smoothness prior.

3. In particular it is still possible to determine the relevance of a basis function not currently
included in the model (so that components can be included one by one, starting with an
empty model) and to derive expressions for all quantities of interest that only depend
on S and not M . Consequently, the computational complexity scales cubically with the
number of included components S, rather than the number of basis functions M .

With the None prior and uniform p(α |σ) maximization of log p(α |σ, t) is equivalent to max-
imizing the log marginal likelihood L(α) = log p(t |α, σ), which can be efficiently effected
by the elegant type II maximum likelihood scheme described in Faul and Tipping (2002) and
Tipping and Faul (2003). The key idea is to write

L(α) = L(α−i) + `(αi) (18)

in order to separate out the contribution of the ith basis function φi into the term `(αi) which
depends solely on αi and a term L(α−i) that is independent of αi. Maximization of L(α) then
proceeds by successive maximizations of `(αi) for a sequence of components. With the None
prior the maximizing α?

i = argmaxαi
`(αi) is found in closed form, so that the maximization is

particularly cheap.

In our case, the addition of the smoothness prior means that rather than the log likelihood, we
seek to maximize the log posterior:

L̂(α) ≡ log p(t |α, σ2) + log p(α |σ2) (19)

= L(α) + log p(α |σ2) (20)

Due to the multiplicative prior structure, p(α |σ2) =
∏

i p(αi |σ2) the dependence of L̂(α) on
αi can still be isolated, and although the additional term requires that the optimal

α̂i = argmax
αi

ˆ̀(αi) = argmax
αi

[`(αi) + log p(αi |σ)] (21)

is found numerically, rather than analytically as in Tipping and Faul (2003), the extension is
straightforward and has the desired properties. In particular:

1. There still is at most one local maximum for `(αi).
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2. α̂i ≥ α?
i , in other words the sRVM or smoothness prior MAP solution is always at least as

sparse as the RVM or ML solution (see appendix A.3), but typically is much sparser for
flexible kernels.

3. It adds virtually no computational overhead, but allows enormous computational sav-
ings in many cases – this is because the complexity of a single step in the model is es-
sentially O(S3) and the sparsity prior will always produce at least as small an S as the
None prior, but often only a fraction. The increased sparsity also makes it feasible to
use wavelet kernels for many tasks without fear of overfitting which further reduces the
complexity per step to O(N), because all matrix multiplications disappear7; we have em-
pirically verified that approximately linear in N per-step behaviour obtains in our imple-
mentation for 4096 ≤ N ≤ 524288 .

We now give further details of the maximization scheme, although proofs are relegated to the
appendix.

3.2 Maximizing the marginal posterior

For clarity we first recapitulate the decomposition of the log marginal likelihood used by Tip-
ping and Faul’s original scheme before we describe the modifications needed to incorporate
the smoothness prior. The following subscripts will be used: S denotes the value of a variable
with only the S selected components included whereas −i denotes the value of a variable with
the ith component removed.

The log marginal likelihood

L(α) = log p(t |α, σ2) (22)

= log
∫

p(t |w, σ2)p(w |α)dw (23)

= −1
2

[
N log 2π + log |C|+ tTC−1t

]
(24)

with

C = σ2I + Φdiag(α−1)ΦT (25)

can be decomposed to isolate the terms involving a particular αi. Writing

C = σ2I +
∑
m6=i

α−1
m φmφT

m + α−1
i φiφ

T
i (26)

≡ C−i + α−1
i φiφ

T
i (27)

the log likelihood may be reformulated, using standard matrix identities for inverse and de-
terminant of C, as (18) where:

L(α−i) = −1
2

[
N log 2π + log |C−i|+ tTC−1

−i t
]

(28)

and

`(αi) =
1
2

[
log αi − log(αi + si) +

q2
i

αi + si

]
(29)

7The covariance matrix becomes the identity due to orthonormality, Σ becomes diagonal and other multiplica-
tions by Φ is can be replaced by the equivalent, but much more efficient, discrete wavelet transform.
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The quantities

si ≡ φT
i C−1

−i φi (30)

and

qi ≡ φT
i C−1

−i t (31)

respectively measure the degree to which φi overlaps other basis functions in the solution (its
“sparsity”) and its “quality,” namely its correlation with the model error with φi excluded:
qi = σ−2φT

i (t− ŷ−i).

Now it is easy to maximize L(α) with respect to αi. Faul and Tipping (2002) show that `(αi)
has a single unique maximum at

α?
i =

{
s2
i

q2
i−si

if q2
i > si

∞ otherwise
(32)

Kernels for which q2
i < si are effectively excluded from the model and the elegance of the

Tipping and Faul (2003) fast RVM scheme derives from the fact that si and qi can be calculated
from quantities involving only the S �M included components.

Maximization of the log marginal posterior with respect to a single αi can be achieved by
maximizing

ˆ̀(αi) = `(αi)−
c

1 + σ2αi
. (33)

The derivative of ˆ̀(αi) is

ˆ̀′(αi) =
1
2

[
1
αi
− 1

αi + si
− q2

i

(αi + si)2

]
+

c

(1 + σ2αi)2
(34)

=
P (αi)

2αi(αi + si)2(αi + σ−2)2
(35)

where P (αi) is cubic in αi. Simple closed form solutions to the roots of P (αi) = 0 are not
available, however it is simple and computationally cheap to numerically find the roots of P .
Since limαi→∞ ˆ̀(αi) = 0 the maximum of ˆ̀(αi) may occur at infinite αi, corresponding to the
ith basis function being “switched off”. A basis function φi is active if the maximum occurs for
αi <∞. With the smoothness prior the posterior may have more than one turning point but, as
shown in Appendix A.3, there can be at most one maximum α̂i <∞ and α?

i < α̂i showing that
the smoothness prior always has the effect of making the solution sparser. Figure 4 shows the
four possible cases that may arise. Most severely, (top-left) the prior can null the maximum in
the likelihood. Alternatively, (top-right) the posterior has a, possibly local, maximum at finite
α̂i > α?

i ; when there is a single turning point α̂i > limαi→∞ ˆ̀(αi) = 0 and the basis function is
active; if there are two turning points in ˆ̀(α̂i) the global maximum may be at the turning point
(bottom-left) or at infinite αi. It is straightforward during learning to distinguish between these
last two cases by evaluating ˆ̀(α̂i).

In brief, maximization of L̂(α) therefore proceeds by successively choosing (at random) a com-
ponent i to include in the model, maximizing ˆ̀(αi) with respect to αi and reestimating the
parameters ΣS , µS , s and q which depend upon αi (s and q are M vectors of the sparsity and
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Figure 4: Log posteriors ˆ̀(αi) (solid), log likelihoods `(αi) (dashed), and log prior −c(1 + σ2αi)−1

(dotted) plotted versus log αi for the four possible cases with a smoothness prior. Top-left: prior nulls
maximum in posterior; Top-right: single turning point with α̂i finite; Bottom-left: two turning points in
posterior and ˆ̀(α̂i) > limαi→∞

ˆ̀(αi) = 0; Bottom-right: two turning points in posterior, but ˆ̀(α̂i) < 0.

quality indices qi and si of the corresponding αi). Since the posterior is increased by maximiza-
tion of each individual ˆ̀(αi) such a sequence of maximizations terminates when a, possibly
local, maximum of the posterior is located at which the inclusion or deletion of any single com-
ponent can only decrease the L̂(α). Tipping and Faul (2003) use this computationally efficient
sequential maximization as the basis of the fast RVM. Although in (Faul and Tipping, 2002) an
attempt is made to prove that “sequential optimization of individual αi cannot lead to a sta-
tionary point from which a joint maximization over all α may have escaped”, it appears that
the proof is flawed and this desirable property may indeed often not hold. However, by exam-
ining the Hessian of L̂(α) at the maximum it is straightforward to show that this property does
hold for orthonormal basis functions (such as wavelet kernels) regardless of the imposition of
a smoothness prior (Appendix A.4).

3.3 Noise reestimation

Again whereas the classical RVM can employ an analytical update rule (Tipping, 2001, eq 46)
for σ2 from setting ∂L

∂σ−2 = 0, the introduction of the smoothness prior term means we have
to resort to a numerical scheme. As noted above, provided that σ2H/c � 1 the normalisation
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Algorithm 1 The sRVM algorithm.

1: σ2 ← 0.1× var(t) initialization for σ2

2: α← [∞· · ·∞]T start with the empty model
3: i← argmax (‖φT

mt‖/‖φm‖) pick an i that stands a good chance of being relevant
4: S ← {i} include it in the set of included components
5: update(αi,ΣS ,µS , s,q) compute initial values for all model paramters
6: R← 10 reestimate noise every R steps
7: step← 1 already made the first step
8: until converged()
9: i← randint(M ) pick a random component i

10: DID-NOTHING← False
11: if ( q2

i − si > 0 and . . .
has-real-positive-root(numerator( ˆ̀′(αi))) if component i is relevant

12: unless αi <∞ unless it is already included
13: S ← S∪{i} add it
14: else
15: if αi <∞ the component is irrelevant but currently included
16: S ← S \{i} delete it
17: else component is and was irrelevant
18: DID-NOTHING← True no need for action
19: unless DID-NOTHING otherwise update everything
20: step← step + 1
21: update(αi,ΣS ,µS , s,q) update the model parameters
22: if step mod R = 0
23: reestimate(σ2)

term in the prior Z (17) is effectively constant, and we therefore numerically solve:

∂L̂(α, σ2)
∂σ−2

≈ 1
2

[
Nσ2 − ‖t−Φµ‖2 − σ2

∑
m

(1− αmΣmm)

]
− c

∑
m

αm

(σ−2 + αm)2

+(g − 1)σ2 − h = 0 (36)

Good initial guesses for starting the numerical solution are either the c = 0 linear solution or
the previous value of σ2, and we find that convergence is rapid. A graphical analysis of (36)
shows that the smoothness prior term serves always to increase the effective noise variance as
may be expected because a sparser solution requires more of the error to be explained by noise.
However, for even moderate amounts of data, we find that the estimate of σ2 is dominated by
the marginal likelihood terms, being insensitive to the noise prior p(σ2|g, h) and hence the
choices for g and h.

3.4 The algorithm

The outline of the algorithm, based on the fRVM algorithm, is as follows (c.f. pseudocode in
Alg. 1).

We start out with a model that includes only a single component (a good default choice is the
component that has the largest projection onto the target t) (lines 1-7). Then, until the model
has converged (line 8), at each iteration a candidate component is picked at random (line 9).
If upon testing this component turns out to be neither currently included (i.e. αi = ∞) nor
relevant (i.e. inclusion would not increase ˆ̀(αi) or equivalently the overall posterior L̂(α))
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nothing is done (line 18f). In all other cases the model is updated: αi and all other relevant
parameters are reestimated (line 21); only the noise estimation is not updated on each step
(lines 22f) to prevent spurious oscillation.

There are thus 4 possible cases that can occur after the relevance of some component i given
the current state of the model has been established:

• The component is currently not included but is still deemed irrelevant, so nothing hap-
pens.

• The component is currently not included, but since inclusion would increase ˆ̀, it is in-
cluded (line 13).

• The component is currently included and αi is updated to reflect the current state of the
model which can either mean:

– deletion: αi is set to∞ if doing so does not reduce ˆ̀(line 16);

– (mere) reestimation: the value of αi is set to some finite value, possibly the same that
it already had (line 21).

It should be noted that whereas only a single αi of all the α is updated on each step, all the
other parameters, i.e. all the M qm and sm as well as the S elements of µS and S × S elements
of ΣS are completely recalculated.8

3.4.1 The convergence criterion

Due to the greedy nature and itemwise update of the algorithm finding, a good convergence
criterion requires a bit of tweaking to prevent premature convergence while at the same time
avoiding endless iterations close to the solution.

We follow Tipping and Faul (2003) in requiring that the differences between successful val-
ues for any αi in logarithmic space must be less than 10−6 and that all components currently
deemed to be relevant are actually included in the model.

Whilst this suffices in many cases, we have found it useful to add some additional require-
ments and as a consequence in practice the scheme is a bit more complex than that depicted
in Alg. 1. Most importantly, before we declare convergence we ensure that all component αm

are re-evaluated and that the noise reestimation remains stable over several past estimates. We
also test that L̂ no longer increases noticeably. Full details may be found in the implementation
which is available from <http://www.dcs.ex.ac.uk/˜reverson/sRVM> .

3.5 Future directions

Although empirically the greediness of the fRVM type II MAP scheme on which we base this
work does not seem to be much of in an issue under most scenarios (including the spline kernel
examples that have dominated the RVM literature and our use of wavelet kernels), under the
stress-test of using overcomplete dictionaries local maxima can start to become a problem.

Whilst we have found it useful to increase exploration by ad hoc measures9 in these cases, the
8The efficient formulae sm = αmSm

αm−Sm
where Sm = σ−2φT

mt − σ−4φT
mΦSΣS , and qm = αmQm

αm−Qm
where Qm =

σ−2φT
mt − σ−4φT

mΦSΣSΦT
St are used for calculating q and s (Tipping and Faul, 2003).

9e.g. by initially also including αi for which ˆ̀(αi) ≤ ˆ̀(∞).

<http://www.dcs.ex.ac.uk/~reverson/sRVM>
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added flexibility of the sRVM for kernel choice appears to call for a principled way to deal
with local maxima. We are therefore currently investigating an alternative non-greedy MCMC
formulation that samples from the posterior.

4 Results

4.1 Simple data

As Figure 3 shows, we find that use of the smoothness prior typically yields substantial im-
provements for tasks where overfitting is a problem due to the multi-scale resolution of the
kernel, while it generally has no appreciable negative impact when overfitting is not an issue.

4.2 Multiscale data

In Figure 5 we can clearly see the advantages of smoothness control via prior structure as
opposed to kernel choice: with the sRVM a multiscale signal can receive just the right level
of smoothing to fit the signal, but not the noise, at each scale (Figure 5 bottom), whereas the
RVM’s dependence on kernel choice for sparsity control and thus smoothing means choosing
between the evils of oversmoothing the high-frequency structure (Figure 5 top) or overfitting
the low-frequency structure (Figure 5 middle).

The effect of the smoothness prior on sparsity is most clearly visualized by comparing “shrink-
age plots” for None and BIC (Figure 6) for the Doppler data.

4.3 Heterogenous data and overcomplete dictionaries

Another attractive ability of the sRVM is to automatically choose the right locally fitting com-
ponents from an overcomplete dictionary. This can be used to obtain very good results for sig-
nals that are hetergenous to the extent that particular regions can be well represented sparsely
by a particular (non-custom) kernel whilst another standard kernel (or combination of ker-
nels) would yield much better results for other regions. Figure 7 presents an illustrative toy
example in which an overcomplete dictionary of thin-plate spline (tpspline) kernels and Haar
wavelets kernels are shown to provide an effective sparse representation of the concatenation
of the smooth Sinc data and the step-like Blocks data (Donoho and Johnstone, 1994). Likewise,
data such as the HeaviSine dataset (ibid.), with small discontinuity regions but mostly smooth
and continuous overall can also profit from a similar overcomplete dictionaries.

Overcomplete dictionaries constructed from morphologically diverse kernels have also found
applications to blind source separation problems, where the morphological differences in in-
dividual signal components allow such components to be largely represented by morpholog-
ically similar parts of the overcomplete dictionary which can be leveraged to effect the sepa-
ration (Bobin et al., 2005). Although the sRVM is clearly not designed with that task in mind,
in this specific, simple example we obtain near-perfect separation of the Blocks and Sinc sig-
nal components by discarding the tpspline and Haar contribution respectively (see Figure 8
right). By contrast, the plain RVM cannot achieve this separation (see Figure 8 left), apart from
needing 419 instead of 88 components and achieving only a MSE of 0.024 instead of 0.009.
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Figure 5: Multiscale resolution data like Doppler (N = 1024, SNR = 7.0) defeats the RVM (top, middle),
but not the sRVM (bottom), demonstrating the limitedness of sparsity control via kernel (parameter)
choice (here in top and middle panels via the width parameter r of a Gaussian kernel (r is respectively
0.5 and 0.05) as well kernel choice between gauss (top and left middle vs. the parameterless symmlet
right middle)). Such smoothness control acts globally, whereas only part of the signal is respectively fine
scale/large scale, so that even though overfitting already starts to become apparent in the top panel, the
fine scale information on the left side is still severely oversmoothed. Decreasing kernel width (middle)
to improve resolution sufficiently to fit the fine scale details on the left is seen to be tied to drastic
overfitting in the right part of the plot. By contrast, a smoothness prior in combination with a multi-
resolution kernel achieves an adaptive level of smoothing (bottom). Without a smoothness prior, again
drastic overfitting would occur (not pictured, but c.f. Figure 1 top left).
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Figure 6: Shrinkage plots. Plotting the least squares estimate of the weights µLSQ against the posterior
weight estimates obtained with None (left) and BIC (right) priors clearly shows that the BIC smoothness
prior is much more effective at weeding out small, irrelevant components by setting them to 0. These
plots correspond to the middle right and bottom panel, respectively, of Figure 5) and are clipped to
|µm| ≤ 0.5 (the few larger components are essentially unaffected by shrinkage and thus lie on the
diagonal).
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(a) sRVM 3.0 tpspline kernel (MSE: 0.379, S: 72)
left half (Blocks) of signal cannot be properly resolved

(b) sRVM haar kernel (MSE: 0.020, S: 75)
now the right half (Sinc) shows staircase artifacts

(c) sRVM overcomplete haar+tpspline dictionary (MSE: 0.009, S: 88)
the sRVM automatically finds the right basis functions for each region of the signal

Figure 7: The sRVM (here with RIC prior) makes it possible to obtain very good results by using over-
complete dictionaries. The example data (“BlocksSinc”) is constructed by concatenating two signals
with very different characteristics: Blocks and Sinc and adding Gaussian noise (SNR: 7.0). Whilst no
standard kernel will give ideal results for this combination, thin-plate splines (tpsplines) are well suited
for smooth, continuous curves such as Sinc (a), whilst the step-like nature of Haar wavelets makes them
the ideal candidate for the Blocks subset (b). However, thanks to the smoothness prior, the sRVM can
do a remarkably good job at automatically picking the appropriate components for each part of the
signal from an overcomplete dictionary obtained by concatenating both these kernels together (also see
Figure 8).

.
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— Haar contribution - - - tpspline contribution

RVM fails to separate sRVM neatly separates

Figure 8: Contributions of the tpspline and Haar subparts of the overcomplete dictionary for BlocksSinc
signal for sRVM and RVM. Evidently the sRVM is able to pick fitting components for each morpholog-
ically distinct part of the overall signal – indeed by discarding all the tpspline or Haar contributions to
ŷ one essentially obtains a clean separation into Blocks and Sinc.

.

It has to be noted, however, that although with symmlet or spline kernels we generally achieve
bit-identical or near-identical results regardless of the way component inclusion proceeds,
overcomplete kernels appear to expose some limitations of the fRVM scheme on which we
build. Apart from numerical issues caused by the overcompleteness, getting trapped in dif-
ferent local maxima starts to become a problem, so that we see more variability in the results
than we do under simpler scenarios.

4.4 Summary statistics

Table 1 shows for a number of standard datasets the sparsity, measured by the number of
included components S, and the MSE between the mean prediction ŷ and the true signal y.
Clearly the None prior is generally insufficiently severe to control the sparsity for multireso-
lution kernels, while the smoothness priors provide sufficient smoothing and thus permit σ2

to be correctly estimated. On the other hand it is evident from the gauss 3.0 (see A.1 for defini-
tions of all used kernels) examples that the smoothness priors do not result in missestimation
when smoothing is already enforced by the kernel. Further, the Doppler data in the second
half of the table demonstrates that even if the true value for σ2 is given so that incorrect noise
estimation is not an issue, the None prior is still too weak to bring about the desired level of
sparsity.10

Lastly, although BIC rarely obtains the best answer, it is typically not too far off which recom-
mends it as the default choice.

10With this exception all results in this paper, including those in Figure 5, were obtained using noise estimation.
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σ2 is estimated

Bumps SNR=2.0 (σ2 = 0.119, N = 128)
Kernel Prior S MSE σ2

MAP

symmlet None 127.0±0.0 0.119±0.001 0.000±0.000
symmlet AIC 36.3±7.8 0.088±0.008 0.121±0.037
symmlet BIC 11.9±2.5 0.153±0.034 0.262±0.038
symmlet RIC 2.6±1.4 0.320±0.051 0.450±0.068

Bumps SNR=7.0 (σ2 = 0.010, N = 128)
Kernel Prior S MSE σ2

MAP

symmlet None 127.0±0.0 0.010±0.000 0.000±0.000
symmlet AIC 61.9±6.0 0.009±0.001 0.010±0.004
symmlet BIC 19.2±4.9 0.081±0.024 0.106±0.029
symmlet RIC 6.4±1.3 0.203±0.024 0.238±0.018

Sinc SNR=2.0 (σ2 = 0.031, N = 128)
Kernel Prior S MSE σ2

MAP

gauss 3.0 None 5.7±0.7 0.004±0.001 0.032±0.001
gauss 3.0 AIC 5.4±1.1 0.004±0.001 0.034±0.001
gauss 3.0 BIC 5.2±0.6 0.005±0.001 0.035±0.002
gauss 3.0 RIC 4.9±1.0 0.005±0.001 0.036±0.002

symmlet None 127.0±0.0 0.031±0.000 0.000±0.000
symmlet AIC 28.9±5.9 0.012±0.003 0.020±0.004
symmlet BIC 9.1±1.9 0.006±0.002 0.032±0.003
symmlet RIC 6.2±0.6 0.006±0.001 0.036±0.002

σ2 is given

Doppler SNR=2.0 (σ2 = 0.031, N = 1024)
Kernel Prior S MSE

symmlet None 367.3±10.5 0.00067±0.00002
symmlet AIC 130.5±6.9 0.00041±0.00002
symmlet BIC 56.6±2.8 0.00026±0.00002
symmlet RIC 42.2±1.5 0.00036±0.00002

Table 1: Empirical comparisons of different priors on standard datasets. Results are averaged over 10
runs (with different noise ε on each run). Results with lowest MSE appear in bold.

5 Discussion

Whilst we have concentrated on the fRVM framework (Faul and Tipping, 2002), since our im-
plementation is based on it, it is worth mentioning that the fRVM is by no means the only
attempt to provide a scheme that is computationally more efficient than the original, “slow”
RVM (Tipping, 2000) and might be adapted to incorporate a smoothness prior; we draw atten-
tion to the Subspace EM (SSEM) algorithm (Quiñonero-Candela, 2004) and a version based on
a Bayesian interpretation of backfitting (D’Souza et al., 2004).



5.1 Other prior choices for α 23

10
−1

10
0

10
1

10
2

αi

Figure 9: Log posteriors ˆ̀(αi) (solid), log likelihoods `(αi) (dashed), and log gamma prior (dotted)
plotted versus log αi, showing that with qi = 1, si = 2, a = 1 and b = 2 the MAP αi is less sparse than
the maximum likelihood solution.

Before examining more closely the issue of different choices for p(α), we mention other work
pertinent to RVM learning. Wipf and Rao (2004) provide a principled justification for approx-
imating the hyperparameter posterior p(α, σ2 | t) with the point estimates αMAP and σMAP.
Quiñonero-Candela (2004) offers an augmentation to the RVM at the prediction stage to ame-
liorate the problem of artificially low predictive variances for test-points that are far off the
“centres” of the “relevance vectors” (i.e. the final set of basis functions for well-localized ker-
nels such as gauss) – an issue that may be regarded as an undesirable side-effect of spar-
sity. Figueiredo (2003) provides an illuminating perspective on sparse Bayesian learning and
presents an Expectation Maximisation algorithm for learning the coefficients w directly, treat-
ing the α as hidden data.

5.1 Other prior choices for α

As we noted in section 2, any super-Gaussian prior on each p(wm) will encourage sparseness
or shrinkage. A natural prior that has been used to promote sparsity in a variety of contexts is
the Laplacian prior, p(wm) ∝ e−|wm|, which leads to the LASSO (least absolute shrinkage and
selection operator) scheme (Tibshirani, 1996), although in this context the prior is introduced
as the penalty in a penalized likelihood. As Figueiredo (2003) shows, the Laplacian prior on
p(wm) may be obtained via a hierarchical scheme, like ours, in which a p(wm) arises as a scale
mixture of Gaussians with an exponential prior on the precisions: p(αm | γ) ∝ e−γα/2, where
γ is a hyperparameter. In fact, Figueiredo abandons the exponential/Laplacian scheme in
favour of a Jeffreys’ prior on αm, namely p(αm) ∝ 1/αm, which in turn results in a similar
very heavy-tailed prior on the coefficients: p(wm) ∝ 1/|wm|. The attractions of the Jeffreys’
prior result from the fact that it is a non-informative prior (Bernardo and Smith, 1994): first, it is
scale invariant and, secondly, there are no (hyper)parameters to adjust. Before examining the
Jeffreys’ prior in more detail we first discuss the Gamma prior which has the Jeffreys’ prior as
a limiting case.
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The Gamma prior

p(αm | a, b) =
ba

Γ(a)
αa−1

m e−bαm (37)

has two hyperparameters, a > 0 and b > 0, which respectively control the shape and width of
the density. This prior, which leads to a Student-t p(wm), is considered by (Tipping, 2001; Wipf
and Rao, 2005). However it is not clear how the hyperparameters a and b are to be chosen,
except by cross-validation which is a data and time consuming procedure or via a variational
approach, which, in the formulation that corresponds closest to the classical RVM Bishop and
Tipping (2000), is neither computationally efficient nor of clear practical value11. Furthermore,
as illustrated in Figure 9, it is possible for the Gamma prior with particular values of a and b to
yield α̂i < α?

i , that is a MAP αi that is less sparse than the α?
m which maximizes the likelihood

alone. By contrast the smoothness prior always results in α̂i > α?
i and we point out that the

smoothness prior is strictly increasing and so always assigns increasing weight to increasing
precisions (c.f. Figure 4).

The Jeffreys’ prior, a uniform density on the logarithmic scale, is obtained in the limit a, b→ 0,
which (Tipping, 2001) appears to advocate for the RVM although the fRVM (Tipping and Faul,
2003) clearly uses a uniform prior in “un-logged space”—called the None prior here. In this
limit the Student-t density for p(wi) becomes 1/|wi|. However, the analogous component-
wise maximization scheme leads to models in which all components are active when a < 1/2
because ˆ̀(αi) is maximized at αi = 0 regardless of the values of si, qi and b (see Appendix
A.5). Approaching the Jeffreys’ prior by p(αi) ∝ αζ

i as ζ → −1 leads to the same conclusion:
for ζ < −1/2 every component is active because ˆ̀(αi) is maximized at αi = 0 (Appendix A.5).

Thus although the scale invariance and the absence of hyperparameters of Jeffrey’s prior is
appealing, the type II MAP solution sought here does not accommodate it. However, the
smoothness prior, which is noise dependent and therefore confers scale invariance with in-
variant SNR, has a single hyperparameter and is readily interpretable in terms of the solution
sparseness, the degrees of freedom in the smoothing matrix.

Before we proceed to discuss α-priors from a wavelet-shrinkage perspective, first a short di-
gression that readers already familiar with wavelet shrinkage may prefer to skip; in-depth
treatments of wavelets and wavelet shrinkage can be found in Mallat (1999) and Jansen (2001).

Wavelet shrinkage We have already mentioned that the Discrete Wavelet Transform (DWT),
which provides an orthogonal decomposition of a signal into components localized in both
frequency and time, is extremely fast – O(N). Algebraically, however, the DWT of a vector t is
simply equivalent to WT t, where W is an orthogonal matrix.

Thus, since the discrete wavelet transform is an orthogonal linear operator, it is easily verfied
that it maps stationary white noise on the targets to stationary white noise of the same am-
plitude on the wavelet coefficients. On the other hand, for “reasonable” noise-free curves (i.e.
signals that can be well approximated by piecewise polynomials of a small degree) and a suit-
able choice of wavelet, wavelet transforms are said to be decorrelating. In other words whilst
noise enters equally into all wavelet coefficients, the true signal carried by the targets will be
mostly concentrated in but a few.

11See (Tipping, 2001, footnote 6) or <http:www.miketipping.com/index.php?page=rvm> : “Note that the
‘variational’ relevance vector machine is pretty much identical to the non-variational version, but is a lot slower to
train.”

<http:www.miketipping.com/index.php?page=rvm>
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This suggests the following template for wavelet-based denoising: transform to wavelet space
(wt = WT t), somehow cull or shrink those coefficients that contain largely noise leaving the
signal carrying ones mostly intact and transform back (ŷ = W shrink(wt)).

But taking Φ = W, W shrink(wt) is really just a regularized projection from (10) – with regu-
larization coefficients σ2α controlling the amount of shrinkage and the added bonus that the
covariance matrix ΦTΦ becomes I and multiplications by Φ can be carried out in linear time.
So as long as our RVM-way of determining σ2α gives values that also work well for wavelets,
wavelet shrinkage can be recognised a special case; as we have shown, this is the case for the
sRVM, but not the plain RVM which will hopelessly overfit.

A number of approaches to shrinking the wavelet coefficients have been devised. A straight-
forward idea is to just set to zero those coefficients whose absolute values remains below a
certain threshold τ , i.e. set αi =∞ for all |wi| < τ (hard thresholding). Additionally reducing all
the other coefficients towards zero by said threshold τ is another, often preferable, alternative
(soft thresholding; inter alia it gives a continuous shrinkage curve which is analytically more
convenient) (Donoho and Johnstone, 1994).

α priors for wavelets Apart from these “classical” wavelet shrinkage approaches (Jansen,
2001, see, e.g.), a variety of Bayesian schemes have also been applied to yield graduated shrink-
age. These, like our scheme, commonly impose a heavy-tailed prior, such as a Student-t (Vi-
dakovic, 1998b) or mixture of two zero-mean Gaussians (Chipman et al., 1997), on the wavelet
coefficients. See (Vidakovic, 1998a) and (Denison et al., 2002, sec. 3.4) for extensive reviews.
The Holmes and Denison (1999) smoothness prior is also suitable for non-wavelet kernels
because, unlike most popular wavelet shrinkage priors, it is not dependent on the wavelet
length scale or level. Holmes and Denison reject such level dependence as inconsistent with
the knowledge that noise enters additively across all components, but there is, in principle, no
reason not to incorporate priors in the RVM that only work in conjunction with certain kernel
types.

Finally we note that a further alternative hierarchical prior to address the under-determination
of the w is explored in (Fokoué et al., 2004), while Girolami and Rogers (2005) (and references
therein) pursue a completely different avenue: a Bayesian treatment of kernel construction
itself.

5.2 Summary and Conclusion

We have presented a straightforward extension to the RVM that imposes a more stringent
prior on the variance of the weights in nonlinear regression, and we have described an efficient
algorithm for maximizing the marginal posterior probability of the model. The RVM with a
smoothness prior is also easily adapted to handle classification problems.

From a theoretical perspective we have seen that unlike other proposed prior types (such as the
implicit uniform prior in the original RVM implementation, or a Gamma prior) the smoothness
prior we presented is noise-dependent in a principled fashion (data/kernel rescaling whilst
keeping the SNR fixed does not change the result and, as one would expect, setting σ̂2 to a
multiple or fraction of the real σ2 in experiments results respectively in a sparser or less sparse
regression).
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Further, our results indicate that symmlets with a smoothness prior make an attractive de-
fault choice for RVM regression tasks: the combination is flexible enough to be suitable for a
large variety of signals, requires no additional kernel parameters to be determined by cross-
validation (e.g. scale for Gaussian kernels). The hyperparameter c could be optimised by
cross-validation, but our experiments show that the BIC choice works well for a wide range of
problems. The sRVM has attractive computational characteristics resulting from the proper-
ties of wavelets. In particular the matrix-multiplication by kernel columns can be carried out
by the mathematically equivalent but much more efficient discrete wavelet transform (O(N)!);
this implies that no N ×M design matrix needs to be constructed and held in memory and
that the per-step time complexity drops from cubic in S to linear in N . Furthermore numerical
robustness also tends to be better than for many other kernels.

This might seem to beg the question “why not just use wavelet shrinkage to start with?” – of
course there are limitations of wavelets that other types of kernels do not share (the data must
be equally spaced) and although symmlets perform well across a wide range of signals one
might find in practice, it is difficult to beat the performance of less general kernels for tasks for
which they are particularly well suited (e.g. lsplines for Sinc-like data).

But the deeper point is that the RVM updated with a smoothness prior (sRVM) can be prof-
itably regarded as a generalization of wavelet shrinkage.

Figure 7 demonstrates that we can even obtain the best of both worlds in one and the same
experiment by using an overcomplete dictionary composed of different kernel types (such as
Haar wavelets and thin-plate splines) that each capture certain aspects of the overall signal
particularly well and then rely on the sRVM to automatically select a sparse representation
from this overcomplete dictionary.

In other words a chief attraction of the sRVM is that spans a bridge between the RVM and
related methods on the one hand and wavelet shrinkage on the other, yielding a powerful
synthesis.
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A Appendix

A.1 Kernel functions

For completeness, here we list the kernels generating the basis functions used in this paper.

Klspline(xm, xn) = 1 + r−2xmxn + r−3xmxn min(xm, xn)

− xm + xn

2
r−3 min(xm, xn)2 + r−3 min(xm, xn)3

3
(38)

Kgauss(xm, xn) = exp(−(xm − xn)2/r2) (39)

Ktpspline(xm, xn) = |xm − xn|2r−2 log(|xm − xn + δmn|/r) (40)

Here r sets the width of the kernel. The quoted values of r are relative to data defined so that
−10 ≤ x ≤ 10. We use the shorthand “gauss 3.0” etc. in the text, to denote the gaussian kernel
defined below with a width parameter r = 3.0.

The symmlet family of wavelets is due to Daubechies, all our examples use the symmlet8
wavelet (the 8 here is not a width parameter) from that family as defined in (Daubechies,
1992). For a general discussion of wavelet bases such as Haar and symmlets see e.g. (Mallat,
1999).

A.2 Scale invariance for constant SNR

The sRVM scheme is invariant to scaling of the signal amplitude provided that the noise vari-
ance is also scaled so that the SNR remains constant. Suppose that the targets are scaled so
that t → kt and the noise is scaled so that σ2 → k2σ2, then if the coefficient precisions αi are
scaled as αi → k−2αi then the log posterior L(α) + log p(α |σ2) changes only by an additive
constant. To see this, note that the matrix C (25) becomes

C̃ = k2σ2I +
∑
m

α−1
m k2φmφ (41)

= k2C (42)

Consequently, from (22), L(α) becomes:

L̃(α) = −1
2

[
N log 2π + 2M log k + log |C|+ (ktT )(k−2C−1)(kt)

]
(43)

= L(α) + 2M log k (44)

When the αi are rescaled along with σ2, it is clear that DF in (13) remains unchanged. Thus the
prior is invariant to simultaneous rescaling of α and σ2 and so the log posterior is

log p(α/k2, k2σ2 | kt) = log p(α, σ2 | t) + 2M log k (45)

Maximum a posteriori solutions for α in the scaled case are thus just the MAP solutions in the
unscaled case divided by k2.
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A.3 Uniqueness of local maximum

Here we show that ˆ̀(αi) (33) can have at most a single maximum α̂i < ∞ and α?
i < α̂i. We

drop the explicit indication of which basis function is being dealt with and it is convenient to
work in terms of the noise precision β = σ−2.

The derivative of ˆ̀(α) is given by (34) in which the cubic polynomial P (α) = B3α
3 + B2α

2 +
B1α + B0 has coefficients

B0 = s2β2 (46)

B1 = sβ2 + 2βs2 − β2q2 + 2s2cβ (47)

B2 = 2sβ + s2 − 2βq2 + 4sβc (48)

B3 = s− q2 + 2cβ (49)

We note that the numerator of (34) is positive for all α > 0 so the turning points of ˆ̀(α) can
be found by examining P (α). A crucial quantity turns out to be the sign of B3 and we treat
positive and negative cases separately. First note that

2ˆ̀′(α) =
1

2α(α + s)2(α + β)2
{
[s− q2 + 2cβ]α3 + H.O.T.

}
(50)

so that the gradient at infinite α is always zero. Also limα→∞ ˆ̀(α) = 0 and so ˆ̀(α) is asymptotic
to zero from below if B3 > 0 or from above if B3 < 0. As α→ 0 then ˆ̀(α)→ −∞.

A.3.1 Asymptote from below:

Since B3 > 0 the graph of P (α) → ±∞ as α → ±∞, and P (0) = B0 > 0. Consequently, P (α)
has a least one root for α < 0. It must therefore either have zero or two positive roots.

If P has no positive roots the maximum of ˆ̀(α) is achieved at infinity (e.g. top-left Figure 4).

If there are two positive roots, one corresponds to a maximum and the other to a minimum.
Ignoring the degenerate case of an inflexion point, the root for smaller α must be the maxi-
mum and the root for larger α is a minimum. The maximum may be greater or less than the
asymptotic value, as illustrated by the bottom row of Figure 4.

A.3.2 Asymptote from above:

In this case since B3 < 0 there is at least a single positive root of P (α). Since ˆ̀(α) is asymptotic
to zero from above at infinity this root must correspond to a maximum. However, we must
ensure that there cannot be 3 positive roots.

The derivative of ˆ̀(α) can be written as the sum of the derivatives of `(α) and log p(αi |σ2) as
follows:

ˆ̀′ =
[s2 + (s− q2)α](β + α)2 + 2cβα(s + α)2

2α(α + s)2(α + β)2
(51)

≡ P0(α) + 2cβα(s + α)2

2α(α + s)2(α + β)2
(52)
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where P0(α) is the cubic P (α) with c = 0. It has a root at α?, which corresponds to the maxi-
mum in the likelihood, and there is an additional repeated root at α = −β.

The term 2cβα(s + α)2 arising from the prior is a cubic with a root at α = 0 and a repeated
root at α = −s < 0. It is clearly positive for all α > 0. There is therefore a root of P (α) at
some α̂ > α? because P (α) ≥ P0(α) for all α > 0. Since P0(α) is monotonically decreasing for
α > α?, while cβα(s + α)2 is monotonically increasing they can only intersect once (at α̂) so
there can be no roots for α > α̂ and we conclude that there can only be a single maximum of
ˆ̀(α) for α > 0 in this case, which is illustrated in the bottom right panel of figure 4.

A.4 Saddle-points of L̂

In order to determine the nature of the maxima of L̂ the Hessian of L is required. As shown in
(Faul and Tipping, 2002), the off-diagonal terms of the Hessian are:

∂2 ˆL(α)
∂αi∂αj

=
φT

i C−1φj

2α2
i α

2
j

[
φT

i C−1φj − 2(φT
i C−1t)(φT

j C−1t)
]

i 6= j (53)

When the basis functions are orthogonal the matrices C and therefore C−1 are diagonal (25).
Consequently φT

i C−1φj and hence the off-diagonal terms of the Hessian are zero. At a solu-
tion located through the maximization procedure the diagonal elements of the Hessian cor-
responding to finite αi maxima are necessarily negative. The Hessian is therefore positive
semi-definite, with the zeros corresponding to the infinite αm, switched-off components. Un-
fortunately, the demonstration (Faul and Tipping, 2002) that the Hessian of the log marginal
likelihood is negative semi-definite with general basis functions appears to be flawed and we
are unable to provide any assurance that joint optimization of two or more αi might not yield
a better result than successive maximization with respect to each.

A.5 Approaching the Jeffreys’ prior

With p(αi) = Zαζ the contribution of the ith component to the posterior becomes:

ˆ̀(αi) =
1
2

[
log αi − log(αi + s) +

q2

αi + s

]
+ log Z + ζ log αi (54)

=
1
2

[
(1 + 2ζ) log αi − log(αi + s) +

q2

αi + s

]
+ log Z (55)

Setting the derivative to 0 to find the MAP solution α̂i we get:

ˆ̀′(αi) =
1
2

[
1 + 2ζ

αi
− 1

αi + s
− q2

(αi + s)2

]
= 0 (56)

From this it becomes apparent that ˆ̀has no turning points for finite, positive αi if ζ < −1
2 be-

cause αi, q2 and s are always positive. Furthermore, in this case since ˆ̀′(αi) < 0 the maximum
of ˆ̀(αi) is achieved at αi = 0. As a Jeffreys’ prior corresponds to ζ = −1, one would always
obtain a model in which all the components are active.
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With a Gamma prior for αm (37) the derivative of the contribution to the log posterior from
the ith basis function is:

ˆ̀′(αi) =
1
2

[
1
αi
− 1

αi + s
+

q2

αi + s

]
+

a− 1
αi
− b (57)

=
1
2

[
2a− 1

αi
− 1

αi + s
− q2

(αi + s)2
− 2b

]
(58)

In this case is it clear that ˆ̀ has no turning points for finite, positive αi if a < 1/2, although
there will be no positive αi for larger a when b is larger. Consequently the Gamma prior forces
all components to be active when a < 1/2, which of course includes the Jeffreys’ prior in the
limit a, b→ 0.

A.6 Efficiently calculating the full likelihood and posterior

As C is a N × N matrix, its inversion and computation of the determinant are very costly
procedures – O(N3). Fortunately with the help of the Woodbury-Sherman-Morrison matrix
inversion and determinant identities (see e.g. (Press et al., 1992) or (Roweis, 1999)) and using
(8) and (21) the marginal log likelihood may instead be advantageously expressed as:

L = −1
2

[
N log(2π) + N log σ2 −

∑
S

log αs + log |Σ|+
(
σ−2tT t− µTΣ−1µ

)]
(59)

The efficient expression for L̂, the log posterior is then given by

L̂ = L+
∑
S

−c

1 + σ2αs
+ S log Z + log IG(σ2 | g, h) (60)

and may be computed in O(S3) time, where S is the number of included components (as the
matrix Σ is S × S). Although the stated algorithm does not depend on it this expression is
useful for obtaining the posterior likelihood of the solution the sRVM algorithm finds and
may also be used for convergence testing.
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B Notation and Glossary

Matrices are bold-uppercase (Φ), vectors are bold lowercase and columns from matrices are
the subscripted bold lowercase equivalent (φi for the ith column of Φ). Hats refer to posteriors
(e.g. t̂), \i means with the influence of the ith component removed.

yN×1 the true signal (2)
tN×1 the observations or targets (2)

ε the error (the difference between observations and true signal) (2)
σ the standard deviation of the error (2), (5)
β the noise precision (β = σ−2), (sec. A.3)

ŷN×1 the posterior mean prediction for the true signal (10)
ΦN×M the design matrix, viz. the kernel, viz. a dictionary of basis functions (3)
ΦN×S

S the selected components of the design matrix
N the number of target observations
M the number of basis functions viz. components
S the number of included basis functions viz. components (or non-zero wm or finite αm)
S the set of currently included components

wM×1 the weights (Φw = y)
ΣM×M the posterior covariance matrix of the weights (8)
ΣS×S

S the posterior covariance matrix of the included weights
µM×1 the posterior mean of the weights (9)
αM×1 the precisions of the weights (4)
L(α) the log-likelihood of the observations, log p(t |α, σ2), (22)
`(αi) the contribution of the ith component to the likelihood L(α) (18), (29)
L(α\i) the log-likelihood of the observations without the contribution of the ith compo-

nent(22),(59)
L̂(α) the log-posterior of the weight precisions α (60)
ˆ̀(αi) the contribution of the ith component to the posterior L̂(α) (33)
α?

i the value of αi that maximizes ˆ̀(21)
c the hyperparameter that controls the degree of smoothing in the smoothness prior p(α|σ2)

(14)
g, h hyperparameters for the inverse Gamma distribtuion over σ2 (5)
DF the degrees of freedom of the smoothing matrix S hence an indicator of the complexity of

the model (12), (13)
SN×N the smoothing matrix (10)
CN×N covariance matrix of the data likelihood (25)
CN×N
\i C without the influence of the ith component (25)

si, qi convenience variables that can be thought of as indices of sparsity and quality of component
i (30), (31)
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