
COM3312: Logic and Computation

Specimen answers to the 2000 examination

1 Turing Machines

(a) The rule has the effect that once the machine has arrived in the halt state it stays there with no further
changes.
It is needed so thatT , U , andD are total functions, enabling them to be represented using function
symbols in the logical representation.

(b) q is the current state.
a is the symbol on the currently scanned square.
b is the string of symbols running left from the scanned square as far as the leftmost non-blank square
(or the empty string if there are no non-blank squares to the left of the scanned square.
c is the same asb but with ‘left’ replaced by ‘right’.

(c) q(n+ 1) = T (q(n), a(n)) (The next state)

a(n+ 1) =


head(b(n)) (if D(q(n), a(n)) = −1 — moving left)
U(q(n), a(n)) (if D(q(n), a(n)) = 0 — staying still)
head(c(n)) (if D(q(n), a(n)) = 1 — moving right)

b(n+ 1) =


tail(b(n)) (if D(q(n), a(n)) = −1)
b(n) (if D(q(n), a(n)) = 0)
U(q(n), a(n))_b(n) (if D(q(n), a(n)) = 1)

c(n+ 1) =


U(q(n), a(n))_c(n) (if D(q(n), a(n)) = −1)
c(n) (if D(q(n), a(n)) = 0)
tail(c(n)) (if D(q(n), a(n)) = 1)

(d) (i) q(n) = 0. (ii) ∃n(q(n) = 0).

(e) The rules given above must be supplemented with general rules for handling numbers (for the states),
lists (for b andc), etc. [See details in notes]. The premisses of the inference are all the above rules
and a statement of the initial configuration, in the form

C(0) = (q(0), a(0), b(0), c(0)).

The conclusion is the statement that the machine eventually halts:

∃a, b, c, i(C(i) = (0, a, b, c)).

If every case of the Entscheidungsproblem were solvable then it could be determined by mechanical
means whether or not this inference was valid, i.e., whether or not the machine halts. But Turing had
already shown that the Halting Problem is not solvable by mechanical means, and this therefore shows
that the same is true of the Entscheidungsproblem.
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2 Models and Interpretations

(a) An interpretation must specify a domain∆ (which may be any set), and it must map each element of
the non-logical vocabulary of the language onto an element related to∆, as follows:

an individual constant is mapped onto an element of∆;
ann-ary function symbol is mapped onto a function from∆n to ∆;
ann-ary predicate symbol is mapped onto a subset of∆n.

There are general rules for determining the truth value of each sentence in the language relative to a
given interpretation.
A model for a set of formula is any interpretation under which each formula in the set is true.

(b) UnderI1,
A says that no number is less than itself;
B says that the ‘less than’ relation is transitive;
C says that of any two distinct real numbers, one is less than the other.
All these are obviously true.

(c) One possibility forI2 is as follows:

The domain is the power set of some setU .
P is interpreted as ‘is a proper subset of’.

ThenA is satisfied since no set is a proper subset of itself;
B is satisfied since the proper subset relation is transitive;
C is not satisfied, since, e.g., neither of{1, 2} and{1, 3} is a subset of the other.

For C to be a logical consequence of{A,B} it is necessary that every model for{A,B} satisfies
C. So the existence of modelI2, for {A,B} which does not satisfyC proves thatC is not a logical
consequence of{A,B}.

• We need to find ain interpretation which satisfiesB andC but notA. One possibility is:

The domain is the set of all real numbers (as inI1);
P is interpreted to mean ‘is less than or equal to’.

ThenB andC are still satisfied, butA is not, since any number is less than or equal to itself. Hence
A is not a logical consequence of{B,C}.

• AssumeA andB.
SupposeP (x, y) ∧ P (y, x). Then byB, we haveP (x, x), contradictingA. Hence we cannot have
bothP (x, y) andP (y, x).
Now supposeP (x, y)∧x = y. Then again we haveP (x, x), contradictingA, so we cannot have both
P (x, y) andx = y.
Similarly, we cannat have bothP (y, x) andx = y.
Hence we can have at most one ofP (x, y), P (y, x), andx = y.
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3 Proof Procedures

(a) A non-branching rule says that a formulaφ of some specified form may be replaced by formulaeφ1

andφ2 in the same branch. A rule of this kind means thatφ logically implies the conjunctionφ1 ∧φ2.
It is saying any model for a set of formulae includingφ must also be a model for bothφ1 andφ2.
A branching rule says that a formulaψ of some specified form may be replaced by formulaeψ1 and
ψ2 on separate branches. A rule of this kind means thatψ logically implies the disjunctionφ1 ∨ψ2. It
is saying that any model for a set of formulae includingψ must either be a model forψ1, or a model
for ψ2.

(b) 1. (∀xP (x))→ Q
2. ¬∀x(P (x)→ Q)

2[x/a]
3. ¬(P (a)→ Q)

3
4. P (a)
5. ¬Q

1
6. ¬∀xP (x) 7. Q

6[x/b] 5
7. ¬P (b)

There is nothing further that can be done. The left-hand branch is still open, leading to the model
{P (a),¬P (b),¬Q}, which satisfies both 1 and 2. But 2 is the negation of the conclusion of the
inference, which is therefore shown to be invalid.

(c) 1. (∀xP (x))→ Q(a)
2. ¬∃x(P (x)→ Q(a))

1
3. ¬∀xP (x) 4. Q(a)

3[x/b] 2[x/a]
5. ¬P (b) 6. ¬(P (a)→ Q(a))

2[x/b] 6
7. ¬(P (b)→ Q(a)) 8. P (a)

7 9. ¬Q(a)
10. P (b) 4
11. ¬Q(a)

5, 10

Both branches lead to a contradiction, so{1, 2} is unsatisfiable, so the inference is valid.

(d) If the conclusion is false, then for every team member it is false that if they play well the team will
win. This means that for every team member it is true that they play well but the team does not win.
Hence everyone plays well but the team does not win, so the premiss is false.
Therefore, if the premiss is true, the conclusion is true too, so the inference is valid.
The mismatch between logic and intuition comes from the interpretation of ‘if’, which in this context
suggests a notion of causality absent from the material conditional of the logic.
[In retrospect, I do not think this is a very satisfactory question: the issue is too ‘muddy’ to be properly
handled within the scope of an examination answer.]
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4 First-order Theories

(a) In Ex1,i must be0, since for real numbers,x+ y = x if and only if y = 0.
In Ex2, i must be1, since for real numbers,x.y = x if and only if y = 1.
In Ex3, i must be∅, since∅ is the only sety for which wealwayshavex ∪ y = x.

(b) In (Ex1), (4) is not satisfied since, e.g.,2 + 2 6= 2.
In (Ex2), (4) is not satisfied since, e.g.,2× 2 6= 2.
In (Ex3), (4) is satisfied, since for any setX we haveX ∪X = X.

(c) f(x, f(x, y)) = f(f(x, x), y) (by 2)
= f(x, y) (by 4)
= f(y, x) (by 1)
= f(f(y, y), x) (by 4)
= f(y, f(y, x)) (by 2)

(d) In (Ex1), (5) is satisfied since for anyx we havex+ (−x) = 0.
In (Ex2), (5) is not satisfied, since there is noy such that0× y = 1.
In (Ex3), (5) is not satisfied, since ifX 6= ∅ then there is no setY sich thatX ∪ Y = ∅.

(e) f(x, f(x, y)) = f(f(x, x), y) (by 2)
= f(x, y) (by 4)
= i (by assumption)

f(x, f(x, y) = f(x, i) (by assumption)
= x (by 3)

By (5), for eachx there is ay such thatf(x, y) = i, so by the above argument,x = f(x, f(x, y)) = i,
so all elements are equal toi, i.e., the domain contains only one element.

(f) A complete axiomatisation of a first-order theory is a set of formulae whose logical consequences are
precisely the formulae of the theory.
If {1, 2, 3} were a complete axiomatisation of some theory, it would imply whichever of4 and¬4 is
in the theory. But (Ex1) satisfies{1, 2, 3,¬4}, while (Ex3) satisfies{1, 2, 3, 4}, so{1, 2, 3} implies
neither4 nor¬4. [We could use 5 here instead of 4.]
The set{1, 2, 3, 4, 5} only holds for a domain{i} in whichf(i, i) = i. All such domains are isomor-
phic, so we have a complete axiomatisation.

5 Essay Question

(a) The given description certainly applies to much (if not most) of what goes on in a computer, although it
does not apply very comfortably to the ongoing computation of a reactive system such as an operating
system. On the other hand, the process by which analogue informaion is digitised (e.g., in sound
recording or scanning of images) might be described as a kind of computation, and yet it certainly
does not come under the description given. I’m looking for a discussion of what processes should
count as computational, of what processes can be described in the way suggested in the question, and
of the relationship between these. [This material was discussed in the module as a preliminary to
talking about the Turing machine model of computation.]

(b) I’m expecting some sort of account of what Gödel’s theorems actually say, of the use that has been
made of them people such as Lucas and Penrose to argue against the possibility of strong AI, and a
critique or endorsement of those arguments.
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