
COM3412: Logic and Computation

Specimen answers to the 2001 examination

1. (a) i. The Halting Problem: Given an arbitrary Turing machineM and input tapet, to determine
whether or notM will halt when run witht.

ii. The Decision Problem for First-order Logic: Given an arbitrary set of formulae of first-order
logic, and an arbitrary formula, to determine whether the latter is a logical consequence of
the former. [Alternative version: Given an arbitrary set of first-order formulae, to determine
whether or not it is satisfiable, i.e., whether there is an interpretation under which all the
formulae in the set come out true.]

The practical importance of the Halting Problem is that since computer programs are equivalent
to Turing machines, the Halting Problem applies to them too. Non-termination is an obviously
undesirable feature for a program intended to produce a specific result, and it would be useful
to be able to detect it in advance. Non-termination manifests itself in practice when the system
“freezes” and will not respond to further input.

The practical importance of the Decision Problem is that many everyday information processing
problems can be formulated as first-order inferences, so if we had a general method of test-
ing such inferences for validity then we would be able to solve such problems, and maybe get
computers to do more of our reasoning for us.

(b) A Turing machine together with its tape, as well as the step-by-step operation of the machine,
can be comprehensively described by means of first-order formulae. The machine halts if and
only if the formula stating that it halts after some number of steps is a logical consequence of the
formulae describing the machine and it operation. Hence if we can solve the Decision Problem,
we can solve the Halting Problem as well.

Conversely, given a first-order inference we could use a method like Truth Trees to test it for
validity. If the inference is valid, then this process will always terminate, but if it is invalid it
may or may not terminate. If we can solve the Halting Problem then we can test this process
for termination first; if it is non-terminating, then we know the inference is invalid, whereas if it
terminates we can run it to determine whether or not the inference is invalid. Hence if we can
solve the Halting Problem, we can solve the Decision Problem as well.

Thus the two problems are equivalent.

(c) We know that we cannot use a Turing Machine to solve the Halting Problem (by the standart
reduction ad absurdumargument), and so if the Church-Turing thesis is correct, there is no
effective procedure for solving it. By the equivalence of the two problems, it follows that there
is no effective procedure for solving the Decision Problem either. Only if we were to discover
some method of computation which was (a) effective and (b) non-Turing Equivalent, would
there be any chance of solving either of these problems.
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2. (a) Assume the following non-logical vocabulary:

Constant:0
Unary function symbol:s
Binary function symbols:+,×

The first-order theory of arithmetic consists of all formulae over this vocabulary, in the first-
order predicate calculus with identity, which are satisfied under the standard interpretation with
domainN and

0 means zero
s means the successor function
+,×mean addition and multiplication respectively.

(b) It means that there is no finitely-specifiable set of first-order formulae such that the first-order
theory of arithmetic consists of all and only the logical consequences of those formulae.
The key step in the proof is the ‘arithmetisation of syntax’, by which formulae and sequences
of formulae are assigned natural numbers (‘Gödel numbers’) in such a way that the sequence of
symbols in each formula (or sequence of formulae) is recoverable from the sequence of expo-
nents in the unique prime factorisation of its Gödel number. This enables one to construct for-
mulae which may be interpreted as saying things about other formulae (or indeed themselves).
It is then possible to write down a formula which says that (i.e., is true if and only if) that very
formula cannot be proved in the formal system under consideration. If true, this formula istrue
but unprovable, testifying to the incompleteness of the system, while if it is false, it isfalse but
provable, testifying to the unsoundness of the system — either way the system cannot be both
sound and complete.

(c) By M1 we have

(I ) s0 ∗ 0 = 0.

(This is the base case.) Suppose we have

(IH ) s0 ∗ a = a.

(This is the induction hypothesis.) Then

s0 ∗ sa = (s0 ∗ a) + s0 (by M2)
= a+ s0 (by IH )
= s(a+ 0) (by A2)
= sa (by A1)

Hences0 ∗ a = a→ s0 ∗ sa = sa, and since this holds for all values ofa we have

(II ) ∀x(s0 ∗ x = x→ s0 ∗ sx = sx)

By Ind , with Φ(x) ≡ s0 ∗ x = x, we have

(III ) s0 ∗ 0 = 0 ∧ ∀x(s0 ∗ x = x→ s0 ∗ sx = sx)→ ∀x(s0 ∗ x = x).

Together,I , II , andIII imply ∀x(s0 ∗ x = x) as required.

(d) The axioms (including the infinitely many substitution-instances of the induction schema) of
Peano Arithmetic constitute a finitely-specifiable set of formulae. By Gödel’s theorem, the com-
plete set of logical consequences of these formulae cannot be identical with the first-order theory
of arithmetic. It follows thateither there are formulae of Peano Arithmetic which are not true
statements about natural numbers (and hence that at least one of the axioms is false),or there
are true statements about the natural numbers, expressible in the language of Peano Arithmetic,
which cannot be proved within Peano Arithmetic.
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3. (a) OE says that ifx andy both overlap exactly the same things, then they are equal.
PO says thatx is part ofy if and only if everything which overlapsx also overlapsy.

(b) PR FromO(z, x) we can inferO(z, x), henceO(z, x)→ O(z, x) is true, and since this applies
to anyz we have∀x(O(z, x) → O(z, x)). By PO, this impliesP (x, x), and sincex is
general we have∀xP (x, x).

PT SupposeP (x, y) ∧ P (y, z). If O(u, x), then byPO, we haveO(u, y) from P (x, y), and
hence alsoO(u, z) from P (y, z). Hence we haveO(u, x) → O(u, z), and since this holds
for all u we haveP (x, z) by PO. HenceP (x, y) ∧ P (y, z) → P (x, z). This holds for all
x, y, z, giving PT.

PA SupposeP (x, y) ∧ P (y, x), and letO(x, z). By OS this means thatO(z, x), and byPO,
since we haveP (x, y), we obtainO(z, y). By OS, this givesO(y, z), and hence we have
O(x, z) → O(y, z). Similarly, usingP (y, x) we getO(y, z) → O(x, z). Together, these
give O(x, z) ↔ O(y, z), and since this holds for allz, we getx = y by OE. Hence
P (x, y) ∧ P (y, x)→ x = y, and this holds for allx, y, giving PA.

(c) For any non-empty setX, we haveX ∩ X = X 6= ∅. Hence ifI(x) = X we haveO(x, x),
verifying OR.
ClearlyX ∩ Y 6= ∅ implies Y ∩ X 6= ∅, and hence ifI(x) = X andI(y) = y, we have
O(x, y)→ O(y, x), verufyingOS.
Now suppose∀z(O(x, z) ↔ O(y, z)). LetX = I(x) andY = I(y). Also, letI(z) = {a}. If
a ∈ X then{a} ∩ X 6= ∅, soO(x, z), henceO(y, z), soY ∩ {a} 6= ∅, soa ∈ Y . Therefore
X ⊆ Y . Similarly Y ⊆ X. HenceX = Y , and therefore we have∀z(O(x, z) ↔ O(y, z)) →
x = y, verifying OE.
P (x, y) means, ifPO is to be true, that for any setZ, if Z ∩ X 6= ∅, thenZ ∩ Y 6= ∅. In
particular, for eacha ∈ X we have{a} ∩ X 6= ∅, giving {a} ∩ Y 6= ∅, soa ∈ Y . Hence
X ⊆ Y . ThusP (x, y) should be interpreted to meanX ⊆ Y .

(d) In the suggested interpretation we can have, for example,

X = {0, 1}, Y = {1, 2}, Z = {2, 3}.

ThenX ∩ Y 6= ∅, Y ∩ Z 6= ∅,X ∩ Z = ∅, so the formula

O(x, y) ∧O(y, z) ∧ ¬O(x, z)

is satisfied, contradictingOT. ThusOT is not satisfied by every model for{OR, OS, SE}, and
is therefore not a logical consequence of them.

4. (a) If the premisses are contradictory, they have no model, and thereforeanyinterpretation satisfying
them must satisfy the conclusion (since any counter-example to this statement would be a model
for the premisses which falsifies the conclusion — and there are no models for the premisses).
Any inference with a logically true conclusion (i.e., satisfied in every model) is valid.

(b) SupposeΣ |= C andΣ ⊆ Σ′. Suppose that interpretationI satisfiesΣ′. This means that it
satisfies every formula inΣ′. SinceΣ ⊆ Σ′, these formulae include all the formulae inΣ,
so I satisfiesΣ. SinceΣ |= C, this means thatI satisfiesC. We have now shown that any
interpretation satisfyingΣ′ also satisfiesC. HenceΣ′ |= C. This means that|= is monotonic.

(c) If we haveP1, . . . , Pn |= C, then any interpretation satisfying{P1, . . . , Pn} satisfiesC, and
therefore falsifies¬C. This means thatno interpretation satisfies{P1, . . . , Pn,¬C}. It there-
fore follows, vacuously, that any interpretation satisfying{P1, . . . , Pn,¬C} also satisfiesC (or
indeed anything else), and soP1, . . . , Pn,¬C |= C, in conformity with nonmonotonicity.
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(d) There are many possible examples, e.g., no-one answers the doorbell so I “infer” that no-one
is at home; then I learn that everyone in the house is fast asleep, and rescind the inference.
[Discussion needed.]

5. (a) Important points are that ‘algorithm’ and ‘heuristic’ aretask-relative, e.g., a heuristic for solving
the TSP is in fact an algorithm for solving a related problem. The distinction between ‘proce-
dure’ and ‘algorithm is not always clear-cut, but I have suggested that the latter ought to imply
termination (so algorithm = effective procedure).

(b) A chance to display an understanding of the theory of NP-completeness, with at least some
mastery of the details.
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