
COM3412: Logic and Computation

Specimen answers to the 2006 examination

1. (a) An logical inference consists of a set of logical formulae called the premises together with a
single formula called the conclusion, which is claimed to follow logically from the premises.

(2 marks)

An inference is valid if its conclusion is a logical consequence of its premises, i.e., if the
truth of the premises is sufficient to guarantee the truth of the conclusion. (3 marks)

(b) A ` A∧B is invalid since ifA is true andB is false then the premise is true but the conclu-
sion is false. (2 marks)

A∧B ` A is valid since in order for the premise to be true, bothA andB must be true, and
hence the conclusion must be true. (2 marks)

A ` A ∨ B is valid, since the conclusion is true whenever at least one of A andB is true,
and therefore in particular if the premise,A, is true. (2 marks)

A ∨ B ` A is invalid, since ifB is true andA is false then the premise is true but the con-
clusion is false. (2 marks)

(c) A proof system for a logic is any collection of proceduresby which inferences in the logic
may be determined to be valid or invalid. (Examples: truth tables for Propositional Calculus,
natural deduction and truth trees for Propositional or Predicate Calculus.)

(2 marks)

A proof system for a logic is sound if every inference that it certifies as valid is in fact valid
in that logic.

(3 marks)

A proof system for a logic is complete if it certifies as valid every inference that is in fact
valid in that logic.

(3 marks)

A proof system is a decision procedure for a logic if it will correctly determine, forevery

inference, whether or not it is valid in that logic. (3 marks)

(d) • InterpretationI1, proof systemPS1.
If letter A appears in one of the premises then that premise implies thatA is true (since
it appears as a conjunct of that premise); ifPS1 says the inference is valid then every
letter in the conclusion appears in one of the premises and hence is true if the premises
are true. The conclusion is the conjunction of its constituent letters and hence is true if
they all are. Hence the inferenceis valid, and the proof system issound.

(2 marks)

Conversely, for an inference to be valid, each of the lettersin the conclusion must be
implied by the premises; the only way this can happen is for the letter to appear in at
least one of the premises, which means thatPS1 says the inference is valid. Hence the
proof system iscomplete.

(2 marks)
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• InterpretationI1, proof systemPS2.
The proof system isnot sound since the inferenceA ` A ◦ B, though invalid (being
equivalent toA ` A ∧ B underI1), is certified as valid byPS2. (2 marks)

It is not complete, since the inferenceA ◦ B ` A, though valid (i.e.,A ∧ B ` A), is
not recognised as valid byPS2. (2 marks)

• InterpretationI2, proof systemPS1.
Not sound sinceA ◦ B ` A (i.e.,A ∨ B ` A) is invalid but certified as valid byPS1.
(2 marks)

Not complete sinceA ` A ◦B (i.e.,A ` A∨B), though valid, is rejected as invalid by
PS1. (2 marks)

• InterpretationI2, proof systemPS2.
If PS2 validates a certain inference, then for each premise, everyletter appearing in it
also appears in the conclusion; the premise is just the disjunction of those letters, and
the conclusion is therefore a disjunction of some set of letters including at least those;
hence each premise implies the conclusion, so the inferenceis valid. Hence the proof
system issound.

(2 marks)

But it is not complete, since e.g., the valid inferenceA,B ` A, is rejected as invalid.
(2 marks)

2. (a) If the premises are contradictory, they have no model,and thereforeany interpretation satis-
fying them must satisfy the conclusion (since any counter-example to this statement would
be a model for the premises which falsifies the conclusion — and there are no models for
the premises).

(4 marks)

Any inference with a logically true conclusion (i.e., satisfied in every model) is valid.
(2 marks)

(b) SupposeΣ |= C andΣ ⊆ Σ′. Suppose that interpretationI satisfiesΣ′. This means that it
satisfies every formula inΣ′. SinceΣ ⊆ Σ′, these formulae include all the formulae inΣ, so
I satisfiesΣ. SinceΣ |= C, this means thatI satisfiesC. We have now shown that any in-
terpretation satisfyingΣ′ also satisfiesC. HenceΣ′ |= C. This means that|= is monotonic.

(7 marks)

(c) If we haveP1, . . . , Pn |= C, then any interpretation satisfying{P1, . . . , Pn} satisfiesC, and
therefore falsifies¬C. This means thatno interpretation satisfies{P1, . . . , Pn,¬C}. It there-
fore follows, vacuously, that any interpretation satisfying {P1, . . . , Pn,¬C} also satisfiesC
(or indeed anything else), and soP1, . . . , Pn,¬C |= C, in conformity with nonmonotonic-
ity. (7 marks)

(d) There are many possible examples, e.g., no-one answers the doorbell so I “infer” that no-one
is at home; then I learn that everyone in the house is fast asleep, and rescind the inference.
[Discussion needed.]

(10 marks)
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3. (a) A first-order theory is a set of first-order formulae that is satisfiable and deductively closed.
(3 marks)

(b) The first-order theory of domainD, relative to a given language, consists of all formulae in
the language which are satisfied byD (with the specified interpretation). (2 marks)

This set of formulae must be satisfiable, since it is satisfiedby D. It is also deductively
closed, since any logical consequence of the set is satisfiedby any model for the set, hence
by D, hence it is already in the set. Therefore it is a first-order theory in the sense of part (a).

(3 marks)

(c) “Everyone has a mother.” (2 marks)

(d) Some suitable examples are:

∀x∃y(¬F (y) ∧ P (y, x)) (Everyone has a father)
∀x, y, z, w(P (y, x) ∧P (z, x)∧P (w, x) → y = z ∨ y = w ∨w = z) (No-one has

more than two parents)
∀x¬P (x, x) (No-one is their own parent)
∀x, y(P (x, y) → ¬P (y, x)) (No-one is their own grandparent)
∀x, y, z(P (x, y) ∧ P (y, z) → ¬P (z, x)) (No-one is their own great-grandparent)
∀x, y, z(P (x, z) ∧ P (y, z) ∧ x 6= y → (F (x) ↔ ¬F (y)) (No-one has more than

one parent of the same sex)

I would also allow any logical truth (e.g.,∀x(F (x) → F (x))), but not more than one of
these.

1 mark for each formula plus

half a mark for its English translation

— up to 6 formulae

(e) An axiomatisation is a finitely-specifiable set of first-order formulae intended to serve as a
basis for the first-order theory in the sense that the theory is exactly the set of logical conse-
quences of the set.

(2 marks)

The axiomatisation is sound if the set of its logical consequences is a subset of the theory.
(2 marks)

It is complete if the theory is a subset of the logical consequences of the axioms.(2 marks)

(f) The main modification is that the formulae saying that everyone has a mother and everyone
has a father must be replaced by formulae asserting this of everyone except Adam and Eve.
Using constantsa ande, we have

∀x(x = a ∨ x = e ∨ ∃y(F (y) ∧ P (y, x)))
∀x(x = a ∨ x = e ∨ ∃y(¬F (y) ∧ P (y, x)))

We also need a formula saying that Adam and Eve have no parents:

∀x(¬P (x, a) ∧ ¬P (x, e)).

What we can’t say, in first-order logic, is that all humans aredescended from Adam and
Eve—for this we need second-order logic. [Bonus mark for anyone who points this out!]

(5[+1] marks)
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4. (a) i. If started with a blank tape it runs through the sequence

∆ ∆ ∆
1

∆ 1 ∆
3

∆ 1 1
1

∆ ∆ 1
2

∆ ∆ ∆
1

ad infinitum, hence fails to terminate.
(4 marks)

ii. If started with a tape containing ‘1’ on the initially scanned square and otherwise blank,
it reaches the halt state after three steps:

1 ∆ ∆
1

∆ ∆ ∆
2

∆ 1 ∆
4

∆ 1 ∆
0

(4 marks)

iii. If started with the tape ‘1∆1’, scanning the first ‘1’, the machine gets stuck in a non-
halting state:

1 ∆ 1
1

∆ ∆ 1
2

∆ 1 1
4

(4 marks)

(b) Here I’m expecting an account of how Turing reduced the decision problem for first-order
logic to the halting problem for Turing machines; together with at least an outline of the
proof that the halting problem for Turing machines is recursively unsolvable.

(18 marks)

4



5. For Gödel, I’m looking for at least:

• What is meant by the first-order theory of the arithmetic of the natural numbers.

• What is meant by a complete axiomatisation of a first-order theory.

• The fact that the first-order theory of arithmetic cannot be finitely axiomatised.

• A description of how Gödel showed this to be the case, including at least a reference to the
arithmetisation of syntax and the Gödel numbering system by which this is accomplished, as
well as the idea of a Gödel sentence asserting its own unprovability and hence the deduction
from this that the system cannot be both consistent and complete.

For Cook,

• What is meant by the term ‘NP-complete’ (including the idea of a polynomial-time reduction
of one problem to another).

• The satisfiability problem SAT for Propositional Calculus clauses.

• The existence of a polynomial-time reduction for an arbitrary NP problem to SAT.

• A description of how Cook showed that such a reduction can always be done, using the
Turing-machine formulation of the definition of the class NP.
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