
COM3412: Logic and Computation

Marking guidelines for the 2007 exam

29th May 2008

1. (a) OE says that ifx andy both overlap exactly the same things, then they are equal.
(3 marks)

PO says thatx is part ofy if and only if everything which overlapsx also overlapsy.
(3 marks)

(b) PR From O(z, x) we can inferO(z, x), henceO(z, x) → O(z, x) is true, and since this
applies to anyz we have∀x(O(z, x) → O(z, x)). By PO, this impliesP (x, x), and
sincex is general we have∀xP (x, x).

(3 marks)

PT SupposeP (x, y)∧P (y, z). If O(u, x), then byPO, we haveO(u, y) from P (x, y), and
hence alsoO(u, z) from P (y, z). Hence we haveO(u, x) → O(u, z), and since this
holds for allu we haveP (x, z) by PO. HenceP (x, y)∧P (y, z) → P (x, z). This holds
for all x, y, z, giving PT.

(4 marks)

PA SupposeP (x, y) ∧ P (y, x), and letO(x, z). By OS this means thatO(z, x), and by
PO, since we haveP (x, y), we obtainO(z, y). By OS, this givesO(y, z), and hence
we haveO(x, z) → O(y, z). Similarly, usingP (y, x) we getO(y, z) → O(x, z). To-
gether, these giveO(x, z) ↔ O(y, z), and since this holds for allz, we getx = y by
OE. HenceP (x, y) ∧ P (y, x) → x = y, and this holds for allx, y, giving PA.

(5 marks)

(c) For any non-empty setX, we haveX ∩X = X 6= ∅. Hence ifI(x) = X we haveO(x, x),
verifying OR.

(2 marks)
ClearlyX ∩ Y 6= ∅ impliesY ∩ X 6= ∅, and hence ifI(x) = X andI(y) = y, we have
O(x, y) → O(y, x), verifying OS.

(3 marks)
Now suppose∀z(O(x, z) ↔ O(y, z)). Let X = I(x) andY = I(y). Also, letI(z) = {a}.
If a ∈ X then{a} ∩ X 6= ∅, so O(x, z), henceO(y, z), so Y ∩ {a} 6= ∅, so a ∈ Y .
ThereforeX ⊆ Y . Similarly Y ⊆ X. HenceX = Y , and therefore we have∀z(O(x, z) ↔
O(y, z)) → x = y, verifying OE.

(5 marks)

(d) P (x, y) means, ifPO is to be true, that for any setZ, if Z ∩X 6= ∅, thenZ ∩ Y 6= ∅.
(3 marks)

In particular, for eacha ∈ X we have{a} ∩X 6= ∅, giving {a} ∩ Y 6= ∅, soa ∈ Y . Hence

1



X ⊆ Y . ThusP (x, y) should be interpreted to meanX ⊆ Y .
(3 marks)

(e) In the suggested interpretation we can have, for example,

X = {0, 1}, Y = {1, 2}, Z = {2, 3}.

ThenX ∩ Y 6= ∅, Y ∩ Z 6= ∅, X ∩ Z = ∅, so the formula

O(x, y) ∧O(y, z) ∧ ¬O(x, z)

is satisfied, contradictingOT. ThusOT is not satisfied by every model for{OR, OS, SE},
and is therefore not a logical consequence of them.

(6 marks)

2



2. (a) Assume the following non-logical vocabulary:

Constant:0
Unary function symbol:s
Binary function symbols:+,×

The first-order theory of arithmetic consists of all formulae over this vocabulary, in the first-
order predicate calculus with identity, which are satisfied under the standard interpretation
with domainN and

0 means zero
s means the successor function
+,× mean addition and multiplication respectively.

(6 marks)

(b) It means that there is no finitely-specifiable set of first-order formulae such that the first-order
theory of arithmetic consists of all and only the logical consequences of those formulae.

(3 marks)
The key step in the proof is the ‘arithmetisation of syntax’, by which formulae and sequences
of formulae are assigned natural numbers (‘Gödel numbers’) in such a way that the sequence
of symbols in each formula (or sequence of formulae) is recoverable from the sequence of
exponents in the unique prime factorisation of its Gödel number. This enables one to con-
struct formulae which may be interpreted as saying things about other formulae (or indeed
themselves). It is then possible to write down a formula which says that (i.e., is true if and
only if) that very formula cannot be proved in the formal system under consideration. If true,
this formula istrue but unprovable, testifying to the incompleteness of the system, while if
it is false, it isfalse but provable, testifying to the unsoundness of the system — either way
the system cannot be both sound and complete.

(7 marks)

(c) By M1 we have

(I ) s0 ∗ 0 = 0.

(This is the base case.) Suppose we have

(IH ) s0 ∗ a = a.

(This is the induction hypothesis.) Then

s0 ∗ sa = (s0 ∗ a) + s0 (by M2)
= a + s0 (by IH )
= s(a + 0) (by A2)
= sa (by A1)

Hences0 ∗ a = a → s0 ∗ sa = sa, and since this holds for all values ofa we have

(II ) ∀x(s0 ∗ x = x → s0 ∗ sx = sx)

By Ind , with Φ(x) ≡ s0 ∗ x = x, we have

(III ) s0 ∗ 0 = 0 ∧ ∀x(s0 ∗ x = x → s0 ∗ sx = sx) → ∀x(s0 ∗ x = x).

Together,I , II , andIII imply ∀x(s0 ∗ x = x) as required.
(9 marks)

3



(d) The axioms (including the infinitely many substitution-instances of the induction schema)
of Peano Arithmetic constitute a finitely-specifiable set of formulae. By Gödel’s theorem,
the complete set of logical consequences of these formulae cannot be identical with the first-
order theory of arithmetic. It follows thateither there are formulae of Peano Arithmetic
which are not true statements about natural numbers (and hence that at least one of the ax-
ioms is false),or there are true statements about the natural numbers, expressible in the
language of Peano Arithmetic, which cannot be proved within Peano Arithmetic.

(5 marks)

4



3. (a) The rule has the effect that once the machine has arrived in the halt state it stays there with
no further changes.

(1 mark)
It is needed so thatT , U , andD are total functions, enabling them to be represented using
function symbols in the logical representation.

(2 marks)

(b) q is the current state.
a is the symbol on the currently scanned square.
b is the string of symbols running left from the scanned square as far as the leftmost non-
blank square (or the empty string if there are no non-blank squares to the left of the scanned
square.
c is the same asb but with ‘left’ replaced by ‘right’.

(1.5 marks each)

(c) q(n + 1) = T (q(n), a(n)) (The next state)

a(n + 1) =


head(b(n)) (if D(q(n), a(n)) = −1 — moving left)
U(q(n), a(n)) (if D(q(n), a(n)) = 0 — staying still)
head(c(n)) (if D(q(n), a(n)) = 1 — moving right)

b(n + 1) =


tail(b(n)) (if D(q(n), a(n)) = −1)
b(n) (if D(q(n), a(n)) = 0)
U(q(n), a(n))_b(n) (if D(q(n), a(n)) = 1)

c(n + 1) =


U(q(n), a(n))_c(n) (if D(q(n), a(n)) = −1)
c(n) (if D(q(n), a(n)) = 0)
tail(c(n)) (if D(q(n), a(n)) = 1)

(10 marks)

(d) (i) q(n) = 0.
(2 marks)

(ii) ∃n(q(n) = 0).
(2 marks)

(e) The rules given above must be supplemented with general rules for handling numbers (for
the states), lists (forb andc), etc. [See details in notes]. The premisses of the inference are
all the above rules and a statement of the initial configuration, in the form

C(0) = (q(0), a(0), b(0), c(0)).

The conclusion is the statement that the machine eventually halts:

∃a, b, c, i(C(i) = (0, a, b, c)).

If every case of the Entscheidungsproblem were solvable then it could be determined by
mechanical means whether or not this inference was valid, i.e., whether or not the machine
halts. But Turing had already shown that the Halting Problem is not solvable by mechanical
means, and this therefore shows that the same is true of the Entscheidungsproblem.

(7 marks)

5



4. (a) A decision problem is in NP if there is a polynomial-time algorithm which, given any in-
stance of the problem, and a candidate solution (or, more generally, certificate), will verify
whether or not the candidate solution is in fact a solution for that instance.

(3 marks)
For the given problem, a candidate solution is a subsetU of S. All the algorithm has to do
is to add up the members ofU , and check whether the result is equal ton. This can be done
in time that is a linear function of the total size ofS (as measured by, e.g., the total number
of digits in all the members ofS — note the cardinality ofS alone is not suitable since the
numbers themselves may be arbitrarily large).

(3 marks)

(b) An NP problem is NP-complete if it is also NP-hard, which means that any other NP prob-
lem can be reduced to it in polynomial time.

(4 marks)
Examples of NP-complete problems include Travelling Salesman, Hamiltonian Circuit, Graph
Colouring, etc.

(1 marks)
Examples of NP problems which aren’t NP complete include searching, sorting, matrix mul-
tiplication, etc.

(1 marks)

(c) SAT: Given a set of propositional clauses, to determine whether there is a truth-assignment
which makes them all true.

(2 marks)
Here I’m looking for a brief description of Cook’s proof, by which he showed how to encode
as Propositional Calculus clauses both the relevant facts about the problem instance and the
Turing machine which does the certificate-checking, in such a way that the resulting set of
clauses is satisfiable if and only if the original problem instance is positive. Thus the prob-
lem of determining the latter is reduced to the problem of determining the former.

(6 marks)

(d) If a given NP problemQ is such that a known NP-complete problem such as SAT can be
reduced to it in polynomial time, this shows thatQ itself must be NP complete, since an
arbitrary NP problem can be reduced first to SAT (or the other known NP problem) and then
to Q, both reductions, and hence their sequential composition, being achievableE in polyno-
mial time.

(5 marks)

(e) Points to note here: Many problems of practical interest are NP-complete; since the fastest-
known exact algorithms for NP-complete problems run in exponential time or worse, it is
infeasable to run them on ‘industrial scale’ inputs (here a reference to the ‘P=NP?’ problem
might be appropriate). Hence the practical thing to do is to work with algorithms which
are approximate in the sense that either they deliver results that approximate to the correct
results, or they deliver the correct results with a certain quantifiable (and acceptable) proba-
bility.

(5 marks)

6



5. (a) The given description certainly applies to much (if not most) of what goes on in a computer,
although it does not apply very comfortably to the ongoing computation of a reactive system
such as an operating system. On the other hand, the process by which analogue informaion
is digitised (e.g., in sound recording or scanning of images) might be described as a kind
of computation, and yet it certainly does not come under the description given. I’m looking
for a discussion of what processes should count as computational, of what processes can be
described in the way suggested in the question, and of the relationship between these. [This
material was discussed in the module as a preliminary to talking about the Turing machine
model of computation.]

(30 marks)

(b) I’m expecting an account of what Gödel’s theorems say, of the use that has been made of
them by people such as Lucas and Penrose to argue against the possibility of strong AI, and
a critique or endorsement of those arguments. [This was discussed in the module after the
technical work on G̈odel’s theorems.]

(30 marks)

7


