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1 Introduction

Historically, logic and computation have been deeply intertwined, with major developments in each field
inspired by those in the other. This interdependence continues to the present day. In this module we shall
look in detail at some of the major points of interaction (though inevitably there will be much that we
don’t cover).

A theme which runs through all the things we’ll be looking at is the correlation between logical and
computational difficulty. Roughly speaking, tasks that can be specified with limited logical resources are
more amenable to computational handling that those which require more complex resources to specify.
The main particular results which bear this out are:

• The decision problem for Propositional Calculus inferences whose constituent formulae each con-
tain at most two schematic letters istractable, i.e., can be solved by an algorithm running in
polynomial time.

• The decision problem for arbitrary Propositional Calculus inferences isNP-complete: which
means that although it is solvable, it belongs to a class of algorithms for which the best known
algorithms run in exponential time.

• The decision problem for (first-order) Predicate Calculus inferences issemi-decidable, in that
there exists a procedure for testing validity which is correct in the sense that if it terminates it will
deliver the correct answer, but is only guaranteed to terminate in the case of valid inferences.

• The decision problem for first-order arithmetic (or equivalently, for pure second-order logic) is
not even semi-decidable: there is (provably) no algorithm that is guaranteed to give the correct
answer even in cases where it terminates.

We shall start by looking at some properties of first-order logic, with an emphasis on the computational
or algorithmic aspects, and introduce the idea of a logical theory. We then embark on a survey of some
of the major landmarks of the field: the Halting Problem for Turing Machines and its relation to the
decision problem for first-order logic, G̈odel’s completeness and incompleteness theorems, and Cook’s
Theorem, which shows that the decision problem for the Propositional Calculus is NP-complete.

2 Properties of valid inference

We have defined validity by the rule that an inference is valid iff any model for the premisses satisfies
the conclusion. We say that the conclusion is alogical consequenceof the premisses, writtenΣ |= C,
whereΣ is the set of premisses, andC is the conclusion. A number of properties follow directly from
this definition:
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• Monotonicity. If Σ |= C, andΣ ⊆ Σ′, thenΣ′ |= C. In other words, logical consequence is so
robust that the addition of extra premisses can never force you to retract it. (Compare this with
what often passes for consequence in everyday reasoning.)

The proof of monotonicity is trivial: ifΣ ⊆ Σ′ then any model forΣ′ must be a model forΣ, so
if every model forΣ satisfiesC then so does every model forΣ′.

• Cut. If Σ |= A andΣ ∪ {A} |= C thenΣ |= C. (This is helpful for doing proofs: it says that you
can make use of intermediate results or “lemmas”, here represented byA.)

If Σ |= A then any model forΣ satisfiesA and is therefore a model forΣ∪{A}. If Σ∪{A} |= C
then any model forΣ ∪ {A} satisfiesC. Hence if both inferences are valid, then any model forΣ
satisfiesC.

If we bring in the truth tables then more properties follow, corresponding to some familiar methods of
proof:

• Conditional Proof. If Σ ∪ {A} |= C thenΣ |= A → C. Thus in order to prove a conditional,
assume the antecedent and derive the consequent. (This corresponds to the “if-introduction” rule.)

Any model forΣ satisfies eitherA or ¬A. If it satisfiesA then it is a model forΣ ∪ {A} and
hence, sinceΣ ∪ {A} |= C, satisfiesC. By the truth table,A → C is true wheneverC is true, so
the model satisfiesA → C in this case. If on the other hand it satisfies¬A then by the truth table
it also satisfiesA → C. Hence every model forΣ satisfiesA → C.

• Proof by Contradiction. If Σ ∪ {A} |= B ∧ ¬B thenΣ |= ¬A. If assumingA leads to a
contradiction, thenA must be false.

Any model forΣ ∪ {A} would satisfyB ∧ ¬B, which is impossible from the truth tables. Hence
there are no such models. This means that no model forΣ can satisfyA, and hence any model for
Σ must satisfy¬A.

• Proof by Cases. If Σ |= A ∨ B, Σ ∪ {A} |= C, andΣ ∪ {B} |= C, thenΣ |= C. (This
corresponds to the “or-elimination” rule.)

SinceΣ |= {A ∨ B}, any model forΣ satisfiesA ∨ B; by the truth table it must satisfy eitherA
or B. If the former, it is a model forΣ ∪ {A} and hence satisfiesC; if the latter, it is a model for
Σ ∪ {B} and so again satisfiesC. In either caseC is satisfied.

An additional property which does not follow from the general definition of validity, but which can be
proved to hold for the First-Order Predicate Calculus, is:

• Compactness.If Σ |= C then there is a finite subsetΣ0 ⊆ Σ such thatΣ0 |= C. This means that
no valid inference in first-order logic can require infinitely many premisses: if infinitely many are
given, all but a finite number of them can be discarded without detracting from the validity of the
inference. (Note that this property does not hold for second-order logic.)

Compactness is such an important property that we now devote a whole section to it.

3 Compactness

First-order logic can be proved to be compact. (This follows from the fact that there exist sound and
complete proof systems for it—see the section on proof systems for an explanation of this.) This has
important implications for the expressive power of the logic. For example, we can use compactness to
show that we can’t define the notions of “finite” and “infinite” in first-order logic.
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To see why, suppose we have a formulaφ, involving the predicateP , which someone claims ex-
presses the proposition “Infinitely many objects areP ”. For this claim to be correct, it must be the case
that an interpretation satisfiesφ if and only if it contains infinitely many objects for which the predicate
P holds. Now consider the following sequence of formulae:

φ1 : ∃xP (x)
φ2 : ∃x, y(P (x) ∧ P (y) ∧ x 6= y)
φ3 : ∃x, y, z(P (x) ∧ P (y) ∧ P (z)x 6= y ∧ x 6= z ∧ y 6= z)

· · ·

In this sequence,φn says that there are at leastn objects with the propertyP . LetΣ = {φ1, φ2, φ3, . . .}.
Then in any model forΣ, there must be at least 1P , at least 2Ps, at least 3Ps, and so on. For any
n ∈ N, there must be at leastn Ps. The only way of satisfying these requirements is by having a model
with infinitely manyPs. HenceΣ |= φ.

Now we invoke compactness. This says that there must be somefinitesubsetΣ0 ⊂ Σ such thatΣ0 |=
φ. SinceΣ0 is finite, there is a largest value ofn for whichφn ∈ Σ0. In that caseΣ0 ⊆ {φ1, φ2, . . . , φn},
so we have{φ1, φ2, . . . , φn} |= φ. Note further thatφn (“there are at leastn Ps”) impliesφn−1 (“there
are at leastn− 1 Ps”), and all the other formulae inΣ0. Hence we can say that{φn} |= φ.

What does this imply? It means that any model forφn must satisfyφ. But any interpretation in which
there are at leastn Ps is a model forφn. In particular any interpretation in which there are exactlyn Ps
is a model forφn. Hence any such interpretation satisfiesφ. This has only finitely manyPs and hence
contradicts the claim that an interpretation satisfiesφ if and only if it contains infinitely manyPs.

It follows thatφ cannot, after all, be a correct expression in first-order logic of the proposition “There
are infinitely manyPs”, and hence that first-order logic cannot express this proposition.

Do not confuse this fact with the following, different, fact: it is possible to write down a first-order
formula involving P which only has models containing infinitely manyPs. An example of such a
formula would be theA ∧B ∧ C ∧D, where

A ≡ ∀x¬R(x, x)
B ≡ ∀x∀y∀z(R(x, y) ∧R(y, z) → R(x, z))
C ≡ ∃xP (x)
D ≡ ∀x(P (x) → ∃y(P (y) ∧R(x, y))

HereA andB say thatR is an irreflexive, transitive relation;C says that there’s at least oneP , andD
says that anyP is related byR to anotherP . This generates an infinite sequence ofPs each of which
is R-related to the next. SinceR is transitive and irreflexive, this means that no two members of the
sequence are equal, and hence that there are infinitely manyPs.

Thus we can, in first-order logic, write down a formula which only has models containing infinitely
manyPs; but that is not the same as writing down a formula which is satisfied by an interpretationif
and only ifthat interpretation has infinitely manyPs, which is what the compactness argument shows to
be impossible.

What kind of logiccanwe use to say there are infinitely manyPs? We needSecond-order Logicfor
this. In first-order logic, predicates (and indeed functions) can only apply to terms, i.e., to expressions
denoting individuals (e.g., individual constants and variables). Thus predicates express properties and
relations of individuals. These are first-order properties and relations. In second-order logic we can
have predicates expressing properties of first-order properties and relations, i.e., second-order properties.
Likewise, whereas in first-order logic we can only quantify over individuals, in second-order logic we
can quantify over first-order properties. Thus we can write formulae such as

∀P ((P (a) ∧ G(P ) → P (b)) ∧ (P (a) ∧ ¬G(P ) → ¬P (b)))
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which may be interpreted as saying “Bob has all Alan’s good qualities and none of his bad ones”. (Note
that I’m using “calligraphic” script for second-order predicates.)

Now, how do we use second-order logic to say that there are infinitely manyPs? First we need to
know what “infinite” really means; it turns out that the neatest way of characterising it is as follows:a
set is infinite if and only if it can be put into one-to-one correspondence with a proper subset of itself.
That is, there is a bijection between the set and one of its proper subsets. An example is the following
bijection between the natural numbers and the square numbers:

0 1 2 3 4 5 · · ·
↓ ↓ ↓ ↓ ↓ ↓
0 1 4 9 16 25 · · ·

For each natural number there is a unique square number, and for each square number there is a unique
natural number, and yet the set of square numbers is a proper subset of the set of square numbers. You
can’t do this with a finite set: a finite set always hasmoreelements than any of its proper subsets, so you
can’t set up an appropriate bijection.

In second-order logic, we can talk about sets by talking about the properties which characterise them.
Thus to talk about a setS we set up a predicateP (x) meaning “x is a member ofS”. To say that there is
a bijection between the sets represented by predicatesP andQ, we must say there is a relationR such
that everyP is R-related to a uniqueQ (soR acts as an injective function mappingPs toQs) and that
for everyQ there is aP which isR related to it (so thatR is surjective). In second-order logic:

∃R(∀x(P (x) → ∃y(Q(y) ∧R(x, y))) ∧
∀x∀y∀z(R(x, y) ∧R(x, z) → y = z) ∧
∀x∀y∀z(R(x, z) ∧R(y, z) → x = y) ∧
∀x(Q(x) → ∃y(P (y) ∧R(y, x))))

The first line says that everyP is R-related to at least oneQ, the second says thatR is an function
(no x is R-related to more than oneQ), the third says thatR is injective (same output implies same
input), and the fourth says thatR is surjective (everyQ has at least oneP related to it). Let’s abbreviate
this big formula toB(P,Q) (i.e.,B for bijection—it’s in calligraphic script because it’s a second-order
predicate). Then to say there are infinitely manyPs we must say that there is a bijection betweenP and
one of its proper subsets, i.e.,

∃Q(∀x(Q(x) → P (x)) ∧ ∃x(P (x) ∧ ¬Q(x)) ∧ B(P,Q)).

The first conjunct says that the set ofQs is a subset of the set ofPs, and the second conjunct ensures
that it is a proper subset; the third says there’s a bijection between them.

This formula says that there are infinitely manyPs. It is satisfied by all and only those interpretations
in which there are indeed infinitely manyPs. It is a second-order formula both because it quantifies over
first-order predicates (this is shown by the “∃Q”) and because it contains a second-order predicate (“B”).
We know already that no first-order formula can do the same job.

4 Proof Systems

A proof system for a logic is a system for constructing proofs. A proof is a demonstration that some
inference in the logic is valid or invalid. The demonstration must be complete in a finite number of steps
and must use only some finitely-specifiable set of rules laid down in advance. A proof system, in effect,
separates all inferences into three classes, those which it certifies as valid, those which it certifies as
invalid, and those for which it does not come to either conclusion (we assume that the system produces
at most one answer for each inference, so it doesn’t certify any inferences as both valid and invalid—in
other words that it isconsistent).
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4.1 Soundness, Completeness, and Decidability

The terms used for this are defined as follows (throughout, when we talk about a proof system, without
further qualification, we mean a proof system for first-order predicate calculus):

• A proof system issound if every inference it certifies as valid is in fact valid.

• A proof system iscompleteif it certifies as valid every inference which is in fact valid.

• A proof system is adecision procedureif it provides an algorithm which can determine, for any
inference, whether or not it is valid.

A familiar example of a decision procedure is the method of truth tables applied to the Propositional
Calculus.

The system of Natural Deduction outlined in the Logical Preliminaries can be shown to be both
sound and complete. It is sound because whenever you use it to derive a conclusion from some pre-
misses, the conclusion does in fact logically follow from the premisses; and it is complete because for
any valid inference there is a derivation of the conclusion from the premisses. (Note that validity and
provability are different concepts; the point of the proof system is to set up provability as acriterion for
validity.) On the other hand Natural Deduction is not a decision procedure: an inference is invalid if its
conclusion can’t be derived from its premisses, but Natural Deduction doesn’t provide any means for
determining this.

When we turn to the Predicate Calculus, we find that the system of Natural Deduction is still both
sound and complete. This was first established (for an equivalent system) by Gödel in 1930; this is
Gödel’s Completeness Theorem—very important, but it tends to be overshadowed by the more charis-
matic Incompleteness Theorem. As with the Propositional Calculus, though, it is not a decision proce-
dure. The problem of finding a decision procedure for first-order logic exercised the best logical minds
for the first third of the 20th century, having been posed as a key problem (often known by its German
name:Entscheidungsproblem) in the year 1900.

Note that the Completeness Theorem implies compactness (as defined at the end of§2). If Σ |= C
then by completeness there is a proof ofC using only premisses fromΣ. Any such proof is of finite
length, and therefore uses only some finite subsetΣ0 ⊆ Σ of the premisses. It is therefore a proof ofC
using only premisses fromΣ0. HenceΣ0 |= C, as required.

The Truth Trees method you studied in the second year is also a sound and complete proof system,
but it is not a decision procedure.

It is a decision procedure for the Propositional Calculus. For any finite set of formulae of the Propo-
sitional Calculus, the truth tree must eventually be completed; if every branch is then closed, the set is
unsatisfiable, otherwise it is satisfiable.

In the Predicate Calculus, it is not hard to find a set for which the truth tree can never be completed.
The problem comes from the rules for dealing with existential and negated universal sentences, which
require one to introduce new constants. This leads to an open-endedness which in some cases prevents
the tree from being completed.

5



Example.We shall try to find a model for the set{¬P (a, a),∀x∃yP (x, y)}.

1. ¬P (a, a)
2. ∀x∃yP (x, y)

2[x/a]
× 3. ∃yP (a, y)

3[y/b]
4. P (a, b)

2[x/b]
× 5. ∃yP (b, y)

5[y/c]
6. P (b, c)

2[x/c]
× 7. ∃yP (c, y)

7[y/d]
8. P (c, d)

...

We have set in train a never-ending process. Each time we use the∃-rule to generate a new constant we
can then use that constant to generate yet another instance of (1) using the∀-rule. At no stage do we
generate a contradiction (this could only come fromP (a, a)), and the tree never completes.

And yet the original set (1,2) does have a model. For example, choose any domain with more than
one element, and letP (x, y) denote the relation “x is different fromy” (i.e., the negation of the identity
relation. Then (1) is satisfied since it says thata is not different from itself, and (2) is satisfied since
it says that given any element we can find an element different from it, which is certainly true if the
domain has at least two elements. Thus the inference

∀x∃yP (x, y)
P (a, a)

is invalid, but its invalidity cannot be demonstrated by means of a truth tree. That shows that truth trees
do not provide a decision procedure for the predicate calculus.

5 First-order Theories

A first-order theory is a setΘ (“theta”) of sentences of FOPC with the following properties:

1. Θ is satisfiable, i.e.,Θ has a model.

2. Θ is closed under logical consequence, i.e., wheneverΘ |= C, we haveC ∈ Θ.

A theory iscategorical if all its models are isomorphic, i.e., they differ only in respect of the labelling
of the domain elements.

If you have a particular domain and fix on an interpretation of a suitable first-order language over
this domain, you can talk aboutthe theory of the domain, i.e., the set of all sentences true under this
interpretation.

Example.The first order theory ofidentity includes the sentence∀x(x = x) (everything is identical to
itself—i.e., identity is reflexive),∀x∀y(x = y → y = x) (symmetric),∀x∀y∀z(x = y ∧ y = z → x =
z) (transitive). It also includes infinitely many sentences of the form∀x∀y(x = y → (Φ[x] → Φ[y]))
which says that ifx is identical toy then any true formula remains true when one or more occurrences
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of x are replaced byy. (HereΦ represents a template standing for any formulaP into which can be
substituted a term, e.g.,x or y; note that we get different theories of identity as we vary the stock of
non-logical vocabulary available for constructing the formulaP .)

It turns out that we can derive the entire first-order theory of identity from (1) the identity axiom
∀x(x = x), together with (2) the infinitely many instances of theaxiom schema∀x∀y(x = y →
(Φ[x] → Φ[y])) (collectively called Leibniz’s Law). Thus (1) and (2) together constitute acomplete
axiomatisation of the theory. Note that although this set of axioms is infinite, it isfinitely-specifiable,
since the infinitely many axioms in (2) are covered by a single axiom schema.

To illustrate, we shall derive transitivity, leaving the (somewhat easier) case of symmetry as an
Exercise.

Let Φ be the template∀z(· · · = z → x = z). With this instance ofΦ, Leibniz’s Law says

∀x∀y(x = y → (∀z(x = z → x = z) → ∀z(y = z → x = z))).

Since∀z(x = z → x = z) is a tautology, this simplifies to

∀x∀y(x = y → ∀z(y = z → x = z)),

which is easily seen to be equivalent to

∀x∀y∀z(x = y ∧ y = z → x = z).

[This uses an equivalence with which you should be familiar:A → (B → C) ∼= (A ∧ B) → C, and
another with which you may not be:A → ∀xB ∼= ∀x(A → B), wherex does not occur inA.]

The first-order theory of identity is not, in fact, categorical. It is satisfied by any equivalence relation
for which equivalent elements cannot be distinguished using only the predicates expressible in the lan-
guage. Thus we cannot define identity uniquely in first-order logic, and for this reason it is customary
to extend first-order logic by the addition of “=” as a logical constant (i.e., not part of the non-logical
vocabulary, and therefore not reinterpretable) which denotes the identity relation under every interpreta-
tion. This is calledfirst-order predicate calculus with identity , and is the system we shall largely be
using from now on.

Example. The first-order theory of the “less than” relation on the real numbers (written “x < y”) is
completely axiomatised by the formulae:

1. ∀x¬(x < x) (Irreflexive)
2. ∀x∀y∀z(x < y ∧ y < z → x < z) (Transitive)
3. ∀x∀y(x = y ∨ x < y ∨ y < x) (Linear)
4. ∀x∃y(y < x) (Unbounded below)
5. ∀x∃y(x < y) (Unbounded above)
6. ∀x∀y(x < y → ∃z(x < z ∧ z < y)) (Dense)

Take any formula containing “<” as its only non-logical symbol. Either it or its negation is true when
interpreted as a statement about the real numbers. The true member of the pair is a logical consequence
of the above axioms (i.e., is satisfied by any model for those axioms).

Consider, for example, the formula∃x∃y(x < y ∧ y < x). Since “less than” is asymmetric, this
formula is false under the real numbers interpretation. Hence its negation must be a logical consequence
of the axioms. We can prove this as follows: if the unnegated formula is true then there exist domain
elementsx andy such thatx < y ∧ y < x. By Axiom 2, this means thatx < x, contradicting Axiom 1.
Hence the unnegated formula must be false, so the negated formula is true.

Although 1–6 completely axiomatise the first-order theory of “less than” for the real numbers, this is
not in fact a categorical theory. That is, the real numbers with “less than” provide only one model for the
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theory, but there are others which are not isomorphic to it, for example therational numbers with “less
than”. The first-order theory of “less than” for the rationals is the same as the first-order theory of “less
than” for the reals, but these two mathematical structures are not isomorphic. For example, consider the
following statement concerning a domain∆:

S: There is a non-empty proper subsetL of ∆ such that every element ofL is less than every element
of ∆ \ L, L has no greatest element, and∆ \ L has no least element.

If ∆ is the set of real numbers, then S is false: no such setL can exist (this follows from a fundamental
property of the real numbers: if a set of real numbers has an upper bound, then it has a least upper
bound). But if∆ is the rational numbers, we can easily exhibit a suitable setL, for example the set
consisting of all rational numbers less thanπ. (Here∆ \ L has no least element sinceπ itself is not a
rational number.) Thus for the rational numbers, S is true, but for the real numbers S is false. Since
the rationals and the reals have the same first-order theory for the “less than” relation, it follows that S
cannot be expressed by any first-order formula. It is in fact asecond-orderstatement, and that is because
it quantifies oversetsof domain elements (it has the form “There exists a set of domain elementsL such
that . . . ), whereas in first-order logic all quantification is over the domain elements themselves.

6 First-order Arithmetic

The real prize would be a complete axiomatisation of the first order theory of addition and multiplication
over the natural numbers, the theory known as “first-order arithmetic”. This is an essential step in the
enterprise of evolving a system for proving the truth or falsity of every mathematical statement: in other
words, reducing mathematics to a mechanical system. As you probably know, Gödel showed that this
can’t be done, but before we discuss his work it is important to have an understand of just what it is he
showed to be impossible1.

The language of first-order arithmetic contains the following non-logical vocabulary:

• The constant symbol “0”;

• A 1-place function symbol “s” (which we shall write as a prefix operator without brackets), and
two two-place function symbols “+” and “∗” (written as infix operators).

That is all! The logical symbols are all the usual ones (connectives and quantifiers), including identity
“=”. Note that there are no predicates in the non-logical vocabulary; the only predicate is the logical
constant “=”.

Thestandard interpretation of the non-logical vocabulary is just what you expect:

• “0” denotes the number zero.

• “s” denotes the successor function.

• “+” denotes the addition function.

• “∗” denotes the multiplication function.

First-order arithmetic consists of all sentences of this language which are true under the standard inter-
pretation. Here are some examples:

• ∀x(x + x = ss0 ∗ x).
This says that for any natural numberx, x + x = 2x.

1A lot of hot air on the subject of G̈odel’s theorem would be avoided if people understood more exactly what it says; but
even people who understand it pretty well have been led to deduce some very shaky conclusions from it.
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• ∀x∃y∃z∃w∃v(x = y ∗ y + z ∗ z + w ∗ w + v ∗ v).
This says that every number is the sum of four squares.

A sentence in this language whose truth value is still unknown isGoldbach’s Conjecture:

∀x∃y∃z(Prime(y) ∧ Prime(z) ∧ ssx + ssx = y + z),

where the predicatePrime is defined by

Prime(x) ≡ ∀u∀v(u ∗ v = x → u = x⊕ v = x).

(Here “⊕” is the exclusive “or” connective, defined byA⊕ B ≡ (A ∧ ¬B) ∨ (¬A ∧ B).) Goldbach’s
Conjecture says that every even number greater than 2 can be expressed as the sum of two primes. Try
it: 4=2+2, 6=3+3, 8=3+5, 10=3+7, 12=5+7, 14=3+11, . . . . Your place in mathematical history will be
assured if you caneither find an even number which can’t be expressed as the sum of two primes,or
prove that there isn’t one.

Our target is a finitely-specifiable set of axioms whose logical consequences comprise all and only
the true sentences of first-order arithmetic.

The most plausible candidate that has been suggested contains the following axioms2, known as the
Peano axioms, after the Italian mathematician Giuseppe Peano (1858–1932):

S1 Zero is not the successor of any natural number:

∀x¬(sx = 0)

S2 Distinct numbers have distinct successors:

∀x∀y(sx = sy → x = y)

A1 Addition of zero:
∀x(x + 0 = x)

A2 Addition of a successor:
∀x∀y(x + sy = s(x + y))

M1 Multiplication by zero:
∀x(x ∗ 0 = 0)

M2 Multiplication by a successor:

∀x∀y(x ∗ sy = (x ∗ y) + x)

Ind Induction schema:
Φ(0) ∧ ∀x(Φ(x) → Φ(sx)) → ∀x(Φ(x))

2Peano’s axioms included two not given here, namely “Zero is a natural number” and “Every natural number has a unique
successor”. For us, these are implicit in the facts that (1) “0” is a constant in our non-logical vocabulary, and the domain of
interpretation is the natural numbers, and (2) “s” is a function in our non-logical vocabulary.
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The set of all logical consequences of these axioms are the theorems ofPeano arithmetic (PA)—
we’ll look at some examples in one of the Group Meetings.

What is the relationship between PA and the true first-order arithmetic? We say that PA issound if
all its theorems are in fact true under the standard interpretation; and that it iscompleteif every sentence
(in the vocabulary of PA) that is true under the standard interpretation is a theorem of PA.

It would be nice if PA were both sound and complete.
What G̈odel showed is thatno finitely-specifiable axiom system for first-order arithmetic can be both

sound and complete. Thus we know that if PA is sound, then it isn’t complete, and if it is complete then
it isn’t sound. We don’t even know which of these two cases holds, though in practice we always assume
the former. Moreover, if we replace PA by any other such system, the same conclusion follows.

We will discuss how G̈odel proved his theorem below. Setting Gödel aside for the moment, suppose
in fact PA were both sound and complete. Then if Goldbach’s Conjecture were true, it would be a
logical consequence of the axioms, and it it were false, its negation would be a logical consequence of
the axioms. Since we have a complete proof system for first-order logic (e.g., Natural Deduction, or
Truth Trees), there would exist a proof in such a system of either Goldbach’s Conjecture or its negation
(but not both!). What we would need then is an effective procedure for finding this proof, i.e., a decision
procedure for first-order predicate calculus.
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