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Logical Pre

I: The Language of First-order Logic

Atomic Propositions and Monadic Predication

An atomic proposition ascribes a property or relation to one or
more individuals. In logic, it is expressed by an atomic formula
constructed by applying a predicate to one or more terms.
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A monadic predicate is used to ascribe a property to a single
individual, denoted by a term called an individual constant. The
standard notation has the form Predicate(term).

Examples
White(tajmahal) The Taj Mahal is white
Angry(john) John is angry
Prime(29) 29 is prime
Cow(daisy) Daisy is a cow
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Functions

A function symbol is used to specify an individual in terms of one
or more other individuals.

The standard pattern, for an n-ary function symbol, is

function(termy, . .., termy).

Examples

John's mother

The Prime Minister of UK
The square root of 17

19 times 91

mother(john)
prime_minister(uk)
square_root(17)
product(19,91)
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Example

The term mother(john) denotes a person, John's mother.

The formula Hungry(john) asserts that John is hungry.

In a given situation it is either true or false that John is hungry; it
doesn’t make sense to say it is true or false that John's mother.

| can ask who John's mother is; it doesn't make sense to ask who
(or what) John is hungry is.

Notation convention
Function symbols begin with a lower-case letter.
Predicates with a capital letter.
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Polyadic Predication

A polyadic predicate is used to ascribe a relation to an ordered
list (tuple) of individuals. The standard notation has the form

Predicate(termy, . .., term,),

where Predicate is an n-place (or n-ary) predicate.

Examples
Older(john, mary)
Loves(john, mary)
In(helsinki, finland)
Divides(13,91)
Between(john, mary, anne)
QuotRem(11,50, 4, 6)

John is older than Mary

John loves Mary

Helsinki is in Finland

13 divides (i.e., is a factor of) 91

John is between Mary and Anne

11 divides 50 four times with
remainder 6
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Some Frequently Asked Questions

What is the difference between a function symbol and a predicate?

The result of applying a function symbol to a term or list of terms
is another term.

The result of applying a predicate to a term or list of terms is a
formula.

What is the difference between a term and a formula?

A term refers to an individual. It is like a name.
A formula asserts that something is the case. It is like a
statement.
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Prefix vs Infix Notation

In standard logical practice, predicates and function symbols are
written as prefixes, i.e., before the terms they apply to.

This is different from ordinary language and standard mathematical
notation, where various different conventions are used.

Examples
Infix: John loves Mary instead of Loves(mary, john).
45 > 23 instead of Greater(45,23).
19 x 91 instead of product(19,91).
Postfix:  John's mother instead of mother(john).

32 instead of square(3)
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Identity

The symbol ‘="is used as a distinguished binary predicate, written
as an infix rather than a prefix, i.e., term; = terms.
This means that term; denotes the very same individual as terms.

Examples

Anne is James's mother
19 times 91 is 1729.

anne = mother(james)
product(19,91) = 1729
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Compound Formulae

Compound formulae are built up from atomic formulae using
connectives.

In classical logic, the connectives are Boolean or
truth-functional. This means that the truth value of a compound
formula is a function of the truth values of its components.

The main boolean connectives are:

conjunction
disjunction
negation
conditional
biconditional
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Boolean Connectives |l

Disjunction

The disjunction AV B is true if and only if at least one of A and B
is true.

Example

Hungry(john) v Thirsty(mary)

(John is hungry or Mary is thirsty)

Truth table
A B |AVB
True True | True
True False | True
False True | True
False False | False
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Boolean Connectives IV

Conditional

The (material) conditional A — B is equivalent to AV B: so it is
only false if A is true and B is false.

Example

Hungry(john) — Thirsty(mary)
(If John is hungry, then Mary is thirsty)

Truth table
A B |A—B
True True | True
True False | False
False True | True
False False | True
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Conjunction
For any formulae A and B, the conjunction A A B is true if and
only if A and B are both true.

Example
Hungry(john) A Thirsty(mary)
(John is hungry and Mary is thirsty)

Truth table
A B |AAB
True True | True
True False | False
False True | False
False False | False
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Negation

The negation —A is true if and only if A is false.

Example

—Hungry(john)
(John is not hungry)

Truth table
A -A
True | False
False | True
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Boolean Connectives IV

Biconditional

A < B is true so long as A and B are both true or both false.

Example

Hungry(john) < Thirsty(mary)
(John is hungry if and only if Mary is thirsty)

Truth table
A B |A—B
True True | True
True False | False
False True | False
False False | True
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Exercise

Translate these sentences into logical notation, using the key

A Anne will go C  Carol will go

B Bill will go D Dan will go
If Bill goes then Dan will go B — D
If Anne goes then Bill will not go A— -B

-BA-C— A
(BA=C)— (AV D)

Anne will go if Bill and Carol don't go
If Bill goes but Carol doesn’t then
either Anne or David will go

-C — =B
Bill won't go unless Carol goes B—C
-Bv C
Anne and Carol will only go (ANC)— —D
if David does not go D — —=(ANC)
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Quantification

Quantification is a means of expressing propositions which do not
refer to any named individuals.

There are two types: universal and existential quantification.

Universal quantification is used for saying that everything has a
certain property.

Existential quantification is used for saying that at least one
thing has a certain property.

Combined with negation, these can also be used for saying that
nothing or not everything has a certain property.

d Formulae: Quantifiers

ntifiers and Variables Il

To say ‘Everybody loves Jane', we say that for every x, x loves
Jane:
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VxLoves(x, jane).

The symbol V is the universal quantifier.

Similarly, to say ‘Somebody (i.e., at least one person) loves Jane',
we say that for some x, x loves Jane:

IxLoves(x, jane).

The symbol 3 is the existential quantifier.
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Existential Quantifier examples

Ix(Boy(x) A Loves(x, jane)) Some boy loves Jane

Ix(Boy(x) A Loves(jane, x)) Jane loves some boy
—3IxLoves(x, jane) Nobody loves Jane

Ix(Loves(jane, x) A Loves(x, mary))
Jane loves somebody who loves Mary

IxTy(Loves(x,y) A —x =y)
Somebody loves somebody else

Compound Formulae: Quantifiers
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ntifiers and

Quantification is expressed using symbols called quantifiers and
variables.

A variable (typically written x, y, z, ...) is a term which does not
refer to a fixed individual but is free to vary its reference over the
whole range of available individuals.

Variables correspond approximately to pronouns in ordinary
language:

e.g., Loves(x, jane) means something like ‘he/she loves Jane'.

Compound Formulae:
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Universal Quantifier examples

Vx(Boy(x) — Loves(x, jane))

d Computation

Every boy loves Jane
—VxLoves(x, jane) Not everyone loves Jane
Vx-Loves(x, jane) No-one loves Jane

Vx(Loves(x, jane) — Loves(x, bob))
Everyone who loves Jane also loves Bob

Vx(Loves(x, jane) — —Loves(x, bob))
No-one who loves Jane also loves Bob

Vx(Loves(x, jane) — Loves(jane, x))
Jane loves everyone who loves her

VxVy(Loves(x,y) — —Blackmails(x, y))
No-one blackmails someone they love
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Mixed quantifier examples

Vx(Girl(x) — Jy(Boy(y) A Loves(x, y)))
Every girl loves some boy

Vx(Girl(x) — Jy(Boy(y) A Loves(y, x)))
Every girl is loved by some boy

Ix(Girl(x) AVy(Boy(y) — Loves(x,y)))
There is a girl who loves every boy

3Ax(Girl(x) A Vy(Boy(y) — Loves(y, x)))
There is a girl whom every boy loves
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Exercise

Translate these sentences into logical notation, using the key

a Anne R(x,y) x respects y

b Bill A(x,y) x admires y
Someone admires Anne IxA(x, a)
Bill does not respect himself =R(b, b)
Nobody admires both Anne and Bill -3x(A(x, a) A A(x, b))
Everyone who admires Anne respects Bill | Vx(A(x, a) — R(x, b))
Bill respects everyone who admires Anne | Vx(A(x, a) — R(b, x))
Anne respects everyone who admires her | Vx(A(x, a) — R(a, x))
Someone Bill respects admires Anne Ix(R(b, x) A A(x, a))

Compound Formulae: Quantifiers

Interpretation

Vx-R(x, x)

VxVyVz(R(x,y) A R(y,z) — R(x, z))
VxVy(R(x,y) — 3z(R(x,z) A R(z,y)))
Vx3yR(x,y)

Vx3yR(y, x)
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These formulae are not about anything until we specify

» the domain (or universe) of quantification, i.e., what class of
objects do the variables range over?
» what the predicate R means.

If we specify these things, then we will have an interpretation of
the formulae, under which each formula is either true or false.

Models and Interpretations ECM3404: Logic and Computation

Example Interpretation |l

Domain of quantification: all students at Exeter University.
R means ‘is older than'.

No student is older than himself/herself.

Any student is older than any student any student
(s)he is older than is older than.

For any two students, such that one is older than the
other, there is a third student who is older than the
first one and younger than the second.

For any student, there is another student who is
younger.

For any student, there is another student who is older.

Only the first two are true.
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Inference and Validity

A set of formulae X logically implies (or entails) a formula ¢ if
and only if every model for ¥ satisfies ¢.

Example. The set

Vx=R(x, x)
VxVyVz(R(x,y) A R(y,z) — R(x,z))

logically implies
xVy(R(x,y) = ~R(y, x)).

This is called a valid inference.
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Example Interpretation |

Domain of quantification: all real numbers.
R means 'is less than'.
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No real number is less than itself.

Any real number is less than any real number any real
number it is less than is less than.

For any two real numbers, such that one is less than
the other, there is a third real number which is
greater than the first one and less than the second
one.

For any real number, there is a real number that it is
less than.

For any real number, there is a real number that is less
than it.

These are all true.
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Models and Satisfaction

An interpretation under which a formula is true is said to satisfy
that formula. (Otherwise it falsifies it.)

An interpretation which satisfies every member of a set of formulae
is called a model for that set.

A set of formulae is satisfiable if it has at least one model.
(Otherwise it is unsatisfiable.)
Example. The set
Vx=R(x, x)
Wxvy¥z(R(x,y) A R(y.2) — R(x.2))
Wxvy(R(x,y) — 32(R(x.2) A R(z,y)))
VxJyR(x,y)
Vx3yR(y, x)
is satisfied by the first interpretation above, which is therefore a

model for the set.

Validity and Unsatisfiability

If every model for X satisfies ¢ (so the inference from X to ¢ is
valid) then the set ¥ U {—¢} is unsatisfiable.

Example. The set

Vx=R(x, x)
VxVyVz(R(x,y) A R(y,z) — R(x, z))
VxVy(R(x,y) = =R(y, x)).

is unsatisfiable.

Hence one way to prove that the inference from X to ¢ is valid is
to show that the set ¥ U {—¢} is unsatisfiable.
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