ECM3404: Logic and Computation

Antony Galton

Turing Machines

Antony Galton ECM3404: Logic and Computation

Picture of a Turing Machine

Finite—state
mechanism
O/@ //
O
~—— Read-write device (‘head’)

| [afololt Ixlalale] [ele]al [|

7

Tape with input/output ———
symbols

ECM3404: Logic and Computation

y Galton

nsition

Reading a

The transition

ab,d 0

is to be understood as follows:
» The transition is triggered when the machine is in state g and
reading symbol a on the tape.
» The transition consists of the following actions:
1. Symbol a is replaced by symbol b. NOTE: We use A to
represent a null symbol (i.e., the cell is empty).
2. The machine moves its read/write device along the tape by
the displacement d. This may be —1 (move one cell left), 0
(stay put), or 1 (move one cell right).
3. The machine goes into state q’.

ECM3404: Logic and Computation

Antony Galton

Representing a TM by means of a quintuple listing

()

can be represented by the quintuple

The transition

q.a,q',b,d
The Turing Machine is completely specified by a listing of its
quintuples.

Exercise: Write down the listing for The Parity Checker on the
previous slide.

1, 1, 2, A 1
1, A, 0, E 0
2,1, 1, A, 1
2, A, 0, O, 0

)

Antony Galton ECM3404: Logic and Computation

What is a Turing Machine?

A Turing Machine is a finite-state automaton augmented with an
unlimited amount of memory in the form of an extensible linear
tape, divided into discrete cells:
> |t can read from the tape, and write to it, one cell at a time.
> The initial contents of the tape is the input.
» The machine’s action at each step is determined by its state
and what it reads from the current cell. The action consists of
> moving to a new state (or not),
> replacing the tape symbol it has read (or not), and
> moving to a new tape cell (or not).
» The computation continues until the machine reaches the
designated halt state.

» The output is then read off from the tape

Antony Galton ECM3404: Logic and Computation

Inside the Turing Machine

The state-transition diagram for a Turing Machine is very similar
to that for a finite-state automaton.

The differences are that:
1. Whereas for a FA each transition is labelled just with the

input symbol, for a TM it is labelled with the input symbol
together with the output symbol and the tape shift:

ab,d 0

2. Whereas for a FA any state can be an accepting state, for a
TM there is just one accepting state (the halt state), from
which there can be no transitions.

Antony Galton ECM3404: Logic and Computation

Example: A Parity Checker

This machine, when given as input a string of n 1s, will output O
or E depending on whether n is odd or even.

Antony Galton

Specification of a Turing Machine

To define a TM uniquely, you must specify the states, alphabet,
and transitions, as follows:

ECM3404: Logic and Computation

> States: There must be a start state (qo) and a halt state
(h), where h # qo. The set of non-halt states (including qo) is
designated Q.

> Alphabet: There must be a finite input alphabet ¥, and,
disjoint from this, a finite (possibly empty) auxiliary alphabet
Y 4. Together with the symbol A (indicating a blank cell)
these make up the tape alphabet Y7 =%, UX U {A}.

» The transition function () which maps a (non-halt)
state/symbol pair onto a triple consisting of the next state,
the new symbol, and the shift
(0:Q@xXr = (QU{h}) x Ty x {-1,0,1}).

In our examples we shall designate states by natural numbers, with
go=1and h=0.

Antony Galton ECM3404: Logic and Computation

The configuration of a Turing machine

At any stage during a Turing machine computation, the machine is
in a particular configuration. This is specified by means of four
ingredients:

» The state (q)
> The symbol in the currently scanned cell (a)

» The string of symbols running left from the currently scanned
cell, up to the leftmost non-blank cell (b1b;. .. by)

» The string of symbols running right from the currently
scanned cell, up to the rightmost non-blank cell (cico ... cp)

This configuration will be represented as follows:

o Dbpby_1--by [3] Gl
q

Antony Galton ECM3404: Logic and Computation

omputation steps

Assume the machine is in configuration
o Dbpbpi--by [3] cc Gl
q

Then the configuration at the next computation step will be:
> Ifo(q,a) = (¢',d,1):

o Abmbm_1 - b1d 3 Cald -
q/

> 1f 8(q.) = (¢4, —1):
o Abmbp_1-- by dcicacpA- -
q
> 1F 3(q,3) = (¢, 4,0):

o Dbybp1 - by ClCr- Gy -
/
q

Antony Galton ECM3404: Logic and Computation

How the Binary Adder works

It fetches bits from (n) one by one and adds them to the
corresponding bits in (m), using ¢, o to represent 1, 0 respectively.

It does this in either a ‘no carry’ condition (states 2-7) or a ‘carry’
condition (states 9-11), according to the rules tabulated below.

When there are no more bits in (n) (states 12, 13), any remaining
carries are handled, o, ¢ are changed to 0, 1, and the machine halts.

0, no carry 0, carry 1, carry

1, no carry
0 || 0, nocarry | 1, nocarry | O, carry
1 1, no carry 0, carry 1, carry

Antony Galton ECM3404: Logic and Computation

[llustration of the three behaviours

» Loops in state 1, moving right:

A @ A
1

AN+

» Succeeds after two steps:

A @ 1A ...
1

1,1,0

©

» Fails in state 1 after one step:

A @ A ...
1

Antony Galton ECM3404: Logic and Computation

Special types of configuration

The starting configuration with input iip - - ip is

A inig e igA -
1

If the input is the null string A, the configuration is

A @ A
1

A halting configuration is

o Dbpbp_1--by [3] cc-cple
0

The output here would usually be taken to be acic; - ¢, (but
may vary depending on the convention used for a particular TM).

Antony Galton ECM3404: Logic and Computation
A Binary Adder
11+
00- 00—
9% 11- -

Specification
Input: (m) + (n)
Output: (m+ n)
where (x) is the
binary numeral for

integer x.
Q=1{1,2,...,13}
Y= {071,+}
ZA = {LA,O}
Go=1

h=0

Antony Galton

Possible behaviours of a Turing machine

ECM3404: Logic

d Computation

When a Turing machine is run, starting with a given input tape,
there are three possibilities for what ultimately happens:

1. The machine eventually reaches the halt state, delivering an
output: the computation succeeds.

2. The machine gets stuck in a non-halting state: the
computation fails. (This will happen if there is no quintuple
beginning g, a,...)

3. The machine fails to halt, endlessly repeating some sequence
of states: the computation loops.

These three possibilities correspond to familiar behaviours of
computer programs: succeed, crash, and hang.

Antony Galton ECM3404: Logic and Computation

Turing machine simulators

When we simulate the action of a Turing machine, either by hand,
or using a computer program, this is itself a computational process.

Turing asked the question: Can this computational process be
performed by a Turing machine?

In other words: Can a Turing machine simulate other Turing
machines?

Turing constructed a Turing machine that can simulate any Turing
machine (including itself).

Such a Turing machine is called a Universal Turing Machine
(UTM).

Antony Galton ECM3404: Logic and Computation

What a Universal Turing Machine does

A Universal Turing Machine U takes as input a string consisting of

» A quintuple listing quins(M) of the Turing machine M to be
simulated.

> A copy of the input i on which we want to simulate the action
of M.

U then simulates the action of M running with input /:
» If M halts with output o when run with input i, then U halts
with output o when run with input quins(M), .
» If M fails to halt when run with input /, then U fails to halt
when run with input quins(M), i.
Such machines can be constructed!

Antony Galton ECM3404: Logic and Computation

Execution Cycle of UTM

1. LOCATE a quintuple (g, a,q’, 4, d) in (listing) such that q
and a match the state and symbol in (workspace).

2. WRITE &’ at the simulated head position in (tape)
(overwriting ‘h").

3. MOVE simulated head to new position on (tape) (using d to
determine where to go).

4. COPY ¢ (from the quintuple) and new scanned symbol (from
the tape) into (workspace).

This cycle is repeated until the LOCATE procedure fails to find a
suitable quintuple. If the current state (shown in (workspace)) is 0
(the halt state) then SUCCEED, else FAIL.

Antony Galton ECM3404: Logic and Computation

Example

We'll illustrate by using the UTM to simulate a slightly modified
version of the parity checker we looked at earlier.

1A+

1,1, 2, A 1
1, A, 0, 0 -—1
2,1, 1, A, 1
AA-L 2, A, 0, 1, -1

The initial tape for the UTM, corresponding to the parity-checker
with input 11111, is

X011Y0111001X0100000X1010101X1000010Zh1111

Antony Galton ECM3404: Logic and Computation

The Halting Problem

Can we know in advance whether or not a Turing machine, when
run with a given input, will ever reach the halt state?

Sometimes it is clear that we can (as in our examples above).

In other cases it may be far from obvious.

The Halting Problem (HP) is specified as follows: To determine,
for an arbitrary Turing machine M and input i, whether or not M
will reach the halt state when run with input /.

In particular: Is there a Turing machine H which can solve the
Halting Problem for M, i when given input quins(M), i?

A clever argument by Turing shows that the answer to this is NO.

Antony Galton ECM3404: Logic and Computation

Design for a UTM

Input has the form X(workspace) Y (listing) Z (tape), where

> (workspace) contains the start state and the initially scanned
symbol.

» (listing) contains the quintuples of the simulated machine,
separated by ‘X'
> (tape) contains the (one-way) tape, with the head-position
marked by ‘h'.
Simulated machine states are numbered in binary, with halt state
0, start state 1.
All states are represented by strings of the same length.
The tape alphabet of the simulated machine is {0,1}, where 0
stands for A.
The shift is 0 (left) or 1 (right).

Antony Galton ECM3404: Logic and Computation

WRITE new symbol

TERMINATION

A UNIVERSAL TURING MACHINE

and symbol into

. workspace (A. P. Galton, 1996)
Antony Galton ECM3404: Logic and Computation
Explanation of the input to the UTM
1,1, 2, A1
1, A, 0, 0, -1
2,1, 1, A, 1
2, A, 0, 1, -1

Quintuple listing

Workspace Simulated tape
— //—\ o
X 021 Y 0111001 X 0100000 X #020201 X 1000010Zh1111
N AN !
Current Currently d 4 gbd
state (1) scanned ~ 29 simulated head
- position
symbol (1) a quintuple
Antony Galton ECM3404: Logic and Computation

Insolubility of the Halting Problem |

Suppose we have a Turing machine H which someone claims solves
HP for arbitary TM/input pairs.
Such a machine, when given input quins(M), i,

» halts with output 1 if M would halt when given input 7

» halts with output 0 if M would loop when given input i

quins(M) — 0 (if M loops when run with i)

— 1 (if M halts when run with i)

We shall show that it is impossible for a Turing Machine to behave
in this way, i.e., the claim is incorrect.

Antony Galton ECM3404: Logic and Computation

Insolubility of the Halting Problem Il

Given H, we can modify it to a machine H* as follows:

> Instead of taking two inputs quins(M) and i, it takes a single
input quins(M), which it copies, so that the two inputs to H
are effectively quins(M) and quins(M).

» After that it acts exactly like H until it reaches a transition
leading to the halt state.

> If the output at this point is 1, instead of going to the halt
state, H* goes into a loop.

H*
quins(M) 7@ (if H halts when run with
inputs quins(M),quins(M;
quins(M) —— Copier H putsa .)
uins(M) —r—=0 (if H outputs 0 when run with
a inputs quins(M),quins(M))

Antony Galton ECM3404: Logic and Computation

Insolubility of the Halting Problem IV

What happens if we run H* with input quins(H*)?
(i.e., we're giving H* its own quintuples as input)
» Suppose it halts with output 0. This means that H would
output 0 when run with inputs quins(H*), quins(H*).
If H solves HP, this would mean that H* would loop when run
with input quins(H*); since it doesn't, H does not solve HP.
» Suppose instead it loops. This means that H would output 1
when run with inputs quins(H*), quins(H*).
If H solves HP, this would mean that H* would halt when run
with input quins(H*); it doesn't, so H does not solve HP.
We have shown that whether H* halts or loops when run with
input quins(H*), H cannot solve HP.

Since this argument applies to any machine H put forward as a
solution to HP, it follows that the Halting Problem is insoluble.

ECM3404: Logic and Computation

ni

y Galton

The Limits of Computability

There are many computational problems which can be shown to be
insoluble by showing that they are equivalent to the Halting
Problem.

An important example is: Find an algorithm to determine, for an
arbitrary set of first-order logical statements, whether or not they
are consistent.

We have reached the limits of computability.

There are some problems which just can’t be solved, at least not
by Turing machines or anything equivalent to them.

And there is good reason to believe that any form of computation
is equivalent to Turing machine computation.

This is called the Church-Turing Thesis.

Antony Galton ECM3404: Logic and Computation

Insolubility of the Halting Problem Ill: Taking Stock

The story so far:
We started with a machine H which, it is claimed, solves the
Halting Problem, i.e., given inputs quins(M), i it delivers output
» 0 if M would loop when given input i
» 1 if M would halt when given input /

Given this machine H, we created a new machine H* which, when
given input quins(M),
» halts with output 0 if H would output 0 when run with inputs
quins(M), quins(M)
» loops if H would output 1 when run with inputs
quins(M), quins(M)

Antony Galton ECM3404: Logic and Computation

The Halting Problem for Computer Programs

A program H to solve HP for computer programs would, when run
with inputs P and i (where P is a computer program),

» halt with output 0 if P would loop when run with input i
» halt with output 1 if P would halt when run with input /.

If His| input P; then H* is| input P;
input /; i+ P;
< main code > < main code >
output a if a=1then a « 1,

output a

Then we run H* with input H*. If H solves HP, then
» If H* halts then it loops
» If H* loops then it halts.

Since this behaviour is impossible, H cannot solve HP.

Antony Galton

The Church-Turing Thesis

The Church-Turing Thesis (CTT) states that if something that can
be computed at all, then there is a Turing machine that can
compute it.

ECM3404: Logic and Computation

There are two kinds of evidence for CTT:

> Negative evidence. Despite many attempts, no-one has yet
come up with a method of computation which can be shown
to be more powerful than Turing machines.

» Positive evidence. All the many different attempts to
characterise in formal terms exactly what is meant by
computation have resulted in definitions that can be shown to
be equivalent to Turing machine computation.

Despite this, some researchers believe that non-Turing-equivalent
computation should be possible, and have invented the term
hypercomputation to refer to it.

Antony Galton ECM3404: Logic and Computation

