ECM3404: Logic and Computation

Solutions to the Tutorial exercise on NP-completeness and Problem Reduction

- 1. First, introduce proposition letters as follows:
 - For $1 \leq i < j \leq n$, let E_{ij} say that $e_{ij} \in E$ (i.e., vertices v_i and v_j are joined in the graph).
 - For $1 \leq i, j \leq n$ let C_{ij} say that the *i*th vertex visited in the circuit is v_j .

Then for the given instance of HAM we need the following clauses:

- (a) For $1 \le i < j \le n$, include E_{ij} if $e_{ij} \in E$, and $\neg E_{ij}$ otherwise. This gives a total of $O(n^2)$ literals, completely defining the graph.
- (b) For i = 1, ..., n include the clause

$$C_{i1} \vee C_{i2} \vee \cdots \vee C_{in}$$

saying that the *i*th vertex of the circuit is one of the vertices of the graph. This gives altogether $O(n^2)$ literals.

(c) For $i = 1, ..., n, 1 \le j < k \le n$ include the clause

$$\neg (C_{ii} \land C_{ik}),$$

saying that at most one vertex occurs at the *i*th position of the circuit. This gives $O(n^3)$ literals.

(d) For i = 1, ..., n, include the clause

$$C_{1i} \vee C_{2i} \vee \cdots \vee C_{ni}$$

saying that vertex i is visited at least once. This gives $O(n^2)$ literals.

(e) For $1 \le i < j \le n, \ 1 \le k \le n$, include the clause

$$\neg (C_{ik} \wedge C_{ik})$$

saying that vertex k is not visited more than once. This gives $O(n^3)$ literals. (See note below.)

(f) For $1 \le j < k \le n$, include the clauses

$$C_{nj} \wedge C_{1k} \rightarrow E_{jk}, \ C_{nk} \wedge C_{1j} \rightarrow E_{jk}.$$

saying that the last vertex in the circuit is joined to the first by an edge in the graph. This gives $O(n^2)$ literals.

(g) For $i = 1, ..., n - 1, 1 \le j < k \le n$, include the clauses

$$C_{ij} \wedge C_{(i+1)k} \rightarrow E_{jk}, \ C_{ik} \wedge C_{(i+1)j} \rightarrow E_{jk},$$

saying that remaining vertices occurring at consecutive positions in the circuit are joined by an edge in the graph. This gives $O(n^3)$ literals.

The total number of literals is $O(n^3)$.

NOTE: It is not really necessary to include the clauses under (e) since they are implied by the ones already introduced; however, we include them here since they simplify the reasoning in the example below. To see why they are implied by the other clauses, suppose we have $C_{ik} \wedge C_{jk}$ (where i < j). By the (b) clauses, this means we have $\neg C_{il}$ and $\neg C_{jl}$ for all $l \neq k$. By the (d) clauses this implies that for each $l \neq k$ there is an $m \notin \{i, j\}$ for which we have C_{ml} . Thus there are n-2 available ms to be associated with n-1 different ls. This implies that for some m there are distinct l, l' for which we have $C_{ml} \wedge C_{ml'}$, contradicting the (c) clauses. Hence we must have $\neg (C_{ik} \wedge C_{jk})$.

Here are the clauses needed for the given instance. We'll follow the order given above.

- (a) (1) E_{12}
 - (2) $\neg E_{13}$
 - (3) E_{23}
- (b) (4) $C_{11} \vee C_{12} \vee C_{13}$
 - (5) $C_{21} \vee C_{22} \vee C_{23}$
 - (6) $C_{31} \vee C_{32} \vee C_{33}$
- (c) (7) $\neg (C_{11} \land C_{12})$
 - (8) $\neg (C_{11} \land C_{13})$
 - (9) $\neg (C_{12} \land C_{13})$
 - (10) $\neg (C_{21} \land C_{22})$
 - (11) $\neg (C_{21} \land C_{23})$
 - (12) $\neg (C_{22} \land C_{23})$
 - (13) $\neg (C_{31} \land C_{32})$
 - (14) $\neg (C_{31} \land C_{33})$
 - (15) $\neg (C_{32} \land C_{33})$
- (d) (16) $C_{11} \vee C_{21} \vee C_{31}$
 - (17) $C_{12} \vee C_{22} \vee C_{32}$
 - (18) $C_{13} \vee C_{23} \vee C_{33}$
- (e) (19) $\neg (C_{11} \land C_{21})$
 - (20) $\neg (C_{11} \land C_{31})$
 - (21) $\neg (C_{21} \land C_{31})$
 - (22) $\neg (C_{12} \land C_{22})$
 - (23) $\neg (C_{12} \land C_{32})$
 - $(24) \neg (C_{22} \wedge C_{32})$
 - (25) $\neg (C_{13} \land C_{23})$
 - (26) $\neg (C_{13} \land C_{33})$
 - (27) $\neg (C_{23} \wedge C_{33})$

- (f) (28) $C_{31} \wedge C_{12} \rightarrow E_{12}$
 - (29) $C_{32} \wedge C_{11} \rightarrow E_{12}$
 - (30) $C_{31} \wedge C_{13} \to E_{13}$
 - (31) $C_{33} \wedge C_{11} \to E_{13}$
 - (32) $C_{32} \wedge C_{13} \rightarrow E_{23}$
 - (33) $C_{33} \wedge C_{12} \to E_{23}$
- (g) (34) $C_{11} \wedge C_{22} \rightarrow E_{12}$
 - (35) $C_{12} \wedge C_{21} \to E_{12}$
 - (36) $C_{11} \wedge C_{23} \to E_{13}$
 - (37) $C_{13} \wedge C_{21} \to E_{13}$
 - (38) $C_{12} \wedge C_{23} \to E_{23}$
 - (39) $C_{13} \wedge C_{22} \to E_{23}$
 - (40) $C_{21} \wedge C_{32} \rightarrow E_{12}$
 - $(40) C_{21} \wedge C_{32} \wedge E_{12}$
 - $\begin{array}{ccc} (41) & C_{22} \wedge C_{31} \rightarrow E_{12} \\ (42) & C_{31} & C_{32} & C_{33} \end{array}$
 - (42) $C_{21} \wedge C_{33} \to E_{13}$ (43) $C_{23} \wedge C_{31} \to E_{13}$
 - (44) $C_{22} \wedge C_{33} \to E_{23}$
 - (45) $C_{23} \wedge C_{32} \to E_{23}$

We now prove that this set of clauses is unsatisfiable.

By (2) and (36) we have $\neg (C_{11} \land C_{23})$;

by (2) and (43) we have $\neg (C_{23} \land C_{31})$.

Together these imply $C_{23} \to \neg (C_{11} \vee C_{31})$, which by (16) implies $C_{23} \to C_{21}$.

This, together with (11), implies $\neg C_{23}$.

Similarly, (2) with (37) and (42) implies $C_{21} \rightarrow \neg (C_{13} \lor C_{33})$, which with (18) implies $C_{21} \rightarrow C_{23}$.

This, with (11), implies $\neg C_{21}$.

We now have $\neg C_{21} \land \neg C_{23}$, which by (5) implies C_{22} .

By (22), this implies $\neg C_{12}$, so by (4) we have either C_{11} or C_{13} .

Suppose we have C_{11} . By (20) this means we have $\neg C_{31}$. Since we have C_{22} , by (24) we have $\neg C_{32}$. Hence by (6) we have C_{33} , giving us $C_{11} \wedge C_{33}$. This is ruled out by (2) and (31). Hence we do not have C_{11} .

We must therefore have C_{13} . By (26) this means we have $\neg C_{33}$. Since we already have $\neg C_{32}$, we must have C_{31} by (6). giving us $C_{13} \wedge C_{31}$. But this is ruled out by (2) and (30).

Hence the clauses are unsatisfiable.