ECM3404: Logic and Computation

Solutions to the Group Meeting exercise on Peano Arithmetic

- 1. $\forall x(x * ss0 = x + x)$
 - x * ss0 = (x * s0) + x (M2, y/s0) = (x * 0 + x) + x (M2, y/0) = (0 + x) + x (M1) = x + x (Result proved on question sheet, 0 + x = x)
- 2. $\forall x \forall y (sx + y = s(x + y))$
 - Base Case (y = 0)

$$sx + 0 = sx$$
 (A1, x/sx)
= $s(x + 0)$ (A1)

• **Induction Step** (from y = a to y = sa)

From the Induction Hypothesis sx + a = s(x + a) we must derive sx + sa = s(x + sa).

$$sx + sa = s(sx + a)$$
 (A2, x/sx , y/a)
= $s(s(x + a))$ (from induction hyposthesis)
= $s(x + sa)$ (A2, y/a)

- 3. $\forall x \forall y (x + y = y + x)$
 - Base Case (y = 0)

$$x + 0 = x$$
 (A1)
= $0 + x$ (Result proved on question sheet)

• **Induction Step** (from y = a to y = sa)

From the Induction Hypothesis x + a = a + x we must derive x + sa = sa + x.

$$x + sa = s(x + a)$$
 (A2, y/a)
= $s(a + x)$ (from induction hypothesis)
= $sa + x$ (from result of part (b), $x/a, y/x$)