ECM3404: Logic and Computation

Tutorial, 24th February 2009

Peano Arithmetic

Peano arithmetic (PA) is the first-order theory defined by the following axioms:

S1
$$\forall x \neg (sx = 0)$$

S2
$$\forall x \forall y (sx = sy \rightarrow x = y)$$

A1
$$\forall x(x+0=x)$$

A2
$$\forall x \forall y (x + sy = s(x + y))$$

M1
$$\forall x(x*0=0)$$

M2
$$\forall x \forall y (x * sy = (x * y) + x)$$

Ind
$$\Phi(0) \wedge \forall x (\Phi(x) \to \Phi(sx)) \to \forall x (\Phi(x))$$

A theorem of PA is

$$\forall x(0+x=x).$$

We prove it using the following instance of the induction schema **Ind**:

(1)
$$0 + 0 = 0 \land \forall x (0 + x = x \to 0 + sx = sx) \to \forall x (0 + x = x).$$

Note that the consequent here is the theorem to be proved, so it suffices to prove the antecedent. This has two conjuncts, called the base case (0 + 0 = 0) and the induction step $(\forall x(0 + x = x \rightarrow 0 + sx = sx))$.

The base case follows directly from **A1** with x instantiated to 0:

(2)
$$0+0=0$$
.

For the induction step, we assume (using an arbitrary constant a)

(3)
$$0 + a = a$$
.

By \forall -elim we can instantiate **A2** with x = 0, y = a to give

(4)
$$0 + sa = s(0 + a)$$

From (3), we can substitute a for 0 + a in (4) to give

(5)
$$0 + sa = sa$$
.

Since we've derived (5) from (3) we have proved (by \rightarrow -intro)

(6)
$$0 + a = a \rightarrow 0 + sa = sa$$
.

Since a was an arbitrary constant we can write this as

(7)
$$\forall x(0+x=x\to 0+sx=sx)$$

By \land -intro and \rightarrow -elim, (1), (2), and (7) imply

$$(8) \ \forall x(0+x=x),$$

as required.

All this may be set out more compactly as follows:

• Base Case (x = 0)

$$0 + 0 = 0$$
 (A1, $x/0$)

• **Induction Step** (from x = a to x = sa)

From the Induction hypothesis 0 + a = a we must prove 0 + sa = sa.

$$0 + sa = s(0 + a)$$
 (A2, $x/0, y/a$)
= sa (from the induction hypothesis)

Exercise. Prove the following theorems of PA:

1.
$$\forall x(x*ss0=x+x)$$

2.
$$\forall x \forall y (sx + y = s(x + y))$$

3.
$$\forall x \forall y (x + y = y + x)$$

Hint: You don't need to use **Ind** for number (1), but you will need to use the theorem we've just proved.