COM3412: Logic and Computation

Solutions to Exercise on Peano Arithmetic

2nd March 2009

- 1. Addition is associative: $\forall x \forall y \forall z (x + (y + z) = (x + y) + z)$.
 - Base Case (z=0)

$$x + (y + 0) = x + y$$
 (A1, x/y)
= $(x + y) + 0$ (A1, $x/x + y$)

• **Induction Step** (from z = a to z = sa)

From Induction Hypothesis x + (y + a) = (x + y) + a we derive x + (y + sa) = (x + y).

$$\begin{array}{rcl} x + (y + sa) & = & x + s(y + a) & (\mathsf{A2}, x/y, y/a) \\ & = & s(x + (y + a)) & (\mathsf{A2}, x/x, y/y + a) \\ & = & s((x + y) + a) & (\mathsf{IH}) \\ & = & (x + y) + sa & (\mathsf{A2}, x/x + y, y/a) \end{array}$$

- 2. Cancellation by subtraction: $\forall x \forall y \forall z (x+z=y+z \rightarrow x=y)$.
 - Base Case (z=0)

$$x + 0 = y + 0 \rightarrow x = y$$
 (A1 twice, x/x and x/y)

• **Induction Step** (from z = a to z = sa)

From Induction Hypothesis $x+a=y+a \rightarrow x=y$ we derive $x+sa=y+sa \rightarrow x=y$.

$$x + sa = y + sa$$
 \rightarrow $s(x + a) = s(y + a)$ (A2 twice, x/x and x/y)
 \rightarrow $x + a = y + a$ (S2, $x/x + a$, $x/y + a$)
 \rightarrow $x = y$ (from induction hypothesis)

- 3. Pre-multiplication by zero: $\forall x (0 * x = 0)$. Solution currently unavailable.
- 4. Pre-multiplication by a successor: $\forall x \forall y (sx * y = (x * y) + y)$. Solution currently unavailable.
- 5. Multiplication is commutative: $\forall x \forall y (x * y = y * x)$. Solution currently unavailable.
- 6. Multiplication is distributive over addition: $\forall x \forall y \forall z (x * (y + z) = (x * y) + (x * z))$.

1

• Base Case (z=0)

$$\begin{array}{rcl} x*(y+0) & = & x*y & (\text{A1}, x/0) \\ & = & x*y+0 & (\text{A1}, x/x*y) \\ & = & x*y+x*0 & (\text{M1}, x/x) \end{array}$$

• Induction Step (from z = a to z = sa)

From Induction Hypothesis x*(y+a) = x*y+x*a we derive x*(y+sa) = x*y+x*sa.

$$x*(y+sa) = x*s(y+a)$$
 (A2, $x/y, y/a$)
= $x*(y+a) + x$ (M2, $x/x, y/y + a$)
= $(x*y+x*a) + x$ (IH)
= $x*y + (x*a + x)$ (Question 1 above)
= $x*y + x*sa$ (M2, $x/x, y/a$)

- 7. Multiplication is associative: $\forall x \forall y \forall z (x * (y * z) = (x * y) * z)$.
 - Base Case (z=0)

$$x*(y*0) = x*0$$
 (M1, x/y)
= 0 (M1, x/x)
= $(x*y)*0$ (M1, $x/x*y$)

• **Induction Step** (from z = a to z = sa)

From Induction Hypothesis x * (y * a) = (x * y) * a we derive x * (y * sa) = (x * y) * sa.

$$\begin{array}{lll} x*(y*sa) & = & x*((y*a)+y) & (\text{M2},x/y,y/a) \\ & = & (x*(y*a))+(x*y) & (\text{From q.6},x/x,y/(y*a),z/y) \\ & = & ((x*y)*a)+(x*y) & (\text{From Induction Hypothesis}) \\ & = & (x*y)*sa & (\text{M2},x/(x*y),y/a) \end{array}$$

- 8. Divisors of zero: $\forall x \forall y (x * y = 0 \rightarrow x = 0 \lor y = 0)$.
 - Base Case (y = 0)

$$x*0=0 \rightarrow x=0 \lor 0=0$$
 (True since $0=0$ — which is an instance of the identity axiom $\forall x(x=x)$.)

• **Induction Step** (from y = a to y = sa)

$$x*sa = 0 \rightarrow (x*a) + x = 0$$
 (M1, $x/x, y/a$)
 $\rightarrow x = 0$ (Since if $x = sb$, say, $(x*a) + x = s((x*a) + b) \neq 0$)
 $\rightarrow x = 0 \lor sa = 0$ (By \lor -introduction)

Note that we didn't need to use the induction hypothesis! This is the exception rather than the rule.

9. Cancellation by division: $\forall x \forall y \forall z (x * sz = y * sz \rightarrow x = y)$.

This one is tricky, and merits a somewhat different style of answer. We'll do the induction with respect to x. But the predicate we substitute for Φ in \mathbf{Ind} has to contain a quantifier (in all previous cases we used arbitrary constants for the other variables, but this doesn't seem to work here). Thus the instance of \mathbf{Ind} we are using is

(1)
$$\forall y(0*sz = y*sz \to 0 = y) \land \\ \forall x(\forall y(x*sz = y*sz \to x = y) \to \forall y(sx*sz = y*sz \to sx = y)) \to \\ \forall x \forall y(x*sz = y*sz \to x = y)$$

The base case is now readily proved:

$$0*sz = y*sz \rightarrow 0 = y*sz$$
 (Question 3 above)
 $\rightarrow 0 = y \lor 0 = sz$ (Question 8 above)
 $\rightarrow 0 = y$ (S1)

All-introduction on this gives

(2)
$$\forall y(0*sz = y*sz \to 0 = y).$$

For the induction step we assume

(IH)
$$\forall y(a*sz = y*sz \rightarrow a = y).$$

We now have

$$sa*sz = y*sz \rightarrow (a*sz) + sz = y*sz$$
 (Question 4 above)
 $\rightarrow s((a*sz) + z) = y*sz$ (A2)
 $\rightarrow y*sz \neq 0$ (S1)
 $\rightarrow y \neq 0$ (Question 3 above)

If $y \neq 0$ then y = sd for some d; starting again, we have

$$sa*sz = y*sz \rightarrow sa*sz = sd*sz$$
 (As shown above)
 $\rightarrow (a*sz) + sz = (d*sz) + sz$ (Question 4 above, twice)
 $\rightarrow a*sz = d*sz$ (Question 2 above)
 $\rightarrow a = d$ (IH)
 $\rightarrow sa = sd$ (Identity rules)
 $\rightarrow sa = y$ (Since $y = sd$)

By All-intro we now have

$$\forall y(sa*sz = y*sz \rightarrow sa = y),$$

and since this is derived from IH, If-intro allows us to assert

$$\forall y(a*sz = y*sz \to a = y) \to \forall y(sa*sz = y*sz \to sa = y).$$

By All-intro this gives

(3)
$$\forall x (\forall y (x * sz = y * sz \rightarrow x = y) \rightarrow \forall y (sx * sz = y * sz \rightarrow sx = y))$$

which is the full induction step. 1, 2, 3 now give us

$$\forall x \forall y (x * sz = y * sz \rightarrow x = y)$$

which by All-intro gives

$$\forall z \forall x \forall y (x * sz = y * sz \to x = y).$$

All that remains is to reorder the quantifiers (actually, this is not a totally trivial step, it needs to be proved using All-intro and All-elim that this is allowed—but we'll take that as read).

I told you this one was harder!