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Learning in Neural NetworksLearning in Neural Networks
Falls broadly into two types:Falls broadly into two types:
•• Supervised LearningSupervised Learning
•• Unsupervised LearningUnsupervised Learning

Supervised LearningSupervised Learning
•• Similar to the way children learnSimilar to the way children learn
•• The output of the neural network is compared against The output of the neural network is compared against 

the correct outputthe correct output
•• The network then corrects itself based on that outputThe network then corrects itself based on that output

Unsupervised LearningUnsupervised Learning
•• The network organises itself according to patterns in the The network organises itself according to patterns in the 

data data 
•• No external 'desired output' is providedNo external 'desired output' is provided



The PerceptronThe Perceptron
Consists of a set of weighted connections, the Consists of a set of weighted connections, the 
neuron (incorporating the activation function) neuron (incorporating the activation function) 
and the output axon.and the output axon.

In this case, the activation function is the In this case, the activation function is the 
heaviside or threshold functionheaviside or threshold function
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Learning in a PerceptronLearning in a Perceptron
• Initialise weights & threshold
• Present the input and desired output
• Calculate the actual output of the network:
• For each input:

• Multiply the input data (xi) by its weight (wi).
• Sum the weighted inputs and pass through the activation 

function

• Adapt the weights:
• If correct wi(t+1) = wi(t)
• If output 0, should be 1 wi(t+1) = wi(t)+xi(t)
• If output 1, should be 0 wi(t+1) = wi(t)-xi(t)
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Perceptron Learning Perceptron Learning -- OROR
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Input 1
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Input 2 Present pattern 1 – fact(0*0.2 + 0*0.6) = 0
desired = 0
weights stay the same

Present pattern 2 – fact(0*0.2 + 1*0.6) =0
desired = 1
weight 1 += 0
weight 2 += 1

Present pattern 3 – fact(1*0.2 + 0*1.6) = 0
desired = 1
weight 1 += 1
weight 2 += 0

Present pattern 4 – fact(1*1.2+1*1.6) = 1
desired = 1
weights stay same

Iteration 1



Perceptron Learning Iteration 2Perceptron Learning Iteration 2
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Input 1
Output

Input 2 Present pattern 1 – fact(0*1.2 + 0*1.6) = 0
desired = 0
weights stay the same

Present pattern 2 – fact(0*1.2 + 1*1.6) =1
desired = 1
weights stay the same

Present pattern 3 – fact(1*1.2 + 0*1.6) = 1
desired = 1
weights stay the same

Present pattern 4 – fact(1*1.2+1*1.6) = 1
desired = 1
weights stay same

Iteration 2



Perceptron Learning Perceptron Learning -- XORXOR
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Input 2 Present pattern 1 – fact(0*0.2 + 0*0.6) = 0
desired = 0
weights stay the same

Present pattern 2 – fact(0*0.2 + 1*0.6) =0
desired = 1
weight 1 += 0
weight 2 += 1

Present pattern 3 – fact(1*0.2 + 0*1.6) = 0
desired = 1
weight 1 += 1
weight 2 += 0

Present pattern 4 – fact(1*1.2+1*1.6) = 1
desired = 0
weight 1 -= 1
weight 2 -= 1

Iteration 1

We end up back at the start!



Modified Versions of LearningModified Versions of Learning
The weight update function can use a decimal The weight update function can use a decimal 
term term ηη between 0.0 and 1.0 to slow learning.  between 0.0 and 1.0 to slow learning.  
Giving us:Giving us:

If correctIf correct wwii(t+1) = (t+1) = wwii(t(t))
If output 0, should be 1:If output 0, should be 1: wwii(t+1) = (t+1) = wwii(t(t) + ) + ηηxxii(t(t))
If output 1, should be 0:If output 1, should be 0: wwii(t+1) = (t+1) = wwii(t(t) ) -- ηηxxii(t(t))

WidrowWidrow--Hoff Learning Rule Hoff Learning Rule –– weight updates weight updates 
proportionate to the error made.  Giving us:proportionate to the error made.  Giving us:

∆∆ = desired output = desired output –– actual outputactual output
wwii(t+1) = (t+1) = wwii(t(t) + ) + ηη∆∆xxii(t(t))



Limitations of the Limitations of the PerceptronPerceptron
No matter what we do with the learning rule in No matter what we do with the learning rule in perceptronsperceptrons, , 
we can only solve linearly separable problemswe can only solve linearly separable problems

Linearly separable = we can draw a straight line which Linearly separable = we can draw a straight line which 
separates our two classesseparates our two classes

Can we do this for XOR?Can we do this for XOR?

XORLinearly Separable
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PerceptronPerceptron DemoDemo

More Java demos can be found at:More Java demos can be found at:
•• neuron.eng.wayne.eduneuron.eng.wayne.edu/java/java



MultiLayerMultiLayer PerceptronPerceptron
These limitations can be overcome by These limitations can be overcome by 
adding a further layer to the networkadding a further layer to the network
Three layersThree layers
•• InputInput
•• HiddenHidden
•• OutputOutput
However, we also need a modified However, we also need a modified 
algorithm to propagate information algorithm to propagate information 
through the network and do some learningthrough the network and do some learning
FeedforwardFeedforward, , backpropagationbackpropagation neural neural 
networknetwork



Activation FunctionsActivation Functions

This gives a smoother This gives a smoother 
responseresponse

The steepness of the The steepness of the 
curve is changed by zcurve is changed by z

The derivative can be The derivative can be 
easily computedeasily computed

Until now Until now –– heavisideheaviside/threshold function has /threshold function has 
been usedbeen used

In In mutlilayermutlilayer perceptronsperceptrons a number of different a number of different 
functions can be used, including the Sigmoid functions can be used, including the Sigmoid 
functionfunction

O
u
tp

u
t 

R
es

p
o
n
se

ze
zP

−+
=

1
1)(

Input Activation

Sigmoid Function



MultiLayerMultiLayer PerceptronPerceptron
Output Response

Weights

Units

Input Data



WeightsWeights

Weights are variable strength Weights are variable strength 
connections between unitsconnections between units
Propagate signals from one unit to Propagate signals from one unit to 
the nextthe next
Main learning componentMain learning component
•• Weights are the main component Weights are the main component 

changed during learningchanged during learning



Supervised LearningSupervised Learning

Change Weights

Compare Output with Expected and Compute Difference

Input Data



Learning Algorithm Learning Algorithm -- FeedForwardFeedForward

• Initialise weights and thresholds to small 
random values

• Present Input and Desired Output
• Calculate actual output

– Multiply incoming signal by weight
– Pass this through sigmoid activation function
– Pass on this output to units in the next layer
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Learning Algorithm Learning Algorithm –– BackpropagationBackpropagation 11

• Adapt the weights
• Start from the output layer and work 

backwards:
– New weight (t+1) = old weight, plus a 

learning rate*error for pattern p on node 
j*output signal for p on j

pjpjijij otwtw ηδ+=+ )()1(



Learning Algorithm Learning Algorithm –– BackpropagationBackpropagation 22
• Compute error as follows:
• For output units

– Compute error sigmoid derivative*target 
output – actual output

• For hidden units
– Use the sigmoid derivative*weighted error of 

the k units in the layer above
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Learning IllustrationLearning Illustration



Two Types of Weight UpdatingTwo Types of Weight Updating

Batch UpdatingBatch Updating
•• All patterns are presented, errors are All patterns are presented, errors are 

calculated, then the weights are calculated, then the weights are 
updatedupdated

Online UpdatingOnline Updating
•• The weights are updated after the The weights are updated after the 

presentation of each patternpresentation of each pattern



XOR Problem XOR Problem –– A A MultiLayerMultiLayer
SolutionSolution
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Data Mining DemoData Mining Demo

DemoDemo



Neural Network PropertiesNeural Network Properties
Able to relate input variables to required output Able to relate input variables to required output 
e.g.e.g.
•• Input car attributes and predict MPGInput car attributes and predict MPG
•• Predict stock market based on historical informationPredict stock market based on historical information
•• Classify individuals as ‘cancerous’ and ‘nonClassify individuals as ‘cancerous’ and ‘non--cancerous’ cancerous’ 

based on their genes based on their genes 
•• Many other control and learning tasksMany other control and learning tasks

Is able to Is able to generalisegeneralise between samplesbetween samples
Shows Shows ‘graceful degradation’‘graceful degradation’ –– removing one or removing one or 
more units results in reduced performance, not more units results in reduced performance, not 
complete failurecomplete failure



Next Time….Next Time….

Applications of Applications of ANNsANNs
Issues in running neural networksIssues in running neural networks
•• Input/output representationsInput/output representations
•• Choosing architectures Choosing architectures 
•• TestingTesting
•• OverfittingOverfitting
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