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Lecture 14

Neural Networks 2: Learning In
Neural Networks



Learing In Neural Networks

= Falls broadly into two types:
e Supervised Learning
e Unsupervised Learning

s Supervised Learning
o Similar to the way children learn

o The output of the neural network is compared against
the correct output

e The network then corrects itself based on that output

= Unsupervised Learning

. '(Ij'he network organises itself according to patterns in the
ata

e No external 'desired output’ is provided



The Perceptron

= Consists of a set of weighted connections, the
neuron (incorporating the activation function)
and the output axon.

= In this case, the activation function is the
heaviside or threshold function
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Learning in a Perceptron

* Tnitialise weights & threshold
®* Present the input and desired output
® Calculate the actual output of the network:
* For each 1nput:
* Multiply the input data (x;) by 1its weight (w,).

* Sum the weighted inputs and pass through the activation
function

* Adapt the weights:

* If correct w, (t+1) = w, (t)
* If output 0, should be 1 w,(t+l) = w,(t)+x,(t)
 If output 1, should be 0 w,(t+l) = w,(t)-x,(t)



Perceptron LLearning - OR

Threshold =1
Input 1
pu 0.2
Output
0.6 lteration 1
Input 2 Present pattern 1 —f,_(0*0.2 + 0*0.6) = 0
desired = 0

weights stay the same
Present pattern 2 —f_(0*0.2 + 1*0.6) =0
desired =1
weight 1 +=0
weight 2 +=1
0 1 1 Present pattern 3 — f_(1*0.2 + 0*1.6) = 0
1 0 1 desired = 1
weight 1 +=1
L L L weight 2 +=0
Present pattern 4 —f__(1*1.2+1*1.6) = 1
desired = 1
weights stay same




Perceptron LLearning lteration 2
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Iteration 2
Present pattern 1 —f_(0*1.2 + 0*1.6) = 0
desired =0

weights stay the same
Present pattern 2 — f_(0*1.2 + 1*1.6) =1

desired =1

weights stay the same
Present pattern 3 —f_(1*1.2 + 0*1.6) = 1

desired = 1

weights stay the same
Present pattern 4 — f_(1*1.2+1*1.6) = 1

desired =1

weights stay same



Perceptron Learning - XOR

Input 1
pu 0.2
Output
0.6 lteration 1
Input 2 Present pattern 1 —f,_(0*0.2 + 0*0.6) = 0
desired = 0

weights stay the same
Present pattern 2 —f_(0*0.2 + 1*0.6) =0
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Present pattern 4 —f__(1*1.2+1*1.6) = 1
desired =0
We end up back at the start! weight 1 -= 1

weight 2 -=1



Modified Versions ofi Learning

= [he weight update function can use a decimal
term n between 0.0 and 1.0 to slow learning.

Giving us:
If correct w, (t+1) = w,(t)
If output 0, should be 1: w,(t+1) = w,(t) + nx,(t)
If output 1, should be 0: w,(t+1) = w,(t) - nx,(t)

= Widrow-Hoff Learning Rule — weight updates
proportionate to the error made. Giving us:

A = desired output — actual output
w, (E+1) = w, (t) + nAx, (t)



Input 2

Limitations ofi the Perceptron

No matter what we do with the learning rule in perceptrons,
we can only solve linearly separable problems

Linearly separable = we can draw a straight line which
separates our two classes

Can we do this for XOR?
Linearly Separable XOR

Input 2

Input 1 0 Input 1 1



Perceptron Demo

s More Java demos can be found at:
* Neuron.eng.wayne.edu/java



MultiLayer Perceptron

These limitations can be overcome by
adding a further layer to the network
Three layers

e Input

e Hidden

e Output

However, we also need a modified

algorithm to propagate information
through the network and do some learning

Feedforward, backpropagation neural
network




Activation Functions

s Until now - heaviside/threshold function has

been used

= [n mutlilayer perceptrons a number of different
functions can be used, including the Sigmoid

Output Response

function

P(z) =

Input Activation

Sigmoid Function

1
l+e~

This gives a smoother
response

The steepness of the
curve is changed by z

The derivative can be
easily computed



MultiLayer Perceptron

Output Response

Weights
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Weights

= Weights are variable strength
connections between units

= Propagate signals from one unit to
the next
= Main learning component

e Weights are the main component
changed during learning



SUPErvisead Learning
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Learing Algorithm - FeedFoerward

 Initialise weights and thresholds to small
random values

 Present Input and Desired Output

« Calculate actual output
— Multiply incoming signal by weight
— Pass this through sigmoid activation function
— Pass on this output to units in the next layer




Learming Algorithm — Backpropagation 1

« Adapt the weights

« Start from the output layer and work
backwards:
— New weight (t+1) = old weight, plus a

learning rate*error for pattern p on node
j*output signal for p on j




Learning Algorithm — Backprepagation 2

Compute error as follows:

For output units

Compute error sigmoid derivative*target
output - actual output

5p,- = 20, (1 _Opj)(tpj _Opj)

For hidden units

Use the sigmoid derivative*weighted error of
the k units in the layer above

5p,- =20, (1- 0, )Zé‘pkwjk



Learning lllustration

Execute network Backpropagate

output(t)




Two Types of Weilght Updating

s Batch Updating

o All patterns are presented, errors are
calculated, then the weights are
updated

= Online Updating

e The weights are updated after the
presentation of each pattern



XOR Problem — A MultiLayer
Solution
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Data Mining Demo

s Demo



Neural Network Properties

= Able to relate input variables to required output
e.d.
o Input car attributes and predict MPG
e Predict stock market based on historical information

o Classify individuals as ‘cancerous” and ‘non-cancerous’
based on their genes

e Many other control and learning tasks

= [s able to generalise between samples

= Shows ‘graceful degradation” — removing one or
more units results in reduced performance, not
complete failure



Next Time....

s Applications of ANNs

s [ssues in running neural networks
o [Input/output representations
e Choosing architectures
e Testing
o Overfitting
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