ECM3412/ECMM409 Nature Inspired Computation Lecture 14

Neural Networks 2: Learning in Neural Networks

Learning in Neural Networks

- Falls broadly into two types:
 - Supervised Learning
 - Unsupervised Learning

Supervised Learning

- Similar to the way children learn
- The output of the neural network is compared against the correct output
- The network then corrects itself based on that output

Unsupervised Learning

- The network organises itself according to patterns in the data
- No external 'desired output' is provided

The Perceptron

- Consists of a set of weighted connections, the neuron (incorporating the activation function) and the output axon.
- In this case, the activation function is the heaviside or threshold function

Learning in a Perceptron

- Initialise weights & threshold
- Present the input and desired output
- Calculate the actual output of the network:
- For each input:
 - Multiply the input data (x_i) by its weight (w_i) .
 - Sum the weighted inputs and pass through the activation function

$$y_{pj} = f \left[\sum_{i=0}^{n-1} w_i x_i \right]$$

- Adapt the weights:
 - If correct

- $w_{i}(t+1) = w_{i}(t)$
- If output 0, should be 1 $w_i(t+1) = w_i(t) + x_i(t)$
- If output 1, should be 0 $w_i(t+1) = w_i(t) x_i(t)$

Perceptron Learning - OR

Input 2

Input 1	Input 2	Output
0	0	0
0	1	1
1	0	1
1\ \	$ig 1 ig \setminus$	1

Iteration 1

Present pattern 1 –
$$f_{act}(0^*0.2 + 0^*0.6) = 0$$

desired = 0

weights stay the same

Present pattern
$$2 - f_{act}(0^*0.2 + 1^*0.6) = 0$$

desired = 1

Present pattern
$$3 - f_{act}(1*0.2 + 0*1.6) = 0$$

$$desired = 1$$

Present pattern 4 –
$$f_{act}(1*1.2+1*1.6) = 1$$

desired = 1

weights stay same

Perceptron Learning Iteration 2

Input 2

Input 1	Input 2	Output
0	0	0
0	1	1
1	0	1
1\	1\\	1

Iteration 2

Present pattern 1 –
$$f_{act}(0*1.2 + 0*1.6) = 0$$

desired = 0
weights stay the same

Present pattern 2 –
$$f_{act}(0*1.2 + 1*1.6) = 1$$

desired = 1

weights stay the same
Present pattern
$$3 - f_{act}(1*1.2 + 0*1.6) = 1$$

desired = 1

weights stay the same
Present pattern
$$4 - f_{act}(1*1.2+1*1.6) = 1$$

desired = 1
weights stay same

Perceptron Learning - XOR

Input 2

Input 1	Input 2	Output
0	0	0
0	1	1
1	0	1
1\ \	1\\	0

We end up back at the start!

Iteration 1

Present pattern 1 –
$$f_{act}(0*0.2 + 0*0.6) = 0$$

desired = 0

weights stay the same

Present pattern
$$2 - f_{act}(0^*0.2 + 1^*0.6) = 0$$

$$desired = 1$$

Present pattern
$$3 - f_{act}(1*0.2 + 0*1.6) = 0$$

$$desired = 1$$

Present pattern
$$4 - f_{act}(1*1.2+1*1.6) = 1$$

$$desired = 0$$

Modified Versions of Learning

 The weight update function can use a decimal term η between 0.0 and 1.0 to slow learning. Giving us:

```
If correct w_i(t+1) = w_i(t)

If output 0, should be 1: w_i(t+1) = w_i(t) + \eta x_i(t)

If output 1, should be 0: w_i(t+1) = w_i(t) - \eta x_i(t)
```

Widrow-Hoff Learning Rule – weight updates proportionate to the error made. Giving us:

```
\Delta = desired output – actual output

w_i(t+1) = w_i(t) + \eta \Delta x_i(t)
```

Limitations of the Perceptron

- No matter what we do with the learning rule in perceptrons, we can only solve linearly separable problems
- Linearly separable = we can draw a straight line which separates our two classes
- Can we do this for XOR?

Perceptron Demo

- More Java demos can be found at:
 - neuron.eng.wayne.edu/java

MultiLayer Perceptron

- These limitations can be overcome by adding a further layer to the network
- Three layers
 - Input
 - Hidden
 - Output
- However, we also need a modified algorithm to propagate information through the network and do some learning
- Feedforward, backpropagation neural network

Activation Functions

- Until now heaviside/threshold function has been used
- In mutlilayer perceptrons a number of different functions can be used, including the Sigmoid function

Input Activation

Sigmoid Function

- This gives a smoother response
- The steepness of the curve is changed by z
- The derivative can be easily computed

MultiLayer Perceptron

Weights

- Weights are variable strength connections between units
- Propagate signals from one unit to the next
- Main learning component
 - Weights are the main component changed during learning

Supervised Learning

Compare Output with Expected and Compute Difference

Learning Algorithm - FeedForward

- Initialise weights and thresholds to small random values
- Present Input and Desired Output
- Calculate actual output
 - Multiply incoming signal by weight
 - Pass this through sigmoid activation function
 - Pass on this output to units in the next layer

$$y_{pj} = f \left[\sum_{i=0}^{n-1} w_i x_i \right]$$

Learning Algorithm – Backpropagation 1

- Adapt the weights
- Start from the output layer and work backwards:
 - New weight (t+1) = old weight, plus a learning rate*error for pattern p on node j*output signal for p on j

$$W_{ij}(t+1) = W_{ij}(t) + \eta \delta_{pj} O_{pj}$$

Learning Algorithm – Backpropagation 2

- Compute error as follows:
- For output units
 - Compute error sigmoid derivative*target output – actual output

$$\delta_{pj} = zo_{pj}(1-o_{pj})(t_{pj}-o_{pj})$$

- For hidden units
 - Use the sigmoid derivative*weighted error of the k units in the layer above

$$\delta_{pj} = zo_{pj}(1-o_{pj})\sum_{k}\delta_{pk}w_{jk}$$

Learning Illustration

Two Types of Weight Updating

Batch Updating

 All patterns are presented, errors are calculated, then the weights are updated

Online Updating

The weights are updated after the presentation of each pattern

XOR Problem – A MultiLayer Solution

Data Mining Demo

Demo

Neural Network Properties

- Able to relate input variables to required output e.g.
 - Input car attributes and predict MPG
 - Predict stock market based on historical information
 - Classify individuals as 'cancerous' and 'non-cancerous' based on their genes
 - Many other control and learning tasks
- Is able to generalise between samples
- Shows 'graceful degradation' removing one or more units results in reduced performance, not complete failure

Next Time....

- Applications of ANNs
- Issues in running neural networks
 - Input/output representations
 - Choosing architectures
 - Testing
 - Overfitting