
ECM3412/ECMM409ECM3412/ECMM409
Nature Inspired ComputationNature Inspired Computation

Lecture 14Lecture 14

Neural Networks 2: Learning in Neural Networks 2: Learning in
Neural NetworksNeural Networks

Learning in Neural NetworksLearning in Neural Networks
Falls broadly into two types:Falls broadly into two types:
•• Supervised LearningSupervised Learning
•• Unsupervised LearningUnsupervised Learning

Supervised LearningSupervised Learning
•• Similar to the way children learnSimilar to the way children learn
•• The output of the neural network is compared against The output of the neural network is compared against

the correct outputthe correct output
•• The network then corrects itself based on that outputThe network then corrects itself based on that output

Unsupervised LearningUnsupervised Learning
•• The network organises itself according to patterns in the The network organises itself according to patterns in the

data data
•• No external 'desired output' is providedNo external 'desired output' is provided

The PerceptronThe Perceptron
Consists of a set of weighted connections, the Consists of a set of weighted connections, the
neuron (incorporating the activation function) neuron (incorporating the activation function)
and the output axon.and the output axon.

In this case, the activation function is the In this case, the activation function is the
heaviside or threshold functionheaviside or threshold function

w1

w2

w3

w4

w5

Output

Learning in a PerceptronLearning in a Perceptron
• Initialise weights & threshold
• Present the input and desired output
• Calculate the actual output of the network:
• For each input:

• Multiply the input data (xi) by its weight (wi).
• Sum the weighted inputs and pass through the activation

function

• Adapt the weights:
• If correct wi(t+1) = wi(t)
• If output 0, should be 1 wi(t+1) = wi(t)+xi(t)
• If output 1, should be 0 wi(t+1) = wi(t)-xi(t)

[]∑
−

=
=

1

0

n

i
iipj xwfy

Perceptron Learning Perceptron Learning -- OROR
Threshold =1

0.2

0.6

111

101

110

000

OutputInput 2Input 1

Input 1
Output

Input 2 Present pattern 1 – fact(0*0.2 + 0*0.6) = 0
desired = 0
weights stay the same

Present pattern 2 – fact(0*0.2 + 1*0.6) =0
desired = 1
weight 1 += 0
weight 2 += 1

Present pattern 3 – fact(1*0.2 + 0*1.6) = 0
desired = 1
weight 1 += 1
weight 2 += 0

Present pattern 4 – fact(1*1.2+1*1.6) = 1
desired = 1
weights stay same

Iteration 1

Perceptron Learning Iteration 2Perceptron Learning Iteration 2
Threshold =1

1.2

1.6

111

101

110

000

OutputInput 2Input 1

Input 1
Output

Input 2 Present pattern 1 – fact(0*1.2 + 0*1.6) = 0
desired = 0
weights stay the same

Present pattern 2 – fact(0*1.2 + 1*1.6) =1
desired = 1
weights stay the same

Present pattern 3 – fact(1*1.2 + 0*1.6) = 1
desired = 1
weights stay the same

Present pattern 4 – fact(1*1.2+1*1.6) = 1
desired = 1
weights stay same

Iteration 2

Perceptron Learning Perceptron Learning -- XORXOR
0.2

0.6

011

101

110

000

OutputInput 2Input 1

Input 1
Output

Input 2 Present pattern 1 – fact(0*0.2 + 0*0.6) = 0
desired = 0
weights stay the same

Present pattern 2 – fact(0*0.2 + 1*0.6) =0
desired = 1
weight 1 += 0
weight 2 += 1

Present pattern 3 – fact(1*0.2 + 0*1.6) = 0
desired = 1
weight 1 += 1
weight 2 += 0

Present pattern 4 – fact(1*1.2+1*1.6) = 1
desired = 0
weight 1 -= 1
weight 2 -= 1

Iteration 1

We end up back at the start!

Modified Versions of LearningModified Versions of Learning
The weight update function can use a decimal The weight update function can use a decimal
term term ηη between 0.0 and 1.0 to slow learning. between 0.0 and 1.0 to slow learning.
Giving us:Giving us:

If correctIf correct wwii(t+1) = (t+1) = wwii(t(t))
If output 0, should be 1:If output 0, should be 1: wwii(t+1) = (t+1) = wwii(t(t) +) + ηηxxii(t(t))
If output 1, should be 0:If output 1, should be 0: wwii(t+1) = (t+1) = wwii(t(t)) -- ηηxxii(t(t))

WidrowWidrow--Hoff Learning Rule Hoff Learning Rule –– weight updates weight updates
proportionate to the error made. Giving us:proportionate to the error made. Giving us:

∆∆ = desired output = desired output –– actual outputactual output
wwii(t+1) = (t+1) = wwii(t(t) +) + ηη∆∆xxii(t(t))

Limitations of the Limitations of the PerceptronPerceptron
No matter what we do with the learning rule in No matter what we do with the learning rule in perceptronsperceptrons, ,
we can only solve linearly separable problemswe can only solve linearly separable problems

Linearly separable = we can draw a straight line which Linearly separable = we can draw a straight line which
separates our two classesseparates our two classes

Can we do this for XOR?Can we do this for XOR?

XORLinearly Separable
1

In
p
u
t

2

In
p
u
t

2

0
Input 10 1Input 1

PerceptronPerceptron DemoDemo

More Java demos can be found at:More Java demos can be found at:
•• neuron.eng.wayne.eduneuron.eng.wayne.edu/java/java

MultiLayerMultiLayer PerceptronPerceptron
These limitations can be overcome by These limitations can be overcome by
adding a further layer to the networkadding a further layer to the network
Three layersThree layers
•• InputInput
•• HiddenHidden
•• OutputOutput
However, we also need a modified However, we also need a modified
algorithm to propagate information algorithm to propagate information
through the network and do some learningthrough the network and do some learning
FeedforwardFeedforward, , backpropagationbackpropagation neural neural
networknetwork

Activation FunctionsActivation Functions

This gives a smoother This gives a smoother
responseresponse

The steepness of the The steepness of the
curve is changed by zcurve is changed by z

The derivative can be The derivative can be
easily computedeasily computed

Until now Until now –– heavisideheaviside/threshold function has /threshold function has
been usedbeen used

In In mutlilayermutlilayer perceptronsperceptrons a number of different a number of different
functions can be used, including the Sigmoid functions can be used, including the Sigmoid
functionfunction

O
u
tp

u
t

R
es

p
o
n
se

ze
zP

−+
=

1
1)(

Input Activation

Sigmoid Function

MultiLayerMultiLayer PerceptronPerceptron
Output Response

Weights

Units

Input Data

WeightsWeights

Weights are variable strength Weights are variable strength
connections between unitsconnections between units
Propagate signals from one unit to Propagate signals from one unit to
the nextthe next
Main learning componentMain learning component
•• Weights are the main component Weights are the main component

changed during learningchanged during learning

Supervised LearningSupervised Learning

Change Weights

Compare Output with Expected and Compute Difference

Input Data

Learning Algorithm Learning Algorithm -- FeedForwardFeedForward

• Initialise weights and thresholds to small
random values

• Present Input and Desired Output
• Calculate actual output

– Multiply incoming signal by weight
– Pass this through sigmoid activation function
– Pass on this output to units in the next layer

[]∑
−

=
=

1

0

n

i
iipj xwfy

Learning Algorithm Learning Algorithm –– BackpropagationBackpropagation 11

• Adapt the weights
• Start from the output layer and work

backwards:
– New weight (t+1) = old weight, plus a

learning rate*error for pattern p on node
j*output signal for p on j

pjpjijij otwtw ηδ+=+)()1(

Learning Algorithm Learning Algorithm –– BackpropagationBackpropagation 22
• Compute error as follows:
• For output units

– Compute error sigmoid derivative*target
output – actual output

• For hidden units
– Use the sigmoid derivative*weighted error of

the k units in the layer above

))(1(pjpjpjpjpj otozo −−=δ

∑−=
k

jkpkpjpjpj wozo δδ)1(

Learning IllustrationLearning Illustration

Two Types of Weight UpdatingTwo Types of Weight Updating

Batch UpdatingBatch Updating
•• All patterns are presented, errors are All patterns are presented, errors are

calculated, then the weights are calculated, then the weights are
updatedupdated

Online UpdatingOnline Updating
•• The weights are updated after the The weights are updated after the

presentation of each patternpresentation of each pattern

XOR Problem XOR Problem –– A A MultiLayerMultiLayer
SolutionSolution

1.5

0.5

+1+1

+1+1

-2

011

101

110

000

OutputInput 2Input 1

Data Mining DemoData Mining Demo

DemoDemo

Neural Network PropertiesNeural Network Properties
Able to relate input variables to required output Able to relate input variables to required output
e.g.e.g.
•• Input car attributes and predict MPGInput car attributes and predict MPG
•• Predict stock market based on historical informationPredict stock market based on historical information
•• Classify individuals as ‘cancerous’ and ‘nonClassify individuals as ‘cancerous’ and ‘non--cancerous’ cancerous’

based on their genes based on their genes
•• Many other control and learning tasksMany other control and learning tasks

Is able to Is able to generalisegeneralise between samplesbetween samples
Shows Shows ‘graceful degradation’‘graceful degradation’ –– removing one or removing one or
more units results in reduced performance, not more units results in reduced performance, not
complete failurecomplete failure

Next Time….Next Time….

Applications of Applications of ANNsANNs
Issues in running neural networksIssues in running neural networks
•• Input/output representationsInput/output representations
•• Choosing architectures Choosing architectures
•• TestingTesting
•• OverfittingOverfitting

	ECM3412/ECMM409Nature Inspired ComputationLecture 14 Neural Networks 2: Learning in Neural Networks
	Learning in Neural Networks
	The Perceptron
	Learning in a Perceptron
	Perceptron Learning - OR
	Perceptron Learning Iteration 2
	Perceptron Learning - XOR
	Modified Versions of Learning
	Limitations of the Perceptron
	Perceptron Demo
	MultiLayer Perceptron
	Activation Functions
	MultiLayer Perceptron
	Weights
	Supervised Learning
	Learning Algorithm - FeedForward
	Learning Algorithm – Backpropagation 1
	Learning Algorithm – Backpropagation 2
	Learning Illustration
	Two Types of Weight Updating
	XOR Problem – A MultiLayer Solution
	Data Mining Demo
	Neural Network Properties
	Next Time….

