# ECM3412 Nature-Inspired Computation

Applications of Cellular Automata

## Today's Plan

- Brief Recap on ALife & Cellular Automata
- Application 1: Enzyme kinetics
- Application 2: Epidemiology
- Application 3: Optimisation (Perhaps)
- Conclusions
- Examinable Reading

# Artificial Life (ALife) Summary

- ALife is the simulation/synthesis of life-like forms in:
  - Wetware
  - Software
  - Hardware
- Biology is top-down
- Alife and cellular automata are bottom-up
- Alife and CA are concerned with the interaction of simple elements and emergent behaviours

#### Cellular Automata

- Represented by a grid/lattice of discrete cells
- Each cell can be in a number of 'states'
- Simulation progresses in discrete timesteps
- At each timestep the states of cells are updated by the state transition rules

#### Cellular Automata Applications

- CA have been applied in a large number of areas:
  - Physics
  - Fluid Dynamics
  - Plate Tectonics
  - Urban Modelling
  - Biology and Bioinformatics
- Cellular automata don't use a fitness function, they can be difficult to apply to search and optimisation problems
- However, this is possible as we might see later
- Therefore many of the applications are efficient simulations of natural systems

### Application 1: Enzyme Kinetics



- Enzymes catalyse (speed up) chemical reactions within the body many thousands or millions of times.
- Without enzymes, life could not exist
- For instance, without enzymes it would take weeks to digest food, by which time we'd be dead
- The enzyme works (for the purposes of this application) by locking onto it's target (known as the substrate), catalysing the reaction and releasing the product(s)

#### Cellular Automata Models for Enzyme Kinetics (Kier et al, 1996)

- Better understanding of the reaction between enzyme and substrate could help us to better understand the large number of enzymeinvolved processes in the cell.
- Enzyme reactions are dynamic, and even with frequent experiments, the dynamic process cannot fully be seen.
- Modelling may provide the solution.

# Cellular Automata Models for Enzyme Kinetics (Kier et al, 1996)

- The cellular automaton consists of:
  - Grid 110\*110 grid of cells
  - States Each cell can have one of four states:
    - Enzyme (E)
    - Substrate (S)
    - Product (P)
    - Water (W)
  - Neighbourhood Each cell has an extended von Neumann neighbourhood.
  - Rules Each cell has associated with it, the probability of its movement and interaction with other molecules in the CA



# Cellular Automata Models for Enzyme Kinetics (Kier et al, 1996)

- Initialisation the grid is filled with 69% water and 31% unused space. When other ingredients are added, they replace the water, so the cavity ratio is maintained
- Each of E,S,P and W have:
  - A probability of joining (moving towards) other molecules in the neighbourhood.
  - A probability of breaking (moving away) from the other molecules
  - The movement probability. A probability of 0 indicates a stationary enzyme.
- Each enzyme can join with one molecule of either S,P or W, but not another E.

Cellular Automata Models for Enzyme Kinetics (Kier et al, 1996)

 A further parameter gives a probability for an enzyme-substrate complex turning into an enzymeproduct complex.



- The water-breaking parameter can be seen as a substitute for temperature in the system.
- The breaking parameter between other molecules and water determines their hydrophobicity



#### Cellular Automata Models for Enzyme Kinetics (Kier et al, 1996)

- These CA parameters were used:
  - Water "Temperature" set to simulate human body temperature
  - Run several hundred times to discover the impact of parameter settings
- These parameters were found to replicate the Michaelis-Menten kinetics of enzyme reactions for enzyme reactions.
- The cellular automaton model enables:
  - The user to monitor the concentration of each of the molecules at any timestep
  - The user to change the concentration of any of the molecules and see the effect on the system

#### Conclusions

- Cellular automata can provide a model of biochemical processes where the parameters can be changed
- Not easy to see how this might be done without CA and would require complex equations.
- Interesting philosophical point artificial life simulating real life

#### **Epidemiology Applications**

- Spread of disease (epidemiology) can be effectively modelled by cellular automata
- Cells represent points in space and could be occupied or not-occupied by potentially disease carrying agents (e.g. humans or birds)
- The points in space can be at a different scale:
  - Confined space e.g. waiting room/train platform
  - City
  - County
  - Country
  - Worldwide

## Epidemiology with CAs

- There are standard methods for simulating the spread of disease.
- Each cell can take a variety of states:
  - Occupied (by N individuals)/Not Occupied
  - If occupied, then the individual(s) can be:
    - S Susceptible
    - I Infected
    - R Recovery
- Type and size of neighbourhood will be dependent on the scale of the simulation and the infectiousness of the disease

#### **Epidemiology Parameters**

- The model parameters can be set up to simulate agent (avian or human) movements between cells by modifying the speed of state change
- Other parameters can be changed by subtly changing the state transition rules to reflect the disease:
  - Infectiousness (how easily susceptible individuals become infected)
  - Infectious period
  - Possible re-infection after recovery?
  - Morbidity rate
- How could you modify the state transition rules to reflect these properties?

# Graphical Plot of CA for Epidemiology of Avian Influenza in Indonesia (Situngkir, 2004)



# Application 3: Water Distribution Network Optimisation (Savic & Walters, 1997)

- Water distribution networks consist of a set of pipes, nodes, tanks reservoirs, pumps and other elements.
- They must distribute water from a source to the nodes, where people use it.
- The size of the pipes used in the network have an impact on the fitness of the network, broadly speaking:
  - Larger pipes = more water but greater cost to make and install
- EAs have been used to find a near-optimal set of pipes sizes for a network



## CAs for WDN Optimisation

- Each cell is represented by a pipe and a node.
- The pipe size is incremented if there is not enough water at the node
- The pipe size is decremented if there is too much water at the node.



Applied to all the nodes in the network at once.

## CAs for WDN Optimisation

- Therefore, the network attempts to 'self organise' to meet the requirements dictated at the nodes (consumers consuming water).
- Can get quite close to EA solutions whilst evaluating a fraction of the solutions:
  - CA 5-20 evaluations
  - EA 25k+ evaluations

#### **Overall Conclusions**

- Cells can be used to represent almost anything but are mostly spatially located:
  - Microscopic locations in a cell
  - Locations in a country
  - Abstract locations in a network
- The way in which the automata works is determined by the selection of
  - Neighbourhood
  - States
  - State Transition Rules