
ECM3412/ECMM409ECM3412/ECMM409
Nature Inspired ComputationNature Inspired Computation

Lecture 2 Lecture 2

WhatWhat Evolutionary Algorithms are forEvolutionary Algorithms are for
(About Search, Optimisation, Hard and (About Search, Optimisation, Hard and
Easy Problems, Exact and Approximate Easy Problems, Exact and Approximate

Algorithms)Algorithms)

Today’s PlanToday’s Plan

About the concept of About the concept of optimisation optimisation (since this (since this
is what is what EAsEAs are `for’)are `for’)

Complexity: Complexity: HardHard problems and problems and EasyEasy
problemsproblems

ExactExact algorithms and algorithms and ApproximateApproximate AlgorithmsAlgorithms
EAsEAs are are approximate algorithmsapproximate algorithms applicable to applicable to

hard problemshard problems. .

What does this mean? WellWhat does this mean? Well … …

Search and Search and OptimisationOptimisation
We have 3 items as follows: (item 1: 20kg; item2: 75kg; We have 3 items as follows: (item 1: 20kg; item2: 75kg;

item 3: 60kg)item 3: 60kg)
Suppose we want to find the subset of items with total weight Suppose we want to find the subset of items with total weight

closest to 100kg.closest to 100kg.

Well done, you just searched the space of possible subsets. You
also found the optimal one. If the above set of subsets is called S,
and the subsets themselves are s1, s2, s3, etc …, you just optimised the
function “closest_to_100kg(s)”; i.e. you found the s which minimises the
function |(weight—100)| .

101
000

100

010

Which is
the best?110

111

011
001

Search and Search and OptimisationOptimisation
In general, In general, optimisationoptimisation means that you means that you

are trying to find the best solution you are trying to find the best solution you
can (usually in a short time) to a given can (usually in a short time) to a given
problem.problem.

We always have a set s of possible We always have a set s of possible
solutionssolutions

S

s1 s2 s3 …
S may be small (as just seen)

S may be very, very, very, very large
(e.g all alignments of two 50-base sequences allowing 10 insertions/deletions,
or all possible timetables for a 500-exam/3-week period)
… in fact something like 1030 is typical for real problem.
S may be infinitely large – e.g. all real numbers.

The Fitness functionThe Fitness function
Every Every candidate solutioncandidate solution s s in in SS can be given a score, or a can be given a score, or a
“fitness”, by a so“fitness”, by a so--called fitness function. We usually write called fitness function. We usually write ff((ss))
to indicate the fitness of solution to indicate the fitness of solution ss. Obviously, we want to find . Obviously, we want to find
the the ss in in SS which has the best score.which has the best score.

ExamplesExamples

timetablingtimetabling: : f could be no. of clashesf could be no. of clashes..
racing car setupracing car setup:: ff could be lap timescould be lap times
design of design of somethingsomething::(electric(electric circuits, water distribution circuits, water distribution
networks, site layouts, antenna for satellites, …networks, site layouts, antenna for satellites, … : :

f will usually be a measure of closeness of fit to the f will usually be a measure of closeness of fit to the
design spec/requirementsdesign spec/requirements

Searching through Searching through SS
When When SS is small (e.g. 10, 100, or only 1,000,000 is small (e.g. 10, 100, or only 1,000,000
or so items), we can simply do soor so items), we can simply do so--called called
exhaustive searchexhaustive search..

Exhaustive searchExhaustive search: Generate every possible : Generate every possible
solution, work out its fitness, and hence discover solution, work out its fitness, and hence discover
which is best (or which set share the best which is best (or which set share the best
fitness)fitness)

This is also called This is also called EnumerationEnumeration

However …However …
In In all all interesting/important casesinteresting/important cases, , S S is much is much

much much too large for exhaustive search (much much too large for exhaustive search (everever).).

There are two kinds of `tooThere are two kinds of `too--big’ problem:big’ problem:

•• easy (or `tractable’, or `in easy (or `tractable’, or `in P’P’))

•• hard (or `intractable’, or `not known to be in hard (or `intractable’, or `not known to be in P’P’))

There are rigorous mathematical definitions of the There are rigorous mathematical definitions of the
two types.two types.

Important (for you) is that Important (for you) is that almost all important almost all important
problems are technically problems are technically hardhard..

About Optimisation ProblemsAbout Optimisation Problems
ToTo solvesolve a problem means to find an a problem means to find an
optimaloptimal solution. i.e. to deliver an element solution. i.e. to deliver an element
of of ss whose fitness is whose fitness is guaranteedguaranteed to be to be
the best in the best in SS..

An An ExactExact algorithmalgorithm is one which can do is one which can do
this (i.e. solve a problem, guaranteeing to this (i.e. solve a problem, guaranteeing to

find the best).find the best).

Problem complexityProblem complexity
This is all about characterising how hard it is This is all about characterising how hard it is

to to solvesolve a given problem. Statements are a given problem. Statements are
made in terms of functions of made in terms of functions of nn, which is , which is
meant to be some indication of the size of meant to be some indication of the size of
the problem. E.g.:the problem. E.g.:

Correctly sort a set of Correctly sort a set of nn numbersnumbers
Can be done in Can be done in around around n n log log nn stepssteps

Find the closest pair out of Find the closest pair out of nn vectorsvectors
Can be done in Can be done in OO((nn22)) stepssteps

Find Find bestbest multiple alignment of multiple alignment of n n sequences.sequences.
Can be done in Can be done in OO(2(2nn)) steps steps ……

Polynomial and Exponential ComplexityPolynomial and Exponential Complexity

Given some problem Given some problem QQ, with `size’ , with `size’ nn, ,
imagine that imagine that AA is the fastest algorithm is the fastest algorithm
known for solving that problem exactly. known for solving that problem exactly.
The The complexity of problem complexity of problem QQ is the is the time it time it
takes takes AA to solve itto solve it, as a function of , as a function of nn. .

There are two key kinds of complexity:There are two key kinds of complexity:
PolynomialPolynomial:: the dominant term in the the dominant term in the

expression is polynomial in expression is polynomial in n. n. E.g. E.g. nn3434, ,
n.n.log.log.nn, sin(, sin(nn2.22.2), etc), etc ……

ExponentialExponential:: the dominant term is the dominant term is
exponential in exponential in nn. E.g. 1.1. E.g. 1.1nn, , nnn+2 n+2 , 2, 2nn, , ……

Polynomial and Exponential ComplexityPolynomial and Exponential Complexity

1.11.1nn 1.211.21 1.331.33 1.461.46 1.611.61 1.771.77 2.592.59 6.736.73 117117 13,78013,780

nn1.11.1 2.142.14 3.353.35 4.594.59 5.875.87 7.187.18 12.612.6 27.027.0 73.973.9 159159

n 2 3 4 5 6 10 20 50 100

Problems with exponential complexity take too long to solve at large n

Hard and Easy ProblemsHard and Easy Problems
PolynomialPolynomial ComplexityComplexity:: these are called these are called

tractabletractable, and , and easy easy problems. Fast algorithms are problems. Fast algorithms are
known which provide the best solution. known which provide the best solution. PairwisePairwise
alignment is one such problem. Sorting is alignment is one such problem. Sorting is
another.another.

Exponential ComplexityExponential Complexity:: these are called these are called
intractableintractable, and , and hardhard problems. The fastest problems. The fastest
known algorithm which known algorithm which exactlyexactly solves it is usually solves it is usually
not significantly faster than exhaustive search.not significantly faster than exhaustive search.

polynomial

exponential

An exponential curve always takes
over a polynomial one.

E.g. time needed on fastest computers to search all protein
structures with 500 amino acids: trillions of times longer
than the current age of the universe.

Increasing n

Example: Minimum Spanning Example: Minimum Spanning
Tree ProblemsTree Problems

Find the cheapest tree which connects Find the cheapest tree which connects
all (i.e. spans) the nodes of a given all (i.e. spans) the nodes of a given
graph.graph.

Applications: Applications: CommsComms network network
backbone design; Electricity backbone design; Electricity
distribution networks, water distribution networks, water
distribution networks, etc …distribution networks, etc …

A graph, showing the costs of A graph, showing the costs of
building each pairbuilding each pair--toto--pair linkpair link

7

12
4

9

6
8

5

146
3

What is the minimal-cost spanning tree?
(Spanning Tree = visits all nodes, has no cycles;
cost is sum of costs of edges used in the tree)

Here’s one tree:Here’s one tree:

12

14
37

With cost = 36

Here’s a cheaper oneHere’s a cheaper one

7

4

6
3

With cost 20 …

The problem The problem find the minimal cost spanning tree find the minimal cost spanning tree
((akaaka the `MST’) is the `MST’) is easyeasy in the technical sense.in the technical sense.

7

12
4

9

6
8

5

146
3

Several fast algorithms are known which solve this in polynomial time;
Here is the classic one: Prim’s algorithm:
Start with empty tree (no edges)
Repeat: choose cheapest edge which feasibly extends the tree
Until: n — 1 edges have been chosen.

Prim’sPrim’s step 1:step 1:

7

12
4

9

6
8

5

146
3

Prim’sPrim’s step 2:step 2:

7

12
4

9

6
8

5

146
3

Prim’sPrim’s step 3:step 3:

7

12
4

9

6
8

5

146
3

Prim’sPrim’s step 4:step 4:

7

12
4

9

6
8

5

146
3

Prim’sPrim’s step 4:step 4:

4

5

6
3

Guaranteed to have minimal possible cost for this graph;
i.e. this is the (or a) MST in this case.

But change the problem slightly:But change the problem slightly:

We may want the We may want the degreedegree constrained constrained –– MST (I.e. the MST, but MST (I.e. the MST, but
where no node in the tree has a degree above 4) where no node in the tree has a degree above 4)

Or we may want the optimal communication spanning treeOr we may want the optimal communication spanning tree –– which is which is
the MST, but constrained among those trees which satisfy certainthe MST, but constrained among those trees which satisfy certain
bandwidth requirements between certain pairs of nodesbandwidth requirements between certain pairs of nodes

There are many constrained/different forms of the MST. These areThere are many constrained/different forms of the MST. These are
essentially problems where we seek the cheapest tree structure, essentially problems where we seek the cheapest tree structure,
but where many, or even most, trees are not actually feasible but where many, or even most, trees are not actually feasible
solutions.solutions.

Here’s the thingHere’s the thing: : These constrained versions are almost always These constrained versions are almost always
technically technically hardhard. a. andnd RealReal--world MSTworld MST--style problems are style problems are
invariably of this kind.invariably of this kind.

Real World ProblemsReal World Problems

Tend to be hardTend to be hard
New York Tunnels New York Tunnels
(highly simplified) (highly simplified)
WDN optimisation WDN optimisation
problemproblem
•• 21 pipes21 pipes
•• 16 possible 16 possible

diametersdiameters
•• How many potential How many potential

solutions?solutions?

Well….Well….

Number of possible solutions = 16Number of possible solutions = 162121

Or….Or….

1.93 * 101.93 * 102525

Or….Or….

19,342,813,113,834,066,795,298,81619,342,813,113,834,066,795,298,816

Approximate AlgorithmsApproximate Algorithms
For hard optimisation problems (again, which turns
out to be nearly all the important ones), we need
Approximate algorithms .

These:

• deliver solutions in reasonable time

• try to find pretty good (`near optimal’) solutions,
and often get optimal ones.

• do not (cannot) guarantee that they have delivered
the optimal solution.

Typical Performance of Typical Performance of
Approximate MethodsApproximate Methods

Evolutionary Algorithms turn out to be the most successful and
generally useful approximate algorithms around. They often
take a long time though – it’s worth getting used to the
following curve which tends to apply across the board.

Q
ua

lit
y

Simple method gets good
solutions fast

Sophisticated method, slow, but
better solutions eventually

Time

	ECM3412/ECMM409Nature Inspired ComputationLecture 2 What Evolutionary Algorithms are for (About Search, Optimisation, Ha
	Today’s Plan
	Search and Optimisation
	Search and Optimisation
	The Fitness function
	Searching through S
	However …
	About Optimisation Problems
	Problem complexity
	Polynomial and Exponential Complexity
	Polynomial and Exponential Complexity
	Hard and Easy Problems
	Example: Minimum Spanning Tree Problems
	
	
	
	
	
	
	
	
	
	
	Real World Problems
	Well….
	Approximate Algorithms
	Typical Performance of Approximate Methods

