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Evolutionary Algorithms in DetailEvolutionary Algorithms in Detail
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based search / landscapes / examplesbased search / landscapes / examples



Basic Principle of Evolutionary Basic Principle of Evolutionary 
AlgorithmsAlgorithms

Evolutionary Algorithm

Objective (Fitness) Function

Difficult Problem

Selection

Mutation

Recombination

Replacement

Candidate Solution Fitness



Some Terms Used in Evolutionary Some Terms Used in Evolutionary 
ComputationComputation

Algorithm TypeAlgorithm Type
•• GenerationalGenerational
•• Steady StateSteady State
•• ElitistElitist

Recombination Recombination 
(Crossover)(Crossover)
•• SingleSingle--pointpoint
•• MultiMulti--pointpoint
•• UniformUniform

SelectionSelection
•• RankRank--BiasedBiased
•• Roulette WheelRoulette Wheel
•• Tournament

ReplacerReplacer
•• WeakestWeakest
•• First weakerFirst weaker

MutationMutation
ParametersParameters
•• Population sizePopulation size
•• Generations/iterationsGenerations/iterations
•• Mutation rateMutation rate
•• Crossover rateCrossover rate
•• Tournament size….Tournament size….
•• EtcEtc

Tournament



2 Types of Genetic Algorithm2 Types of Genetic Algorithm
GenerationalGenerational –– genetic operators applied repeatedly to generate new genetic operators applied repeatedly to generate new 
population.population.
New solutions in New solutions in yellow.yellow.

NameName F(S)F(S)

S11S11 0.50.5

S12S12 0.30.3

S13S13 0.30.3

S14S14 0.70.7

S15S15 0.70.7

S16S16 0.90.9

S17S17 0.40.4

S18S18 0.90.9

S19S19 0.90.9

S20S20 0.30.3

NameName F(S)F(S)

S21S21 0.70.7

S22S22 0.80.8

S23S23 0.90.9

S24S24 0.90.9

S25S25 0.70.7

S26S26 0.80.8

S27S27 0.50.5

S28S28 0.70.7

S29S29 0.60.6

S30S30 0.70.7

NameName F(S)F(S)

S1S1 0.10.1

S2S2 0.50.5

S3S3 0.30.3

S4S4 0.20.2

S5S5 0.90.9

S6S6 0.70.7

S7S7 0.30.3

S8S8 0.40.4

S9S9 0.40.4

S10S10 0.10.1

Initial Pop Generation 1 Generation 2 

Apply 
selection
& genetic 
operators 10x 
to give new 
population

Apply 
selection
& genetic 
operators 10x 
to give new 
population



2 Types of Genetic Algorithm II2 Types of Genetic Algorithm II
Steady StateSteady State –– genetic operators applied N times and bad genetic operators applied N times and bad 
solutions replacedsolutions replaced
New solutions in New solutions in yellow.yellow.

NameName F(S)F(S)

S11S11 0.10.1

S12S12 0.50.5

NameName F(S)F(S)

S1S1 0.10.1

S2S2 0.50.5

S3S3 0.30.3

S4S4 0.20.2

S5S5 0.90.9

S6S6 0.70.7

S7S7 0.30.3

S8S8 0.40.4

S9S9 0.40.4

S10S10 0.10.1

Initial Pop Generation 1 
Apply 
selection
& genetic 
operators N 
times to give 
new 
individuals

Replace weak solutions in 
population

NameName F(S)F(S)

S12S12 0.50.5

S2S2 0.50.5

S3S3 0.30.3

S4S4 0.20.2

S5S5 0.90.9

S6S6 0.70.7

S7S7 0.30.3

S8S8 0.40.4

S9S9 0.40.4

S11S11 0.10.1



A Standard Evolutionary AlgorithmA Standard Evolutionary Algorithm

The algorithm whose The algorithm whose pseudocodepseudocode is on the is on the 
next slide is a next slide is a steady statesteady state, , replacereplace--worstworst
EA with EA with tournament selection, tournament selection, using using 
mutation, but no crossover. mutation, but no crossover. 

Parameters are Parameters are popsizepopsize, tournament size, , tournament size, 
mutationmutation--raterate..

It can be applied to any problem; the details It can be applied to any problem; the details 
glossed over are all problemglossed over are all problem--specific.specific.



A A steady statesteady state, , mutationmutation--only, replaceonly, replace--
worstworst EA with EA with tournament selectiontournament selection

0. Initialise: generate a population of 0. Initialise: generate a population of popsizepopsize random random 
solutions, evaluate their solutions, evaluate their fitnessesfitnesses..

1.1. Run Run SelectSelect to obtain a parent solution to obtain a parent solution XX..
2.2. With probability With probability mute_ratemute_rate,, mutate a copy of mutate a copy of XX to to 

obtain a mutant obtain a mutant M M (otherwise (otherwise MM = = XX))
3.3. Evaluate the fitness of Evaluate the fitness of MM..
4.4. Let Let WW be the current worst in the population. If be the current worst in the population. If M M is is 

not less fit than not less fit than WW, then replace , then replace W W with with MM. (otherwise . (otherwise 
do nothing)do nothing)

5.5. If a termination condition is met (e.g. we have done If a termination condition is met (e.g. we have done 
10,000 10,000 evalsevals) then stop. Otherwise go to 2.) then stop. Otherwise go to 2.

SelectSelect:: randomly choose randomly choose tsizetsize individuals from the individuals from the 
population. Let population. Let cc be the one with best fitness (BTR); be the one with best fitness (BTR); 
return return XX..



A A generationalgenerational, , elitist,elitist,
crossover+mutationcrossover+mutation EA EA 

with with RankRank--Based selectionBased selection
0. Initialise: generate a population G of 0. Initialise: generate a population G of popsizepopsize random random 

solutions, evaluate their solutions, evaluate their fitnessesfitnesses..

1.1. Run Run SelectSelect 2*(2*(popsizepopsize –– 1) times to obtain a 1) times to obtain a 
collection I of 2*(popsizecollection I of 2*(popsize--1) parents.1) parents.

2.2. Randomly pair up the parents in I (into Randomly pair up the parents in I (into popsizepopsize –– 1 1 
pairs) and apply pairs) and apply VaryVary to produce a child from each to produce a child from each 
pair. Let the set of children be C. pair. Let the set of children be C. 

3.3. Evaluate the fitness of each child.Evaluate the fitness of each child.
4.4. Keep the best in the population G and delete the rest.  Keep the best in the population G and delete the rest.  
5.5. Add all the children to G.Add all the children to G.
6.6. If a termination condition is met (e.g. we have done If a termination condition is met (e.g. we have done 

100 or more generations (runs through steps 1100 or more generations (runs through steps 1——5) then 5) then 
stop. Otherwise go to 1, stop. Otherwise go to 1, 



A A generationalgenerational, , elitist,elitist, crossover+mutationcrossover+mutation EA EA 
with with RankRank--Based selection, Based selection, continuedcontinued ……

Select:Select: sort the contents of G from best to worst, sort the contents of G from best to worst, 
assigning rank assigning rank popsizepopsize to the best, to the best, popsizepopsize--1 to 1 to 
the next best, etc …, and rank 1 to the worst.the next best, etc …, and rank 1 to the worst.

The ranks sum to F = popsize(popsize+1)/2The ranks sum to F = popsize(popsize+1)/2
Associate a probability Associate a probability Rank_iRank_i/F with each /F with each 
individual individual i.i.
Using these probabilities, choose one individual Using these probabilities, choose one individual 

X, and return X.X, and return X.

Vary:Vary:
1.  With probability 1.  With probability cross_ratecross_rate, , do a crossover: do a crossover: 
I.eI.e produce a child by applying a crossover produce a child by applying a crossover 
operator to the two parents. Otherwise, let theoperator to the two parents. Otherwise, let the
child be a randomly chosen one of the parents. child be a randomly chosen one of the parents. 

2. Apply mutation to the child.2. Apply mutation to the child.
3. Return the mutated child.3. Return the mutated child.



Back to BasicsBack to Basics

With your thirst for seeing example With your thirst for seeing example 
EAsEAs temporarily quenched, the temporarily quenched, the 
story now skips to simpler story now skips to simpler 
algorithms.algorithms.

This will help to explain what it is This will help to explain what it is 
about the previous ones which about the previous ones which 
make them work.make them work.



The Travelling Salesperson ProblemThe Travelling Salesperson Problem
An example (hard) problem, for illustration
The Travelling Salesperson Problem
Find the shortest tour through the cities.
You must: 
• Visit every city on the ‘map’
• Return to where you started

A
D E

C
B

The one below is length:  33

AA BB CC DD EE

AA 55 77 44 1515

BB 55 33 44 1010

CC 77 33 22 77

DD 44 44 22 99

EE 1515 1010 77 99



HillclimbingHillclimbing

0.  Initialise:   Generate a random solution c;  evaluate its
fitness, f(c).  Call c the current solution.

1. Mutate a copy of the current solution – call the mutant m
Evaluate fitness of m, f(m).

2. If f(m) is no worse than f(c), then replace c with m,
otherwise do nothing (effectively discarding m).

3. If a termination condition has been reached, stop.
Otherwise, go to 1.

Note. No population (well, population of 1). This is a very simple 
version of an EA, although it has been around for much longer.



Why “Why “HillclimbingHillclimbing”?”?
Suppose that solutions are lined up along the x axis, and that mutation
always gives you a nearby solutions. Fitness is on the y axis; this 
is a landscape

12

4

3

5, 8

6
7

9 10

1. Initial solution;  2. rejected mutant;  3. new current solution,
4. New current solution; 5. new current solution; 6. new current soln
7. Rejected mutant; 8. rejected mutant; 9. new current solution,
10. Rejected mutant, …



Example: HC on the TSPExample: HC on the TSP
We can encode a candidate solution to the TSP as a permutation 

A
D E

C
B

AA BB CC DD EE

AA 55 77 44 1515

BB 55 33 44 1010

CC 77 33 22 77

DD 44 44 22 99

EE 1515 1010 77 99

Here is our initial random solution ABDEC with
fitness 32

Current solution



HC on the TSPHC on the TSP
AA BB CC DD EE

AA 55 77 44 1515

BB 55 33 44 1010

CC 77 33 22 77

DD 44 44 22 99

EE 1515 1010 77 99

D

C
B

We randomly mutate (swap randomly chosen
adjacent nodes)  current to:   ABEDC
which has fitness 33  -- so current stays the same

A

Mutant

A
D E

C
B

Current solution

E



HC on the TSPHC on the TSP
AA BB CC DD EE

AA 55 77 44 1515

BB 55 33 44 1010

CC 77 33 22 77

DD 44 44 22 99

EE 1515 1010 77 99

D E

C
B

We randomly mutate (swap randomly chosen
adjacent nodes)  current (ABDEC) to  CBDEA
which has fitness 38 -- so current stays the same

A

Mutant

A
D E

C
B

Current solution



HC on the TSPHC on the TSP
AA BB CC DD EE

AA 55 77 44 1515

BB 55 33 44 1010

CC 77 33 22 77

DD 44 44 22 99

EE 1515 1010 77 99

D
E

C
B

We randomly mutate (swap randomly chosen
adjacent nodes)  current (ABDEC) to  BADEC
which has fitness 28

A

Mutant

So this becomes the new current solution

A
D E

C
B

Current solution



HC on the TSPHC on the TSP
AA BB CC DD EE

AA 55 77 44 1515

BB 55 33 44 1010

CC 77 33 22 77

DD 44 44 22 99

EE 1515 1010 77 99

D E

C
B

We randomly mutate (swap randomly chosen
adjacent nodes)  current (BADEC) to  BADCE
which also has fitness 28

A

Mutant

This becomes the new current solution

D
E

C
B

A

Current Solution



LandscapesLandscapes
Recall  Recall  SS, the search space, and , the search space, and ff(s(s), the fitness of a ), the fitness of a 

candidate in candidate in SS
f(s)

members of S lined up along here

The structure we get by imposing f(s) on S is called a landscape

What does the landscape look like if f(s) is a random number generator?
What kinds of problems would have very smooth landscapes?
What is the importance of the mutation operator in all this?



NeighbourhoodsNeighbourhoods
Let  Let  ss be an individual in be an individual in SS,  ,  ff(s(s) is our fitness ) is our fitness 

function, and function, and MM is our mutation operator, so that is our mutation operator, so that 
MM((ss1) 1) ss2, where s2 is a mutant of s1.2, where s2 is a mutant of s1.

Given M, we can usually work out the neighbourhood of an individual 
point s – the neighbourhood of s is the set of all possible mutants of s 

E.g.  Encoding:  permutations of k objects (e.g. for k-city TSP)
Mutation:  swap any adjacent pair of objects.
Neighbourhood: Each individual has k neighbours.  E.g.

neighbours of EABDC are: {AEBDC, EBADC, EADBC, EABCD, CABDE}
Encoding:  binary strings of length L (e.g. for L-item bin-packing)
Mutation:  choose a bit randomly and flip it.
Neighbourhood: Each individual has L neighbours.  E.g.

neighbours of 00110 are: {10110, 01110, 00010, 00100, 00111}



Landscape TopologyLandscape Topology

Mutation operators lead to slight changes Mutation operators lead to slight changes 
in the solution, which tend to lead to slight in the solution, which tend to lead to slight 
changes in fitness. changes in fitness. 

I.e. the I.e. the fitnessesfitnesses in the neighbourhood of in the neighbourhood of ss
are often similar to the fitness of are often similar to the fitness of ss. . 

Landscapes tend to be Landscapes tend to be locally smoothlocally smooth
What about big mutations ??What about big mutations ??
It turns out that ….It turns out that ….



Typical LandscapesTypical Landscapes

f(s)

members of S lined up along here

Typically, with large (realistic) problems, the huge majority of the
landscape has very poor fitness – there are tiny areas where the decent 
solutions lurk.
So, big random changes are very likely to take us outside the nice areas. 



Typical Landscapes IITypical Landscapes II

As we home in on the good areas, we can identify broad types of 
Landscape feature. 
Most landscapes of interest are predominantly multimodal.
Despite being locally smooth, they are globally rugged 

Unimodal Plateau

Multimodal Deceptive



Beyond Beyond HillclimbingHillclimbing

HC clearly has problems with typical landscapes:HC clearly has problems with typical landscapes:

There are two broad ways to improve HC, from There are two broad ways to improve HC, from 
the algorithm viewpoint:the algorithm viewpoint:

1.1. Allow downhill moves Allow downhill moves –– a family of methods a family of methods 
called Local Search does this in various called Local Search does this in various 
ways.ways.

2.2. Have a population Have a population –– so that different regions so that different regions 
can be explored inherently in parallel can be explored inherently in parallel –– I.e. I.e. 
we keep `poor’ solutions around and give we keep `poor’ solutions around and give 
them a chance to `develop’.them a chance to `develop’.



Local SearchLocal Search
Initialise:   Generate a random solution c;  evaluate its 

fitness, f(s) = b;  call c the current solution,
and call b the best so far.

Repeat until termination conditon reached:
1. Search the neighbourhood of c, and choose one, m   

Evaluate fitness of m, call that x.
2. According to some policy, maybe replace c with x, and

update c and b as appropriate.  

E.g. Monte Carlo search:    1. same as hillclimbing;  2. If x is better, 
accept it as new current solution;if x is worse, accept it with some
probability (e.g. 0.1).

E.g. tabu search:    1. evaluate all immediate neighbours of c
2. choose the best from (1) to be the next current solution, unless it is

`tabu’ (recently visited), in which choose the next best, etc.   



PopulationPopulation--Based SearchBased Search
Local search is fine, but tends to get stuck in Local search is fine, but tends to get stuck in local local 
optima, optima, less so than HC, but it still gets stuck.less so than HC, but it still gets stuck.

In PBS, we no longer have a single `current In PBS, we no longer have a single `current 
solution’, we now have a solution’, we now have a populationpopulation of them. This of them. This 
leads directly to the two main algorithmic leads directly to the two main algorithmic 
differences between PBS and LSdifferences between PBS and LS
•• Which of the set of current solutions do we mutate? We need a Which of the set of current solutions do we mutate? We need a 

selectionselection methodmethod
•• With more than one solution available, we needn’t just mutate, With more than one solution available, we needn’t just mutate, 

we can [mate, recombine, crossover, etc …] two or more current we can [mate, recombine, crossover, etc …] two or more current 
solutions.solutions.

So this is an alternative route towards motivating So this is an alternative route towards motivating 
our natureour nature--inspired inspired EAsEAs –– and also starts to and also starts to 
explain why they turn out to be so good. explain why they turn out to be so good. 



””Traditional” search/optimization algorithms Traditional” search/optimization algorithms 
and landscapesand landscapes

Gradient search and hillGradient search and hill--climbing algorithms work by climbing algorithms work by 
crawling up a fitness hill to the nearest local optimum crawling up a fitness hill to the nearest local optimum –– and and 
getting stuck.getting stuck.



Evolutionary algorithms and landscapesEvolutionary algorithms and landscapes

EAs use populations of candidate solutionsEAs use populations of candidate solutions
”Mutations” correspond to local moves in the fitness ”Mutations” correspond to local moves in the fitness 
landscapelandscape
”Crossovers” combine two candidate solutions”Crossovers” combine two candidate solutions



TSP, this time with an EATSP, this time with an EA

A steady state EA with mutationA steady state EA with mutation--only, only, 
running for a few steps on the TSP running for a few steps on the TSP 
example, with an unidentified example, with an unidentified 
selection method.selection method.



Running a Steady State EA Running a Steady State EA ----
TSPTSP AA BB CC DD EE

AA 55 77 44 1515

BB 55 33 44 1010

CC 77 33 22 77

DD 44 44 22 99

EE 1515 1010 77 99

Let’s encode a solution as a permutation

Initial randomly generated pop of 5:
ACEBD     DACBE       BACED      CDAEB     ABCED

Evaluation    32              33                 32             31               28

Mutant of selected parent   CDAEB  ADCEB

Evaluation of mutant:                                     26

Mutant enters population, replacing worst



Running a Steady State EA Running a Steady State EA ----
TSPTSP AA BB CC DD EE

AA 55 77 44 1515

BB 55 33 44 1010

CC 77 33 22 77

DD 44 44 22 99

EE 1515 1010 77 99

Generation 2
ACEBD     ADCEB      BACED      CDAEB     ABCED

Evaluation    32              26                 32             31               28

Mutant of selected parent   BACED  BDCEA

Evaluation of mutant:                                     33

Mutant discarded– worse than current worst



Running a Steady State EA Running a Steady State EA ----
TSPTSP AA BB CC DD EE

AA 55 77 44 1515

BB 55 33 44 1010

CC 77 33 22 77

DD 44 44 22 99

EE 1515 1010 77 99

Generation 3:
ACEBD     ADCEB      BACED      CDAEB     ABCED

Evaluation    32              26                 32             31               28

Mutant of selected parent   ABCED  ABECD

Evaluation of mutant:                                     28

Mutant enters population, replacing worst



Running a Steady State EA Running a Steady State EA ----
TSPTSP

AA BB CC DD EE

AA 55 77 44 1515

BB 55 33 44 1010

CC 77 33 22 77

DD 44 44 22 99

EE 1515 1010 77 99

Generation 4:
ABECD     ADCEB      BACED CDAEB     ABCED

Evaluation    28              26                 32             31               28

Mutant of selected parent   ADCEB  BDCEA

Evaluation of mutant:                                     33

Mutant is discarded



Running a Steady State EA Running a Steady State EA ----
TSPTSP AA BB CC DD EE

AA 55 77 44 1515

BB 55 33 44 1010

CC 77 33 22 77

DD 44 44 22 99

EE 1515 1010 77 99

Generation 5:
ABECD     ADCEB      BACED      CDAEB     ABCED

Evaluation    28              26                 32             31               28

Mutant of selected parent   ABCED  ABECD

Evaluation of mutant:                                     28

Mutant enters population, replacing worst



Running a Steady State EA Running a Steady State EA ----
TSPTSP AA BB CC DD EE

AA 55 77 44 1515

BB 55 33 44 1010

CC 77 33 22 77

DD 44 44 22 99

EE 1515 1010 77 99

Generation 6:
ABECD     ADCEB      ABECD      CDAEB    ABCED

Evaluation    28              26                 28             31               28

And so on.

Note:  population starting to converge, genotypically and phenotypically
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