ECM3412/ECNMMA406
Nature Inspired Computation

Lecture 3

Evolutionary Algorithms in Detail
( The basic variants / local and population-
based search / landscapes / examples



Basic Principle of Evolutionary.
Algorithms

Candidate Solutio Difficult Problem Fitness




Some Terms Used in Evolutionary.

Computation
= Algorithm Type = Replacer
e Generational e \Weakest
- Steady State e First weaker
~ Elost = Mutation
. (Rgfgsrgg\'/g?;'on = Parameters
S = = Population size
M'”S[_e'p_o':‘ = Generations/iterations
U“_f"po'” = Mutation rate
ni c_)rm e Crossover rate
= Selection e Tournament size....
e Rank-Biased e Etc

e Roulette Wheel
e Tournament



2 Types of Genetic Algorithm

Generational — genetic operators applied repeatedly to generate new
population.

New solutions in yellow.

Initial Pop Generation 1 Generation 2

Name | F(S) | Apply Name | F(S) | Apply Name F(S)
selection selection

Si 0.1 & genetic S11 0.5 & genetic S21 0.7
S2 0.5 ggz:séogsé 10x 512 0.3 ;’5’3132’,22 X[ s22 0.8
S3 0.3 | population S13 0.5 population S23 0.9
S4 0.2 “|s14 |07 " |s24 0.9
S5 0.9 SHES 0.7 S25 0.7
S6 0.7 S16 0.9 S26 0.8
S7 0.3 S17 0.4 S27 0.5
S8 0.4 S18 0.9 S28 0.7
S9 0.4 S19 0.9 Syle 0.6
S10 |0.1 S20 0.3 S30 0.7




2 Types of Genetic Algornthm ||

s Steady State — genetic operators applied N times and bad
solutions replaced

= New solutions In yellow.

Initial Pop Generation 1
Apply
Name | F(S) | selection Name | F(S)
1 1 & genetic
= Y operators N S12 0.5
S2 0.5 times to give Name | F(S) ) S2 0.5
S3 0.3 | hewW.
individuals s11 0.1 S3 0.3
S4 0.2 i S4 0.2
S5 0.9 slz DS S5 0.9
S6 0.7 S6 0.7
S7 0.3 S7 0.3
S8 0.4 S8 0.4
S9 0.4 S9 0.4
S10 0.1 Replace weak solutions in
population =0 9.1




A Standard Evolutionary Algorithm

The algorithm whose pseudocode Is on the
next slide Is a steady state, replace-worst
EA with tournament selection, using
mutation, but Nno crossover.

Parameters are popsize, tournament size,
mutation-rate.

It can be applied to any problem; the details
glossed over are all problem-specific.



A steady state, mutation-only, replace-
worst EA with tournament selection

O. Inrtialise: generate a population of popsize random
solutions, evaluate therr FiItnesses.

1. Run Select to obtain a parent solution X.

2. With probability mute rate, mutate a copy of X to
obtarn a mutant M (otherwise M = X)

3. Evaluate the fitness of M.
4. Let W be the current worst In the population. If M 1s

not less fit than W, then replace W with M. (otherwise
do nothing)

5. IT a termination condition 1s met (e.g- we have done
10,000 evals) then stop. Otherwise go to 2.

Select: randomly choose tsize individuals from the
population. Let c be the one with best fitness (BTR);
return X.



0.

o o A W

A generational, elitist,
crossover+mutation EA
with Rank-Based selection

Inttralise: generate a population G of popsize random

solutions, evaluate theirr fitnesses.

Run Select 2*(popsize — 1) times to obtain a
collection I of 2*(popsize-1) parents.

Randomly parr up the parents In I (into popsize — 1
palrs) and apply Vary to produce a child from each
pailr. Let the set of children be C.

Evaluate the fitness of each child.
Keep the best 1n the population G and delete the rest.
Add all the children to G.

IT a termination condition 1s met (e.g- we have done
100 or more generations (runs through steps 1-5) then
stop. Otherwise go to 1,



A generational, elitist, crossover+mutation EA
with Rank-Based selection, continued ...

Select: sort the contents of G from best to worst,
assigning rank popsize to the best, popsize-1 to
the next best, etc ., and rank 1 to the worst.

The ranks sum to F = popsize(popsize+l)/2
Associate a probabrlity Rank 1/F with each

individual 1.

Using these probabilities, choose one i1ndividual
X, and return X.

Vary:
1. With probability cross rate, do a crossover:
I.e produce a child by applying a crossover
operator to the two parents. Otherwise, let the
child be a randomly chosen one of the parents.
2. Apply mutation to the child.
3. Return the mutated child.



Back to Basics

With your thirst for seeing example
EAs temporarily quenched, the
story now skips to simpler
algorithms.

This will help to explain what it iIs
about the previous ones which
make them work.



The Travelling Salesperson Problem

An example (hard) problem, for illustration
The Travelling Salesperson Problem

Find the shortest tour through the cities. A B E
You must:
e Visit every city on the ‘map’ A 5 15
 Return to where you started
_ B |5 10
The one below is length: 33
B cC |7 |3 7
@ C
D |4 |4 9
/ & = E |15 ]10
A <



Hillclimbing

0.

Inttialise: Generate a random solution c; evaluate i1ts
fitness, f(c). Call c the current solution.

. Mutate a copy of the current solution — call the mutant m

Evaluate fitness of m, f(m).

IT f(n) 1s no worse than f(c), then replace c with m,
otherwise do nothing (effectively discarding m).

IT a termination condition has been reached, stop.
Otherwise, go to 1.

Note. No population (well, population of 1). This Is a very simple
version of an EA, although it has been around for much longer.




Why “Hillclimbing”?

Suppose that solutions are lined up along the x axis, and that mutation
always gives you a nearby solutions. Fitness is on the y axis; this
IS a landscape

1. Initial solution; 2. rejected mutant; 3. new current solution,

4. New current solution; 5. new current solution; 6. new current soln
7. Rejected mutant; 8. rejected mutant; 9. new current solution,

10. Rejected mutant, ...



Example: HC on the TSP

We can encode a candidate solution to the TSP as a permutation

A

B

C

)

15

Here is our initial random solution ABDEC wit

10

fitness 32

3

NS DD

4

m| ||| >

15

10

Current solution
B

C

‘\‘E




HC on the TSP

We randomly mutate (swap randomly chosen
adjacent nodes) currentto. ABEDC
which has fitness 33 -- so current stays the same

Current solution

Parasw:

15

10

NS SO

m| ||| >

15

10




HC on the TSP

We randomly mutate (swap randomly chosen |a 3 E : E i;

adjacent nodes) current (ABDEC) to CBDEA (s 4 |10

which has fitness 38 -- so current stays the same | € 3 2 |7
D 4 4 2 9
E 15 |10 |7 9

Current solution

'\o

Mutant




HC on the TSP

We randomly mutate (swap randomly chosen A |B |c [p |E
adjacent nodes) current (ABDEC) to BADEC |2 5 |7 [4 |35
which has fitness 28 5 4 |10
C 3 2 7
So this becomes the new current solution 2 * 12 2
= 15 |10 | 7 9

Current solution Mutant

C




HC on the TSP

15

10

\SH NS N Ny

A

We randomly mutate (swap randomly chosen [
adjacent nodes) current (BADEC) to BADCE [g
which also has fitness 28 c
D

This becomes the new current solution c |15

Current Solution
Mutant

C




Landscapes

Recall S, the search space, and f(s), the fithess of a
candidate Iin' S

f(s)

members of S lined up along here
The structure we get by imposing f(s) on S is called a landscape
What does the landscape look like if f(s) Is a random number generator?

What kinds of problems would have very smooth landscapes?
What is the importance of the mutation operator in all this?



Nelghbourhoods

Let s be an individual in' S, f(s) Is our fithess
function, and M Is our mutation operator, so that
M(sl) > s2, where s2 is a mutant of s1.

Given M, we can usually work out the neighbourhood of an individual
point s — the neighbourhood of s is the set of all possible mutants of s

E.g. Encoding: permutations of k objects (e.g. for k-city TSP)

Mutation: swap any adjacent pair of objects.

Neighbourhood: Each individual has k neighbours. E.g.
neighbours of eaBDcC are: { BDC,E DC,EA ' C,EAB , ABD }

Encoding: binary strings of length L (e.g. for L-item bin-packing)

Mutation: choose a bit randomly and flip it.

Neighbourhood: Each individual has L neighbours. E.qg.
neighbours of 00110 are: {10110, 01110, 00010, 00100, 00111}



Landscape Topology

s Mutation operators lead to slight changes
In the solution, which tend to lead to slight
changes In fitness.

|.e. the fitnesses In the neighbourhood of s
are often similar to the fithess of s.

s Landscapes tend to be locally smooth
What about big mutations ??
It turns out that ....



Typical Landscapes

f(s)

members of S lined up along here

Typically, with large (realistic) problems, the huge majority of the
landscape has very poor fitness — there are tiny areas where the decent
solutions lurk.

So, big random changes are very likely to take us outside the nice areas.



Typical Landscapes I

14%“\ jkateau k
W f %\

As we home In on the good areas, we can identify broad types of
Landscape feature.

Most landscapes of interest are predominantly multimodal.
Despite being locally smooth, they are globally rugged




Beyond Hillclimbing

HC clearly has problems with typical landscapes:

There are two broad ways to improve HC, from
the algorithm viewpoint:

1. Allow downhill moves — a family of methods
called Local Search does this In various

ways.
2.  Have a population — so that different regions
can be explored inherently in parallel — I.e.

we keep poor’ solutions around and give
them a chance to develop’.



Local Search

Initialise: Generate a random solution c; evaluate i1ts
fitness, f(s) = b; call c the current solution,
and call b the best so far.

Repeat until termination conditon reached:
1. Search the neighbourhood of c, and choose one, m
Evaluate fitness of m, call that x.
2. According to some policy, maybe replace c with x, and
update ¢ and b as appropriate.

E.g. Monte Carlo search: 1. same as hillclimbing; 2. If x is better,
accept it as new current solution;if x Is worse, accept it with some
probability (e.g. 0.1).

E.g. tabu search: 1. evaluate all immediate neighbours of c
2. choose the best from (1) to be the next current solution, unless it is
“tabu’ (recently visited), in which choose the next best, etc.



Population-Based Search

s Local search is fine, but tends to get stuck In local
optima, less so than HC, but it still gets stuck.

= In PBS, we no longer have a single current
solution’, we now have a population of them. This
leads directly to the two main algorithmic
differences between PBS and LS
e \Which of the set of current solutions do we mutate? We need a
selection method

e With more than one solution available, we needn’t just mutate,
we can [mate, recombine, crossover, etc ...] two or more current
solutions.

= SO this is an alternative route towards motivating
our nature-inspired EAs — and also starts to
explain why they turn out to be so good.



“Traditional™ search/optimization algoerithms
and landscapes

s Gradient search and hill-climbing algorithms work by
crawling up a fitness hill to the nearest local optimum — and
getting stuck.




Evoelutionany algoerithms and landscapes

EAs use populations ofi candidate solutions

"Mutations” correspond to local moves in the fithess
landscape

’Crossovers” combine two candidate solutions




TSP, this time with an EA

A steady state EA with mutation-only,
running for a few steps on the TSP
example, with an unidentified
selection method.



Running a Steady State EA --

TSP

Let’s encode a solution as a permutation

Initial randomly generated pop of 5:

ACEBD DACBE BACED / CDAEB \A
Evaluation 32 33 32 31

Mutant of selected parent CDAEB - ADCEB

Evaluation of mutant:; 26

Mutant enters population, replacing worst

A |B [c |[D [E
A 5 |7 |4 |15
B 4 |10
c 3 2 |7
D 4 |2 9
e |15|10|7 |9

BCED
28




Running a Steady State EA --

B C |D
TSP ; s 7 |4
B 4
C 3 2
D) 4 4 2
= 15 10 |7 |9

Generation 2
ACEBD ADCEB / BACED \CDAEB ABCED

Evaluation 32 26 32 31 28

Mutant of selected parent BACED > BDCEA

Evaluation of mutant:; 33

Mutant discarded— worse than current worst



Running a Steady State EA --

TSP BE

5) 15

10

NSO

3

4 2 )

m|O(O|®|>
\l

15 (10 |7 )

Generation 3: '
ACEBD ADCEB BACED CDAEB ABCED

Evaluation 32 26 32 31 28

Mutant of selected parent ABCED -> ABECD

Evaluation of mutant:; 28

Mutant enters population, replacing worst



Running a Steady State EA --

B

TSP

5

15

10

3

mi{O|lO|®@| >
\l

4

15

10 | 7

Generation 4.

ABECD /ADCEB “\BACED CDAEB
Evaluation 28 26 32 31
Mutant of selected parent ADCEB - BDCEA

Evaluation of mutant:; 33

Mutant Is discarded



Running a Steady State EA --

TSP

15

10

ol
NS DD

4 |4 |2 9

m| ||| >
W

15 |10 | 7 )

Generation 5:

ABECD ADCEB BACED CDAEB / ABCED
Evaluation 28 26 32 31 28
Mutant of selected parent ABCED -> ABECD

Evaluation of mutant:; 28

Mutant enters population, replacing worst



Running a Steady State EA --

15

TSP i

10

NS RO

m{O|lO|®@| >
W

15 |10 | 7 )

Generation 6:
ABECD ADCEB ABECD CDAEB ABCED

Evaluation 28 26 28 31 28

And so on.

Note: population starting to converge, genotypically and phenotypically



	ECM3412/ECMM406Nature Inspired ComputationLecture 3 Evolutionary Algorithms in Detail ( The basic variants / local and p
	Basic Principle of Evolutionary Algorithms
	Some Terms Used in Evolutionary Computation
	2 Types of Genetic Algorithm
	2 Types of Genetic Algorithm II
	A Standard Evolutionary Algorithm
	A steady state, mutation-only, replace-worst EA with tournament selection
	A generational, elitist, crossover+mutation EA with Rank-Based selection
	A generational, elitist, crossover+mutation EA with Rank-Based selection, continued …
	Back to Basics
	The Travelling Salesperson Problem
	Hillclimbing
	Why “Hillclimbing”?
	Example: HC on the TSP
	HC on the TSP
	HC on the TSP
	HC on the TSP
	HC on the TSP
	Landscapes
	Neighbourhoods
	Landscape Topology
	Typical Landscapes
	Typical Landscapes II
	Beyond Hillclimbing
	Local Search
	Population-Based Search
	”Traditional” search/optimization algorithms and landscapes
	Evolutionary algorithms and landscapes
	TSP, this time with an EA
	Running a Steady State EA -- TSP
	Running a Steady State EA -- TSP
	Running a Steady State EA -- TSP
	Running a Steady State EA -- TSP
	Running a Steady State EA -- TSP
	Running a Steady State EA -- TSP

