ECM3412/ECMM409 Nature Inspired Computation Lecture 5

Evolutionary Computation Encodings / Applications

Encoding / Representation

Maybe the main issue in (applying) EC Note that:

- Given an optimisation problem to solve, we need to find a way of encoding candidate solutions
- There can be many very different encodings for the same problem
- Each way affects the shape of the landscape and the choice of best strategy for climbing that landscape.

Some Simple Direct Encodings

- Water Distribution Network Optimisation
 - There are *n* pipes with *m* possible diameters.
 - The problem is to create a new network design from these variables.
 - Each pipe must have a diameter, so the encoding is similar to a k-ary encoding: a chromosome of n integers long with 1->m possible values

D = Diameter (pipe size and number of choices) p = pipe index

Some Simple Direct Encodings

- Generalised Assignment Problem
 - If you have n workers and m jobs to complete, what encoding would you use?
 - Each worker can do more than one job, but each job takes a specified amount of the workers (finite) time.

Encodings

Encoding 1

- ■Have an encoding of *n* integers, each with a range 1-*m*
 - + every worker has at least one job
 - not every job will have a worker assigned
 - cannot assign more than one job to a worker
 - ■- one job may be assigned to 2 or more workers

Encoding 2

- ■Have an encoding of *m* integers, each with a range 1-*n*
 - + every job has a worker assigned to it
 - a worker may be overworked

E.g. encoding a timetable I

	mon	tue	wed	thur
9:00	E4, E5	E2		E3, E7
11:00	E8			
2:00		E6		
4:00	E1			

Etc ...

- Generate *any* string of 8 numbers between 1 and 16, and we have a timetable!
- Fitness may be <clashes> + <consecs> + etc ...
- Figure out an encoding, and a fitness function, and you can try to evolve solutions.

Mutating a Timetable with Encoding 1

4, 5, 13, 1, 1, 7, 13, 2

ı				1	
		mon	tue	wed	thur
	9:00	E4, E5	E2		E3, E7
	11:00	E8			
	2:00		E6		
	4:00	E1			

Using straightforward single-gene mutation

Choose a random gene

Mutating a Timetable with Encoding 1

4, 5, 6, 1, 1, 7, 13, 2

	mon	tue	wed	thur
9:00	E4, E5	E2		E7
11:00	E8	E3		
2:00		E6		
4:00	E1			

Using straightforward single-gene mutation

One mutation changes position of one exam

Encoding a timetable II

	mon	tue	wed	thur	
9:00	E4 E5	E2			
11:00			E3		
2:00	E8			E7	
4:00	E1	E6			

Use the 10th clash-free slot for exam3
Use the 5th clash-free slot for exam2
Use the 4th clash-free slot for exam1

Suppose these groups would clash (e.g. non-consecutive, non-parallel)

{E1, E2}, {E1,E3}, {E2, E6}, {E2,E7}, {E2,E8}, {E3,E5}, {E3,E6}, {E4,E6}, {E4, E7}, {E5, E7}, {E5, E8}, {E6, E8}

Mutation with Encoding II

	mon	tue	wed	thur
9:00	E4 E5	E2		
11:00			E3	
2:00	E8			E7
4:00	E1	E6		

Use the 10th clash-free slot for exam3
Use the 5th clash-free slot for exam2
Use the 4th clash-free slot for exam1

Suppose these groups would clash

```
{E1, E2}, {E1,E3}, {E2, E6}, {E2,E7}, {E2,E8}, {E3,E5}, {E3,E6}, {E4,E6}, {E4,E7}, {E5,E7}, {E5,E8}, {E6,E8}
```

Mutation with Encoding II

	mon	tue	wed	thur
	James, and the second			\
9:00	\mathbb{E}^{4}	E2		\ \
11:00	E8		E3	E5
2:00				
4:00	E1	E6		E7

Use the 13th clash-free slot for exam3
Use the 5th clash-free slot for exam2
Use the 4th clash-free slot for exam1

Suppose these groups would clash

```
{E1, E2}, {E1,E3}, {E2, E6}, {E2,E7}, {E2,E8}, {E3,E5}, {E3,E6}, {E4,E6}, {E4,E7}, {E5,E7}, {E5,E8}, {E6,E8}
```

Direct vs Indirect Representation

Representation	Encoding	Modifies	Invalid Solutions
Direct	1,2,3,4 011010 ABFCDE	A variable in the problem E.g. Exam Time, Water Pipe Size	Dealt with solely by penalising fitness
Indirect	1,2,3,4 011010 ABFCDE	The variables of a heuristic E.g. Clash-Free Exam Time, Rules for Sizing Water Pipes	Mostly dealt with by encoding. Some penalising by fitness if necessary

Direct vs Indirect Encodings

Direct:

- straightforward genotype (encoding) -> phenotype (individual) mapping
- Easy to estimate effects of mutation
- Fast interpretation of chromosome (hence speedier fitness evaluation)

Indirect:

- Easier to exploit domain knowledge
- Hence, possible to `encode away' undesirable features
- Hence, can seriously cut down the size of the search space
- But, slow interpretation
- Neighbourhoods are highly rugged.

One of the very first applications. Determine the internal shape of a two-phase jet nozzle that can achieve the maximum possible thrust under given starting conditions

Ingo Rechenberg was the very first, with pipe-bend design

This is slightly later work in the same lab, by Schwefel

A recurring theme: design freedom \rightarrow entirely new and better designs based on principles we don't yet understand.

A Real Encoding (and: How EAs can innovate, rather than just optimize)

D1 >= D2 >= D3, D4 <= D5 <= D6Fixed at six diameters, five sections

An example genotype and its phenotype

2, 1.8, 1.1, 1.3 1.5

Assume each is allowed to vary between 0.1 and 2.

What is the likely effect on fitness of *random-gene* mutation where we replace a gene with a random new value in the range?

E.g. How EAs can innovate, rather than just optimize

Num sections before smallest

Z1, Z2, D1, D2, D3 Dsmall..., Dn, Dn+1, ...

Num sections after smallest

Middle section constrained to be smallest,
That's all
Mutations can change diameters, add sections,
and delete sections

Some slides from an Introductory lecture by John Koza, Stanford

ANTENNA DESIGN

ANTENNA DESIGN

- The problem (Altshuler and Linden 1998) is to determine the *x-y-z* coordinates of the 3dimensional position of the ends (*X1*, *Y1*, *Z1*, *X2*, *Y2*, *Z2*,..., *X7*, *Y7*, *Z7*) of 7 straight wires so that the resulting 7-wire antenna satisfies certain performance requirements
- The first wire starts at feed point (0, 0, 0) in the middle of the ground plane
- The antenna must fit inside the 0.5λ cube

ANTENNA GENOME

X ₁	Y ₁	Z_1	X_2	Y ₂	Z_2	•••
+0010	-1110	+0001	+0011	-1011	+0011	

- 105-bit chromosome (genome)
- Each x-y-z coordinate is represented by 5 bits (4-bit granularity for data plus a sign bit)
- Total chromosome is $3 \times 7 \times 5 = 105$ bits

This was done with binary encoding – the fashion at the time, and still often used, but real-valued or integer coding will be just as applicable

ANTENNA FITNESS

- Antenna is for ground-to-satellite communications for cars and handsets
- We desire near-uniform gain pattern 10° above the horizon
- Fitness is measured based on the antenna's radiation pattern. The radiation pattern is simulated by National Electromagnetics Code (NEC)

ANTENNA FITNESS

- Fitness is sum of the squares of the difference between the average gain and the antenna's gain
- Sum is taken for angles Θ between -90° and +90° and all azimuth angles Φ from 0° to 180°
- The smaller the value of fitness, the better

U. S. PATENT 5,719,794

Component-based representations

Bentley's work used primitive shapes to construct novel designs

Tree based representation

$$2 \cdot \pi + \left((x+3) - \frac{y}{5+1} \right)$$

Next time: Genetic Programming