ECM3412/ECMM409
Overview of Genetic
Programming

(Adapted/used slides from Martin
Henz, John Koza, and Jason Lohn)

General Idea

s Overview of an Evolutionary
Algorithm to evolve programs

Conventional programming

input

output

»| program

]

Written by you

4

Genetic programming

Required behaviour

Input

" GP

A 4

>

program

output

L}

Automatically evolved

>

Background

s Origin of GP: Koza, John R. 1992. Genetic
Programming: On the Programming of
Computers by Means of Natural Selection.
Cambridge, MA: The MIT Press.

s Work since early 1980s; series of books (4
volumes) In various editions

s Considered a branch of Al

.e.

Algorithm outiine

Generate random “programs’™
Evaluate programs using training data

Selectively modify population of
programs using cross-over and mutation
etc.

If a good program is found, finish, else
go to 2

this is just an EA, but where we are
evolving programs.

E.g. way In the future

Evolve an operating system, or word processor, etc

Fitness: users or simulated users work with it for an
amount of time, and rate Its behaviour.

It’s not so crazy — Initial population could be seeded
with previously human-developed systems.
Evolution could be constrained to bits of it (e.g.
develop fast code for search-and-replace,etc...)

Back to 215t Century

Current GP Is like this:

Programming tasks:

= navigation code for a mobile robot
= curve fitting

= antenna design

= Clrcuit design

= prediction, etc...

= [hey tend to be standard things you might
expect EAs to be applied to, but some of which
need to be represented as programs.

Fitness Evaluation

The fitness evaluation is more complex than
with standard EAs

“Normal” EA: a chromosome represents a
design, a schedule, etc. We just evaluate it and
give It a score.

GP: the chromosome Is a program. To evaluate
It, we have to run it, and test 1ts behaviour over
a range of potential inputs.

Repeat for N Conditions

Return Fitness

A COMPUTER PROGRAM IN C

iInt foo (Int time)
1
Int templ, temp2;
It (time > 10)
templ = 3;
else
templ = 4;
temp2 = templ + 1 + 2;
return (temp2);

OUTPUT OF C PROGRAM

Time | Output
0 6
i 6
2 6
3 6
4 6
o 6
6 6
! 6
8 6
9 6
10 6
11 4
12 4

Same program as a tree

(+ 1 2 (IF (> TIME 10) 3 4))

CREATING RANDOM PROGRAMS

We need a:
Function Set: e.g. PLUS, MINUS, TIMES, DIV, IF
Terminal Set: e.g. X, Y, <any real number>

Associated syntax rules:
e.g. in this case, PLUS can have only two children from F and/or T.
MINUS can have only two children from F and/or T. IF has 4 children,
A, B and C, where the meaning is “IF A > B then return C else return D”.

Then we can create a random program with an algorithm like this

Maximum depth: 5;
Definition:
Start: choose a random member of F for the root; set its depth =1
Repeat:
Choose a function node X which does not have its children yet;
IT (X < Maximum depth — 1) Randomly choose appropriate children for that
node, and set the childrens® depth to D +1, where D is the depth of their parent.
IT (X = Maximum depth — 1) Randomly choose appropriate children for that node,
but ensuring that they are all terminals.

Example random; program creation

Start with a randomly chosen function node

depth=1

Example random; program creation

Now choose a random childless function node and generate appropriate random children

@ depth=1
CIE > (372 depth = 2

Example random; program creation

Again choose a random childless function node and generate appropriate random children

@ depth=1
CIE > (372 depth = 2

@@ O depth = 3

Example random; program creation

And again ...
@ depth=1
CIE > (372 depth = 2
OO G0 O

@ @ depth = 4

Example random; program creation

And again ... this time we expanded a function with depth Max -1, so children must be Terminals

@ depth=1
CIE > (372 depth = 2

GO @R O
@ G depth = 4
GO) Q) deph=5

Example random; program creation

And again ... and now there are no Function nodes remaining without children

@ depth=1
CIE > (372 depth = 2

ConD () Ly O depth = 3
& &) DG depth = 4
G O D) depin=5

S0, What have we got?

Cov D) @ 0O

& O @ F
G © O

Interpreting this in a natural way, this is the following program
Input (X, Y)

IT X < 3.1, then tmpl =Y, else tmpl =Y

tmp2 = tmpl + 2.8

tmp3 = 4.2/7Y

IT tmp3 > Y, then tmpd = tmp2 else tmpd = X
tmpS5 = tmp4 + 3.7

output: tmpdS

Mutation

Cov D) @ 0O
&

28 AF
G O O

Standard approach is to choose a subtree at random, remove it, and then generate
a new subtree In its place. This is usually biased towards nodes with high depth.

Choosing a subtree is equivalent to choosing a node.
For example:

Mutation

Random choice of node

Mutation
(PLUS>

O @R O

28 AF
G O O

Remove the subtree rooted at that node

Mutation

G O O

Generate a new subtree at that node, following the usual rules about depth etc.
In this case the new subtree happens to be a randomly chosen terminal, but it
could have been entire tree going down to level 5.

What has this mutation done to the program?

Crossover

(&
(k. (FLTE)
) © Yedts

FIVE MAJOR PREPARATORY
STEPS FOR GP

. Fitness Termination Criterion
Function Set Parameters . .
Measure and Result Designatior

A Computer Program

Determining the set of terminals
Determining the set of functions
Determining the fithess measure
Determining the parameters for the run

Determining the method for designating a
result and the criterion for terminating a
run

ILLUSTRATIVE GP RUN

SYMBOLIC REGRESSION

Independen | Dependent
t variable X | variable Y
-1.00 1.00
-0.80 0.84
-0.60 0.76
-0.40 0.76
=05240) 0.84
0.00 1.00
0.20 1.24
0.40 1.56
0.60 1.96
0.80 2.44
1.00 3.00

PREPARATORY STEPS

Objective:

Find a computer program with one
iInput (independent variable X)

whose output equals the given data

Terminal set:

T = {X, Random-Constants}

Function set:

F = {+1) *1 %}

Fithess:

The sum of the absolute value of the
differences between the candidate
program’s output and the given data
(computed over numerous values of the
iIndependent variable x from —1.0 to +1.0)

Parameters:

Population size M = 4

Termination:

An individual emerges whose sum of
absolute errors is less than 0.1

SYMBOLIC REGRESSION

POPULATION OF 4 RANDOMLY
CREATED INDIVIDUALS FOR
GENERATION O

EHIE

SYMBOLIC REGRESSION x? + x + 1

FITNESS OF THE 4 INDIVIDUALS IN GEN O

0.67 1.00 1.70 2.67

SYMBOLIC REGRESSION x? + x + 1

Copy of (a)

GENERATION 1

Mutant of (c)

picking “2”
as mutation
point

First offspring of
crossover of (a)
and (b)

picking “+” of
parent (a) and
left-most “Xx” of
parent (b) as
Crossover points

Second offspring
of crossover of
(a) and (b)
picking “+" of
parent (a) and
left-most “Xx” of
parent (b) as
Crossover points

Diiferent Function/Terminal Sets
@
2%
oD (=) @
S5 &? O

Programs which compute logical functions of the data;
Very useful in data mining — e.g. this could be medical data
concerning levels of certain proteins in blood test results

Antennae Again

Genotype specifies design of 1 arm in 3-space

Genotype is tree-structured computer program that
builds a wire form <

Commands:
 forward(length radius)
 rotate_x(angle)

- rotate_y(angle)

- rotate_z(angle)

Branching in genotype -2
branching in wire form

An example antenna

lts performance

Evolved Antenna Conventional Antenna

AUT RHCP Theta Cram Hounsds

Max and Min Galn vs Theta for 7.2 GHz 10
[
10 3
& = :
0] -)
1 . o 0 4n 5§ 80 i 4 é}\m 2
L
N 7 |
-.. 1"
- .
: “u
r -

3 -15 Y :'l
20+ A _‘_-1
1| +
-30 rv ' - ;
=1
-35 | a 10 20 30 40 AN G 10 Hi 1| Lo
-40

Theta (deg)

Shaded Yellow Box Denotes Area In-Spec, According to Original Mission Requirements

	ECM3412/ECMM409Overview of Genetic Programming
	General Idea
	Background
	Algorithm outline
	E.g. way in the future
	Back to 21st Century
	Fitness Evaluation
	A COMPUTER PROGRAM IN C
	OUTPUT OF C PROGRAM
	Same program as a tree
	CREATING RANDOM PROGRAMS
	Example random program creation
	Example random program creation
	Example random program creation
	Example random program creation
	Example random program creation
	Example random program creation
	So, what have we got?
	Mutation
	Mutation
	Mutation
	Mutation
	Crossover
	FIVE MAJOR PREPARATORY STEPS FOR GP
	ILLUSTRATIVE GP RUN
	SYMBOLIC REGRESSION
	PREPARATORY STEPS
	SYMBOLIC REGRESSION
	SYMBOLIC REGRESSION x2 + x + 1
	SYMBOLIC REGRESSION x2 + x + 1
	Different Function/Terminal Sets
	Antennae Again
	An example antenna
	Its performance

