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Abstract. In this paper we present AntNet, a novel adaptive approach to routing
tables learning in packet-switched communications networks. AntNet is inspired
by the stigmergy model of communication observed in ant colonies. We present
compelling evidence that AntNet, when measuring performance by standard
measures such as network throughput and average packet delay, outperforms the
current Internet routing algorithm (OSPF), some old Internet routing algorithms
(SPF and distributed adaptive Bellman-Ford), and recently proposed forms of
asynchronous online Bellman-Ford (Q-routing and Predictive Q-routing).

1. Introduction

In this paper we consider the problem of adaptive routing in communications net-
works: we focus on routing for wide area datagram networks with irregular topology,
the most remarkable example of such networks being the Internet.

The routing algorithm that we propose in this paper was inspired by previous
works on ant colonies and, more generally, by the notion of stigmergy [15], that is, the
indirect communication taking place among individuals through modifications in-
duced in their environment. Real ants have been shown to be able to find shortest
paths using as only information the pheromone trail deposited by other ants [2]. Algo-
rithms that take inspiration from ants' behavior in finding shortest paths have recently
been successfully applied to discrete optimization [4, 7, 11, 12, 13, 14, 18].

In ant colony optimization a set of artificial ants collectively solve a combinatorial
problem by a cooperative effort. This effort is mediated by indirect communication of
information on the problem structure they collect while building solutions. Similarly,
in AntNet, the algorithm we propose in this paper, artificial ants collectively solve the
routing problem by a cooperative effort in which stigmergy plays a prominent role.
Ants adaptively build routing tables and local models of the network status using indi-
rect and non-coordinated communication of information they concurrently collect
while exploring the network.

We report on the behavior of AntNet as compared to the following routing algo-
rithms: Open Shortest Path First (OSPF) [17], Shortest Path First (SPF) [16], distrib-
uted adaptive Bellman-Ford (BF) [20], Q-routing [5], and PQ-routing [6]. We consid-
ered a variety of realistic experimental conditions. In all cases AntNet showed the best
performance and the most stable behavior, while among the competitors there was no
clear winner.
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2. Problem Characteristics

The goal of every routing algorithm is to direct traffic from sources to destinations
maximizing network performance. The performance measures that usually are taken
into account are throughput (correctly delivered bits per time unit) and average packet
delay. The former measures the quantity of service that the network has been able to
offer in a certain amount of time, while the latter defines the quality of service pro-
duced at the same time.

The general problem of determining an optimal routing algorithm can be stated as a
multi-objective optimization problem in a non-stationary stochastic environment. In-
formation propagation delays, and the difficulty to completely characterize the net-
work dynamics under arbitrary traffic patterns, make the general routing problem in-
trinsically distributed. Routing decisions can only be made on the basis of local and
approximate information about the current and the future network states. Additional
constraints are posed by the network switching and transmission technology.

3. The Communication Network Model

In the following, a brief description of the features of the considered communication
network model is given. In this paper we focus on irregular topology datagram net-
works with an IP-like (Internet Protocol) network layer and a very simple transport
layer. We developed a complete network simulator (in C++) where the instance of the
communication network is mapped on a directed weighted graph with N nodes. All
the links are viewed as bit pipes characterized by a bandwidth (bits/sec) and a trans-
mission delay (sec), and are accessed following a statistical multiplexing scheme. For
this purpose, every routing node holds a buffer space where the incoming and the out-
going packets are stored. All the traveling packets are subdivided in two classes: data
and routing packets. All the packets in the same class have the same priority, so they
are queued and served only on the basis of a first-in-first-out policy, but routing pack-
ets have a higher priority than data packets.

Data packets are fed into the network by applications (i.e., processes sending data
packets from origin nodes to destination nodes) whose arrival rate is dictated by a se-
lected probabilistic model. The number of packets to send, their sizes and the intervals
between them are assigned according to some defined stochastic process.

At each node, packets are forwarded towards their destination nodes by the local
routing component. Decisions about which outgoing link has to be used are made by
using the information stored in the node routing table. When link resources are avail-
able, they are reserved and the transfer is set up. The time it takes to a packet to move
from one node to a neighboring one depends on its size and on the link transmission
characteristics. If on a packet's arrival there is not enough buffer space to hold it, the
packet is discarded. Packets are also discarded because of expired time to live. No ar-
rival acknowledgment or error notification packets are generated back to the source.

After transmission, a stochastic process generates service times for the newly ar-
rived data packet, that is, the delay between its arrival time and the time when it will
be ready to be put in the buffer queue of the selected outgoing link.

We have not implemented a “real” transport layer. That is, we have not imple-
mented mechanisms for a proper management of error, flow, and congestion control.
The reason is that we want to check the behavior of our algorithm and of its competi-



tors in conditions which minimize the number of interacting components. Note that
the dynamics of adaptive routing and of flow and congestion control components are
tightly coupled and that they should therefore be designed to match each other.

4. AntNet: Adaptive Agent-based Routing

As remarked before, the routing problem is a stochastic distributed multi-objective
problem. These features make the problem well suited for a multi-agent approach like
our AntNet system, composed of two sets of homogeneous mobile agents [21], called
in the following forward and backward ants. Agents in each set possess the same
structure, but they are differently situated in the environment; that is, they can sense
different inputs and they can produce different, independent outputs. In AntNet we
retain the core ideas of the ant colony optimization paradigm, but we have translated
them to match a distributed, dynamic context, different from combinatorial optimiza-
tion. Ants communicate in an undirected way according to the stigmergy paradigm,
through the information they concurrently read and write in two data structures stored
in each network node k:
(i) an array Mk(µd,σd

2) of data structures defining a simple parametric statistical
model of the traffic distribution for all destinations d, as seen by the local node k,

(ii) a routing table, organized as in distance-vector algorithms [20]; the table stores
for each pair (d,n) a probability value Pdn

P d N N neighbors kdn
n Nk∈
∑ = ∈[ ] = ( ){ }1 1, , ,  k

which expresses the goodness of choosing n as next node when the destination
node is d.

The AntNet algorithm can be informally described as follows.
•  At regular intervals, from every network node s, a forward ant Fs→d, is launched,

with a randomly selected destination node d. Destinations are chosen to match the
current traffic patterns.

•  Each forward ant selects the next hop node using the information stored in the
routing table. The next node is selected, following a random scheme, proportion-
ally to the goodness (probability) of each not still visited neighbor node and to
the local queues status. If all neighbors have been already visited a uniform ran-
dom selection is applied considering all the neighbors.

•  The identifier of every visited node k and the time elapsed since its launching
time to arrive at this k-th node are pushed onto a memory stack Ss→d(k) carried by
the forward ant.

•  If a cycle is detected, that is, if an ant is forced to return to an already visited
node, the cycle's nodes are popped from the ant's stack and all the memory about
them is destroyed.

•  When the ant Fs→d reaches the destination node d, it generates a backward ant
Bd→s, transfers to it all of its memory, and then dies.

•  The backward ant makes the same path as that of its corresponding forward ant,
but in the opposite direction. At each node k along the path it pops its stack
Ss→d(k) to know the next hop node.

•  Arriving in a node k coming from a neighbor node f, the backward ant updates Mk

and the routing table for all the entries corresponding to every node i on the path
k→d, that is the path followed by ant Fk→d starting from the current node k.



•  The sample means and variances of the model Mk(µi,σi
2) are updated with the

trip times Tk→i   stored in the stack memory Ss→d(k).
•  The routing table is changed by incrementing the probabilities Pif associated

with node f and the nodes i, and decreasing (by normalization) the probabili-
ties Pin associated with the other neighbor nodes n. Trip times Tk→i  experi-
enced by the forward ant Fs→d are used to assign the probability increments.

Tk→d is the only explicit feedback signal we have: it gives an indication about the
goodness r of the followed route because it is proportional to its length from a physi-
cal point of view (number of hops, transmission capacity of the used links, processing
speed of the crossed nodes) and from a traffic congestion point of view1. The problem
is that Tk→d can only be used as a reinforcement signal. In fact, it cannot be associated
with an exact error measure, given that we do not know the optimal trip times, which
depend on the net load status. The values stored in the model Mk are used to score the
trip times by assigning a goodness measure r  ≡ r (Tk→d,Mk), r ∈ ]0,1] (r is such that the
smaller Tk→d, the higher r). This dimensionless value takes into account an average of
the observed values and of their dispersion: r ∝  (1–Wk→d/Tk→d) + ∆ (σ,W), where
Wk→d is the best trip time experienced over an adaptive time window, and ∆(σ,W) is a
correcting term (the rationale behind this choice for r is discussed in [8]); r is used by
the current node k as a positive reinforcement for the node f the backward ant Bd→s

comes from. The probability Pdf is increased by the computed reinforcement value r:
Pdf  ←  Pdf  + (1–Pdf)·r = Pdf ·(1– r) + r. In this way, the probability Pdf will be in-
creased by a value proportional to the reinforcement received and to the previous
value of the node probability (that is, given a same reinforcement, small probability
values are increased proportionally more than big probability values).

Probabilities Pdn for destination d of the other neighboring nodes n implicitly re-
ceive a negative reinforcement by normalization. That is, their values are reduced so
that the sum of probabilities will still be 1: Pdn ← Pdn·(1– r).

The transformation from the raw value Tk→d to the definition of the more refined
reinforcement r is similar to what happens in Actor-Critic systems [1]: the raw rein-
forcement signal (Tk→d, in our case) is processed by a critic module which is learning a
model of the underlying process, and then is fed to the learning system.

It is important to remark that every discovered path receives a positive reinforce-
ment in its selection probability. In this way, not only the (explicit) assigned value r
plays a role, but also the (implicit) ant's arrival rate.

An important aspect of the AntNet algorithm is that the routing tables are used in a
probabilistic way not only by the ants, but also by the packets. This mechanism al-
lows an efficient distribution of the data packets over all the good paths and has been
observed to significantly improve AntNet performance. A node-dependent threshold
value avoids the choice of low probability links.

As a last consideration, note the critical role played by ant communication. In fact,
each ant is complex enough to solve a single sub-problem but the global routing op-
timization problem cannot be solved efficiently by a single ant. It is the interaction
between ants that determines the emergence of a global effective behavior from the
network performance point of view. The key concept in the cooperative aspect lies in

                                                                        
1 This last aspect is extremely important: forward ants share the same queues as data packets (backward

ants do not, they have priority over data to faster propagate the accumulated information), so if they
cross a congested area, they will be delayed. This has a double effect: (i) the trip time will grow and then
back-propagated probability increments will be small, and (ii) at the same time these increments will be
assigned with a bigger delay.



the indirect and non-coordinated way communication among ants happens (stigmergy,
[15]). We used stigmergy as a way of recursively transmitting, through the nodes’
structures, the information associated with every “experiment” made by each ant.

5. Routing Algorithms Used for Comparison

The following algorithms, belonging to the various possible combinations of static
and adaptive, distance vector and link state classes [20], have been implemented and
used to run comparisons. OSPF (static, link state) is our implementation of the offi-
cial Internet routing algorithm [17] (since we did not consider failure conditions the
algorithm reduces to static shortest path routing). SPF (adaptive, link state) is the pro-
totype of link-state algorithms with dynamic metric for link costs evaluations. A
similar algorithm was implemented in the second version of ARPANET [16]. We im-
plemented it with state-of-the-art flooding algorithms and link cost metrics [19]. Link
costs are evaluated over moving windows using a link usage metric based on the frac-
tion of time the link has been used during the last observation window. This metric
was the most effective among the several we considered. BF (adaptive, distance-vec-
tor) is an adaptive implementation of the distributed Bellman-Ford algorithm with dy-
namic metrics [3]. Link costs are evaluated as in SPF above. Q-R (adaptive, distance-
vector) is the Q-routing algorithm as proposed in [5]. This is an online asynchronous
version of the Bellman-Ford algorithm. PQ-R (adaptive, distance-vector) is the Pre-
dictive Q-routing algorithm [6], an extension of Q-routing.

6. Experimental Settings

We have selected a limited set of classes of tunable components and for each of them
we have made realistic choices.
Topology and physical properties of the net. In our experiments we used two net-
works: NSFNET and an irregular 6 x 6 grid. NSFNET is a real net, that is, the old
(1987) T1 US backbone, while the 6 x 6 grid was proposed in [5]. NSFNET is com-
posed of 14 nodes and 21 bi-directional links, and the 6 x 6 grid has 36 nodes and 50
bi-directional links. The topology and the propagation delays of NSFNET are those
used in [8], while for the 6 x 6 grid see [5]. Links have a bandwidth of 1.5 Mbit/s in
NSFNET, and 10 Mbit/s in the 6 x 6 grid net. All nets have null link and node fault
probabilities, local buffers of 1 Gbit, and packets maximum time to live set to 15 sec.
Traffic patterns . Traffic is defined in terms of open sessions between a pair of active
applications situated on different nodes. We considered three basic spatial and tempo-
ral traffic pattern distributions:
•  Uniform Poisson (UP): for each node is defined an identical Poisson process for ses-

sions arrival, that is, inter arrival times are negative exponential distributed.
•  Hot Spots (HS): some nodes behave as hot spots, concentrating a high rate of in-

put/output traffic. Sessions are opened from the hot spots to all the other nodes.
•  Temporary Hot Spot (TMPHS): a temporary sudden increase in traffic load is gener-

ated switching on some hot spots for a limited period of time.
All the experiments have been realized considering various compositions of the

above main patterns. For all the session types, packets sizes, packets inter arrival
times and the total number of generated bits follow a negative exponential distribu-
tion.



Metrics for performance evaluation. We used two standard performance metrics:
throughput (delivered bits/sec), and data packets delay (sec). For data packets delay
we use either the average value over a moving time window, or the empirical distri-
bution that takes into account the intrinsic variability of packet delays.
Routing algorithms parameters. For each algorithm the routing packets size and
elaboration time are reported in Table 1. The other main parameters are the following.
In AntNet, the generation interval of ants is set to 0.3 (sec), the exploration probabil-
ity is set to 0.05, and the ant processing time is set to 3 ms. In OSPF, SPF, and BF, the
length of the time interval between consecutive routing information broadcasting and
the length of the time window to average link costs are the same, and they are set to
0.8 or 3 seconds, depending on the experiment. In Q-R and PQ-R the transmission of
routing information is data-driven.

Table 1. Routing packets characteristics for the implemented algorithms. Nh is the incremental num-
ber of hops done by the forward ant, Nn is the number of neighbors of node n, and N is the number of net-
work nodes.

Ant Net SPF & OSPF BF Q-R & PQ-R
packet size (byte) 24+8·Nh 64+8·Nn 24+12·N 12

packet elaboration time (msec) 3 6 2 3

7. Results

The goal of a routing algorithm is to route all the generated traffic, without losses,
while keeping packets delay as low as possible (i.e., it should operate the network far
from saturation conditions). Moreover, packet losses would require retransmission
(this is managed by the congestion control layer, which is not implemented in our
simulator) with a further increase in traffic. Therefore, when observing the results pre-
sented in the following of this section, the first performance comparison will be done
on throughput, and a fair comparison on packet delays can only be done for those al-
gorithms which have a similar throughput.

Experiments reported in this section compare AntNet with the previously described
routing algorithms. All experiments are averaged over 10 trials. Parameters values for
traffic characteristics are given in the figures’ captions with the following meaning:
NHS is the number of hot spot nodes, MSIA is the mean of the sessions inter arrival
time distribution, MPIA-UP and MPIA-HS are the means of the packet inter arrival
time distributions for the UP and HS sessions respectively. In all the experiments the
mean of the packet size distribution is set to 4096 bit, and the mean of the total num-
ber of bits produced by each session is set to 2 Mb.

The results obtained on the NSFNET for (i) a uniform Poisson traffic load (UP)
distribution, (ii) hot spots superimposed to a uniform Poisson traffic load (UPHS),
and (iii) temporary hot spots superimposed to a light UP load, are shown respectively
in figures 1, 2, and 3. The uniform Poisson traffic was chosen to be “heavy”, that is,
we set the values of the traffic patterns parameters to values that caused the network
to reach a state very close to saturation. The reason to do this is that it is only under
heavy load conditions that differences among competing algorithms can be appreci-
ated in a meaningful way. In fact, when the traffic load is low, almost all the algo-
rithms perform similarly. On the other hand, if the traffic load is too high, then a rea-
sonable assumption is that it is a temporary situation. If it is not, structural changes to
the network characteristics, like adding new and faster connection lines, rather than



improvements of the routing algorithm, are in order. In both figures 1 and 2, the big-
ger, outer graph shows the throughput, while the smaller, inner graph shows the em-
pirical distribution of packet delays. From these two figures we can extract the fol-
lowing information: (i) all the algorithms, with the exception of OSPF and PQ-R, can
successfully route the totality of the generated throughput, and (ii) AntNet is the only
algorithm capable of maintaining the packet delay of more than 90% of the packets
below 0.5 sec.
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Fig. 1. NSFNET: A comparison of AntNet with five
competing algorithms for a heavy uniform Poisson
traffic (UP). Average over 10 trials. MSIA=1.5,
MPIA-UP=0.2.

Fig. 2. NSFNET: A comparison of AntNet with
five competing algorithms for hot spots superim-
posed to a heavy uniform Poisson traffic (UPHS).
Average over 10 trials. NHS=4, MSIA=2.0,
MPIA-UP=0.3, MPIA-HS=0.05.
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Fig. 3. NSFNET: A comparison of AntNet with
SPF and BF (the behavior of the other algorithms
was much worse): after 400 sec some hot spots are
superimposed to a light UP load for 120 sec
(TMPHS-UP). Reported throughput and packet
delay values are averages over a moving time
window of 0.5 sec. Average over 10 trials. NHS=4,
MSIA=1.5, MPIA-UP=0.5, MPIA-HS=0.05.

Fig. 4. 6 x 6 irregular grid net: A comparison of
AntNet with five competing algorithms for a
heavy uniform Poisson traffic (UP). Average over
10 trials. MSIA=1.0, MPIA-UP=0.1.

In Fig. 3 we investigate the answer of the algorithms to a sudden increase of traffic
load. During the whole simulation the network is given a light UP load distribution; at
simulation time t=400 the hot spots are switched on, to be subsequently switched off
at time t=520. The figure shows only AntNet, SPF, and BF since the other algorithms’
performance was so much worse that their graphs were out of scale. The upper graph
in Fig. 3 shows the instantaneous throughput averaged over a window of 0.5 sec. It is
clear that there are no significant differences among AntNet, SPF, and BF: their



graphs are practically superimposed on the whole simulation time. The three algo-
rithms increase their throughput when the hot spots are switched on, and, once the hot
spots are switched off, they quickly forget the transitory situation. The lower graph
(Fig. 3) shows the instantaneous packet delay averaged over a window of 0.5 sec.
Here we chose not to report the empirical distribution because we wanted to highlight
the answer in time of algorithms. The graph confirms the superiority of AntNet over
the other algorithms also in this case: after time t=400 the average packet delay
greatly increases for all the algorithms, except for AntNet which is able to maintain it
well below 0.4 sec.

As a last experiment, in Figure 4 we present results obtained on the ir regular 6 x 6
grid network. Once again, AntNet offers the best throughput, although differences
with Q-R and PQ-R are not statistically significant. BF, SPF, and OSPF lose up to
20% of the packets. The inner graph shows for the empirical distribution of packet
delays a similar pattern to that of experiments with NSFNET: AntNet is the best algo-
rithm, followed, in this case, by OSPF and SPF (that, however, had a worse through-
put performance).

8. Discussion

The results presented are rather sharp: AntNet performs better, both in terms of
throughput and of average delay, than both classic and recently proposed algorithms2.
Among the competitors there is not a clear winner.
Concerning network resources utilization, in Table 2 we report, for each algorithm,
the routing overhead expressed as the ratio between generated routing traffic and total
available bandwidth. Even if the AntNet overhead is higher than that of some of its
competitors, it must be considered that (i) the relative weight of the routing packets on
the net resources is negligible, and (ii) this slightly higher network resources con-
sumption is compensated by the much higher performance it provides.

Table 2. Routing overhead for experimental conditions considered in the paper expressed as the ratio be-
tween the generated routing traffic by each algorithm and total available network bandwidth (note that the
ratios are scaled by a factor of 10-3).

AntNet OSPF SPF BF Q-R PQ-R
NSFNET UP (10 -3 ) 1.70 <0.10 0.40 0.69 8.6 10.0
NSFNET UPHS (10 -3 ) 1.70 <0.10 0.47 0.69 8.1 10.0
6x6(10 -3 ) 2.30 <0.10 0.16 0.24 8.0  9.4

Differences among algorithms performances can be understood on the basis of the dif-
ferent degree of adaptivity and of speed with which the different algorithms respond
to changing traffic conditions. The very low performance of OSPF can be explained
by both the lack of use of an adaptive metric (which all the other methods use), and by
the fact that we set link costs only on the basis of a shortest path computation. Differ-
ently, on real networks (on the Internet, for example) these are set by network admin-
istrators who use additional heuristic knowledge about traffic patterns. To explain
why AntNet performs better than the others is slightly more tricky. We identified the
following main reasons: (i) the use of local versus global information, and (ii) the dif-
ferent routing table update frequencies, which are discussed in the following.

                                                                        
2

Experiments similar to those presented in this paper have been run on other network topologies with in-
creasing number of nodes and different traffic patterns obtaining similar results (see [8, 9, 10]).



The use of local versus global information. BF, Q-R and PQ-R work with local es-
timates of distances to destinations. These estimates are updated by using strictly local
information: the traffic situation on outgoing links and the distance estimates main-
tained by neighbor nodes. Differently, AntNet samples the network and redistributes
the global information ants collect: backward ants redistribute the global information
relative to the paths sampled by the corresponding forward ants to all the nodes they
visited. SPF maintains a global representation of the whole network in each node,
which is updated by periodic flooding of local link costs information. If one of this
cost information is badly estimated (as it is often the case when dynamic metrics are
used), the wrong estimate propagates to all the local representations of the network.
Here it is used to calculate shortest paths to build the new routing tables. The result is
that a single erroneous estimate will negatively affect all the routing tables. From this
point of view, AntNet is more robust: an incorrect update will affect only entries rela-
tive to the ant destination in those routing tables belonging to the ant path.
Routing table update frequency. In BF and SPF the broadcast frequency of routing
information plays a critical role, particularly so for BF which has only a local repre-
sentation of the network status. This frequency is unfortunately problem dependent,
and there is no easy way to make it adaptive, while, at the same time, avoiding large
oscillations. In Q-R and PQ-R, routing tables updating is data driven: only those Q-
values belonging to pairs (i,j) of nodes visited by packets are updated. Although this
is a reasonable strategy, given that the exploration of new routes could cause unde-
sired delays to data packets, this causes delays in discovering new good routes, and is
a great handicap in a domain where good routes change all the time. In AntNet, we
experimentally observed the robustness to changes in the ants’ generation rate. For a
wide range of values of the generation rate, the more the ants generated, the better the
algorithm works, until the traffic induced by ants ceases to be negligible with respect
to the data traffic.

9. Related Work

AntNet is not the only algorithm based on the ant colony metaphor that has been ap-
plied to routing. Schoonderwoerd et al. [18] have considered the routing problem in
connection-oriented communications networks. Their approach is different from ours
in many respects. First, their communication network was modeled after a very spe-
cific type of telephone network: (i) they considered links carrying an infinite number
of full-duplex, fixed bandwidth channels, (ii) their nodes are just reconfigurable
switches with limited connectivity (that is, there is no necessity for queue manage-
ment in the nodes). Second, their ants did not share transmission channels with data
packets (i.e., they used a “virtual” network). These assumptions are strongly reflected
in their algorithm structure: since we use a realistic communications network simula-
tor which models a general data network, it is impossible to re-implement and com-
pare their algorithm with ours.

10. Conclusions

In this paper we proposed AntNet, a novel algorithm for routing in communications
networks inspired by previous work on artificial ants colonies in combinatorial opti-
mization. We compared AntNet to a set of state-of-the-art algorithms using a realistic



network simulator using the T1-NSFNET network and an irregular 6 x 6 grid network
as benchmark problems. In all the experiments we ran, AntNet had the best distri-
bution of packet delays, and was among the best algorithms as far as throughput was
concerned. More, AntNet showed a robust behavior under the different traffic condi-
tions and the ability to reach a stable behavior very quickly. AntNet had also, as well
as OSPF, SPF and BF, a negligible impact on the use of network bandwidth.
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