

# Animation II COM3404

#### Richard Everson

School of Engineering, Computer Science and Mathematics University of Exeter

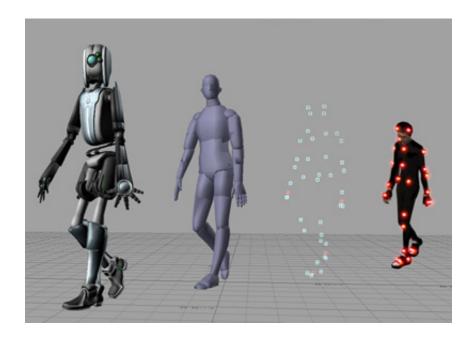
R.M.Everson@exeter.ac.uk
http://www.secamlocal.ex.ac.uk/studyres/COM304

### Outline

- Minematics
  - Rigging
  - Forward kinematics
  - Inverse kinematics
- Motion dynamics
  - Collision detection
- Particle systems
  - Fabrics

#### References

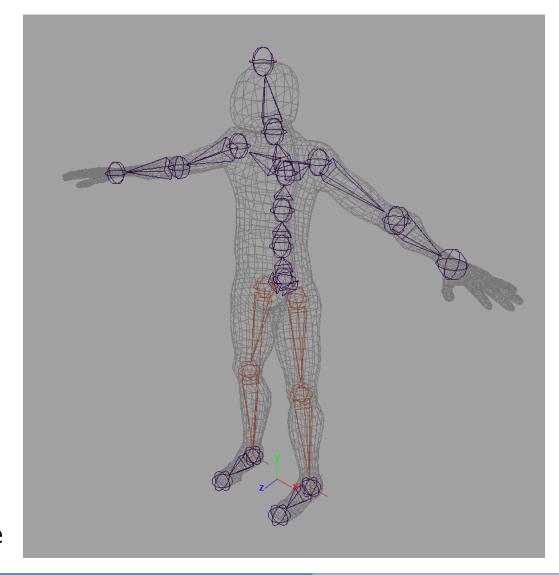
- Fundamentals of 3D Computer Graphics. Watt.
- Computer Graphics: Principles and Practice. Foley et al.
- Principles of Three-Dimensional Computer Animation. M. O'Rourke.
- Introducing Character Animation with Blender. T. Mullen.



# Skeletal animation: rigging

#### Animating complex polygonal meshes

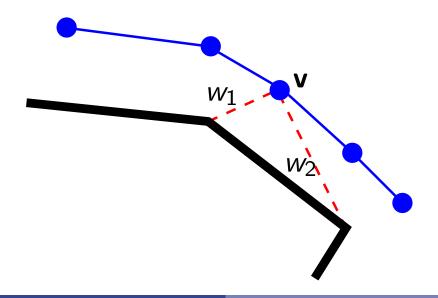
- Construct a skeleton of bones capturing the components and joints of the body
- Rig the skeleton by attaching vertices to skeleton
- Animate skeleton
- Each vertex location is a weighted combination of bone locations:
   eg: 1 part shin and 2 parts thigh for a vertex in the knee



# Matrix palette skinning

Bones of skeleton each has a transformation matrix  $M_i$  describing its animation from the untransformed location in world coordinates

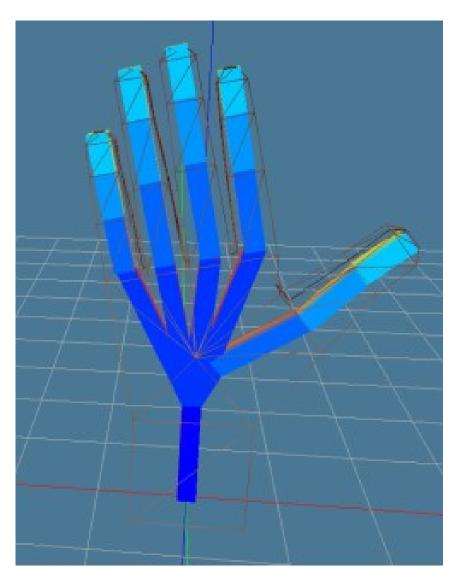
Vertices are a linear combination (blend) of a palette of neighbouring bone locations:

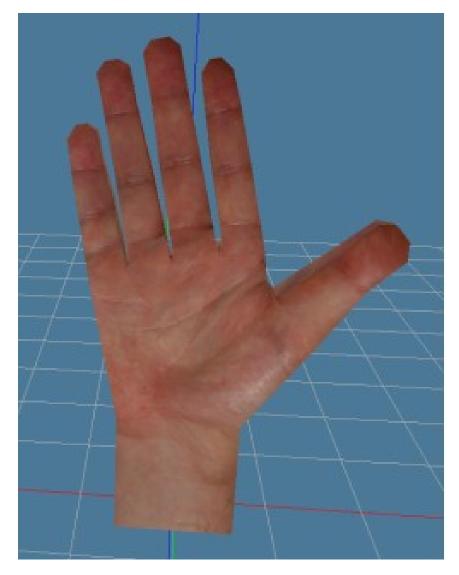


$$\mathbf{v}' = \sum_i w_i M_i \mathbf{v}$$

- v untransformed vertex location
- v' transformed vertex location
- *M<sub>i</sub>* transformation matrix describing motion of bone *i*
- $w_i$  weighting for ith bone.  $\sum_i w_i = 1$

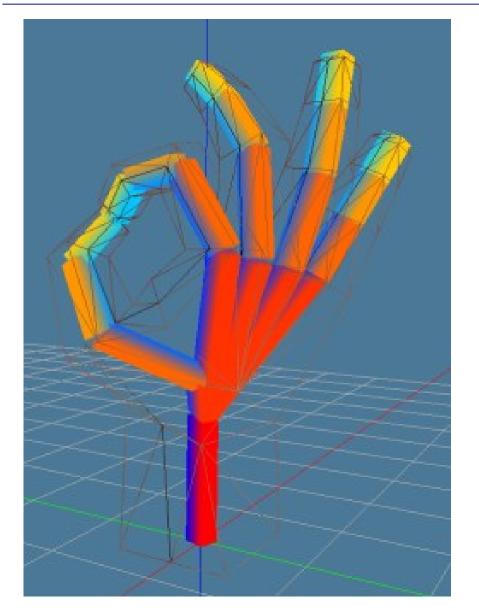
# Matrix palette skinning





Untransformed bones and mesh Texture mapped mesh http://www.gup.uni-linz.ac.at/~gk/Praktika/meshskin\_webdata/

# Matrix palette skinning

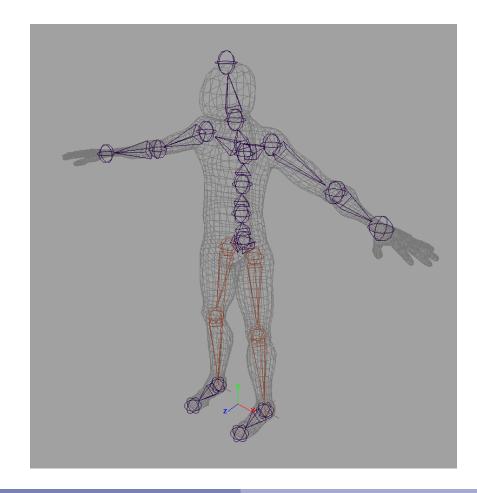




How to determine the positions of a skeleton?

#### **Forward kinematics**

- Animator specifies rotations at each joint
- Calculate the location of object from hierarchical object structure

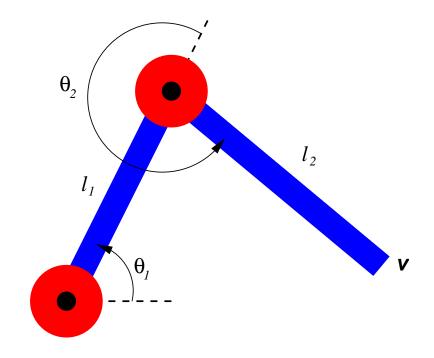


# Example: Two links connected by rotational joints

#### Location of end

$$\mathbf{v}' = \begin{bmatrix} l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2) \\ l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \theta_2) \end{bmatrix}$$
$$= T_1 R_1 T_2 R_2 \mathbf{v}$$

if initial location is **v** 



### **Dynamics**

Joint motions specified by:

- spline curves for  $\theta_1(t)$  and  $\theta_2(t)$
- initial locations and velocities and differential equations

#### **Animation**

- Compute vertex locations from  $\mathbf{v}' = T_1 R_1(t) T_2 R_2(t) \mathbf{v}$
- Use matrix palette skinning to compute polygon vertex locations

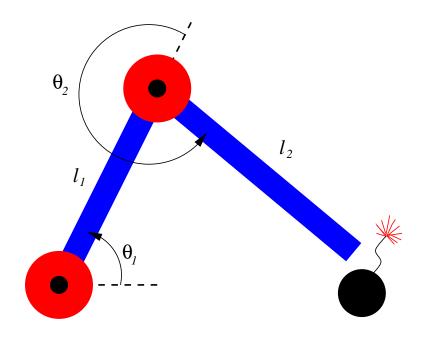
### Inverse kinematics

- Animator specifies location of ends
- Calculate the appropriate joint angles

If 
$$\mathbf{v}' = (x, y)$$
 then

$$\theta_2 = \cos^{-1} \frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1 l_2}$$

$$\theta_1 = \frac{-(l_2 \sin \theta_2)x + (l_1 + l_2 \cos \theta_2)y}{(l_2 \sin \theta_2)y + (l_1 + l_2 \cos \theta_2)x}$$



### **Dynamics**

- Location of ends  $\mathbf{v}(t)$  specified by the animator
- Intermediate joint angles calculated:  $\theta_1(t), \theta_2(t)$
- Compute vertex locations from  $\mathbf{v}' = T_1 R_1(t) T_2 R_2(t) \mathbf{v}$
- Matrix palette skinning to compute polygon vertices

### Inverse kinematics

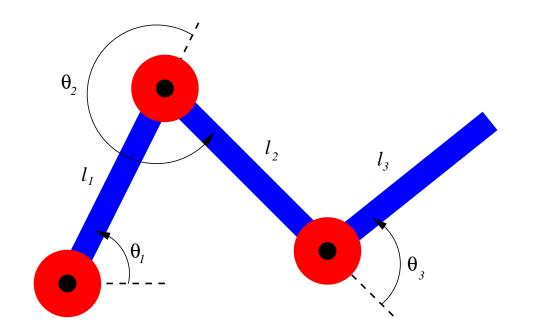
#### **Problems** with complex structures

- Systems of equations under-determined
- Multiple solutions exist

#### **Example** With three links:

Two equations: x and y

Three unknowns:  $\theta_1$ ,  $\theta_2$ ,  $\theta_3$ 



### Remedy

- Find best solution by, e.g., minimising energy in motion
- Apply as many constraints as possible. For example:
  - Possible angles for a shoulder joint
  - Physics of the motion
- Requires costly non-linear optimisation

# Forward/inverse kinematics

#### Forward kinematics

- Specify joints
- Compute positions
- Computationally straightforward
- Difficult to precisely position limbs

#### Inverse kinematics

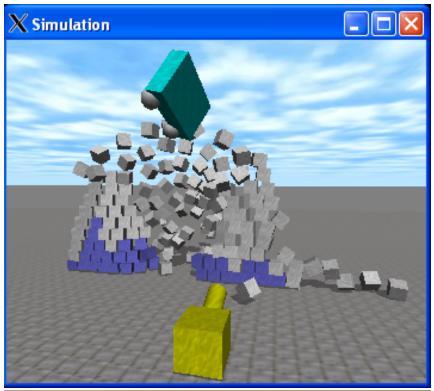
- Goal-directed motion
- Specify goal positions
- Compute joint angles and locations to achieve goals
- Very suitable for animating precise movements; naturalism may be a problem

Inverse kinematics are easily specified for animator, but computationally demanding

### Motion dynamics

### Why

- Some systems are very simple to model from first principles;
   e.g. a bouncing ball
- Complicated systems with many, interacting elements can only be realistically modelled using equations of motion; e.g. building blocks falling down-stairs, snooker balls.





### Motion dynamics

Physics of rigid bodies obeys Newton's laws of motion. For each body:

$$\mathbf{F} = m\mathbf{a} = m\frac{d^2\mathbf{x}}{dt^2}$$

F Forces acting on particle: gravity, friction, other particles

a Acceleration

*m* Mass

Similar equations describing rotation in terms of moment of inertia.

Integration Equation of motion analytically integrated when no collisions

- General purpose "physics engines"
- Collisions must be detected and dealt with

### Collision detection

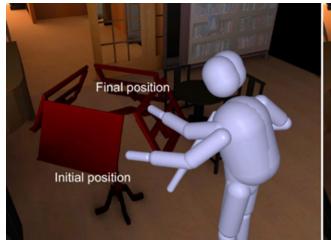
**Detect** whether two polygonal meshes intersect

**Complexity** If meshes have N and M facets O(MN/2) checks are required.

### **Simplifications**

- Embed objects into bounding volumes and check these first
- Use grids or hierarchical structures to avoid checking triangles far away from each other

Prior and posterior detection. Prior detection is usually difficult, but recomputation after collision required otherwise.







# Bounding volumes

### Axis aligned bounding box

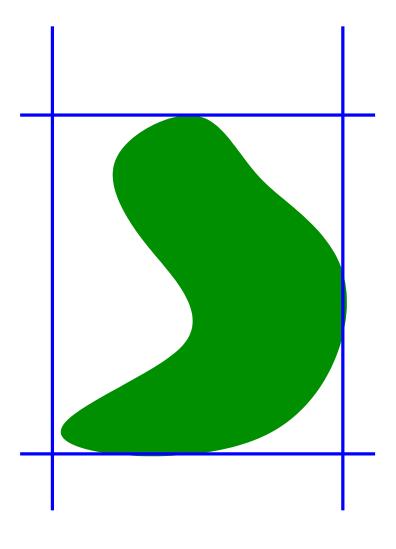
Intersection iff there is interval intersection between all coordinate axes

### Object oriented bounding box

More difficult intersection checks to account from different rotations of BB for each object

### **Spheres**

Compare radii and centres

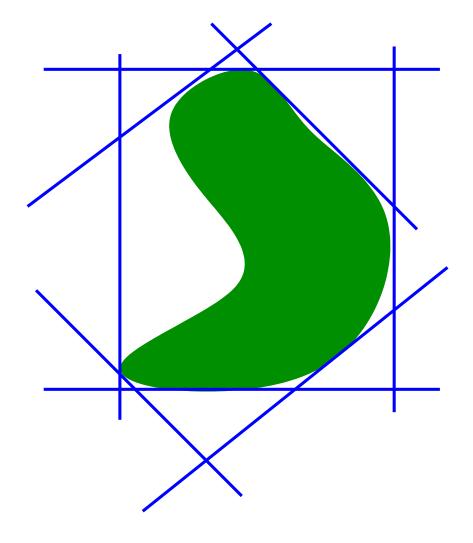


### k-discrete oriented polytopes

k-DOP: convex polyhedron defined by k half-spaces enclosing the object

- Rapid check for intersection if all half-spaces intersect.
- Examples:

6-DOP AABB
8-DOP Octahedron
14-DOP 6-DOP + 8-DOP
18-DOP AABB with
clipped edges



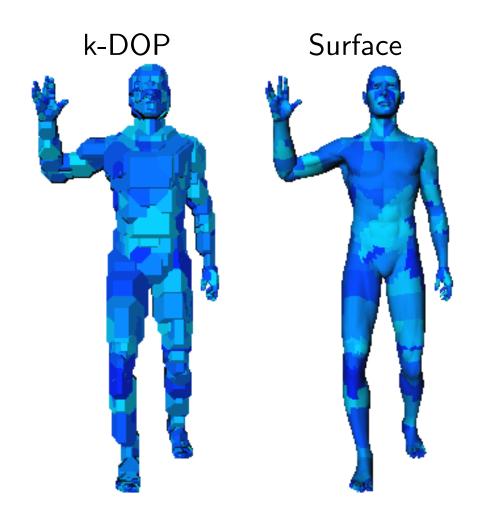
# Bounding volume hierarchies

**Grid subdivision** Divide space into voxel grid linking to the vertices in each grid

Hierarchical subdivision Octrees organise AABBs

**k-DOP object hierarchy** Divide each k-DOP into two by splitting along an axis side and recomputing subdivision.

 Good for representing deformable surfaces with constant topological structure.



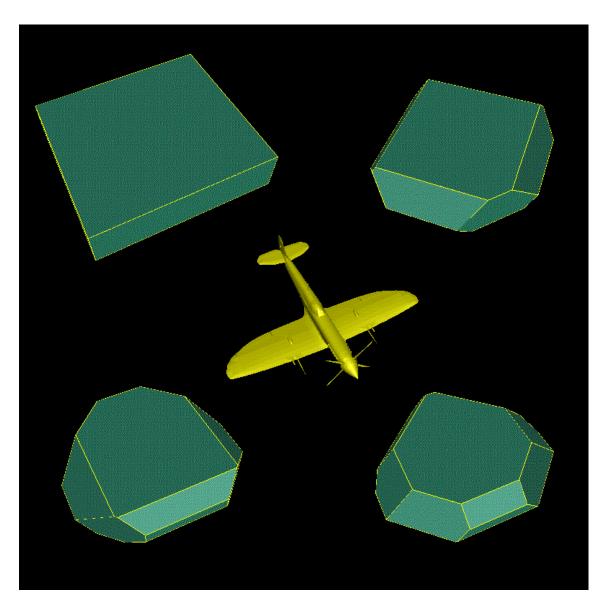
# k-DOP splitting criteria

### Choose the axis according to:

- Min Sum Choose the axis minimises the sum of the volumes of the two resulting children.

  Slow.
- Min Max Choose the axis that minimises the larger of the volumes of the two resulting children. Slow.
- Splatter Project the centroids of the facets onto each axis and calculate the variance of the resulting distributions. Choose the axis with the largest spread (variance).

  Time proportional to number of primitives in the current k-dop.
- Longest Side Choose the longest axis of the current k-dop. Constant time.
- J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, K. Zikan (1997): "Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs" IEEE Transactions on Visualization and Computer Graphics, March 1998, Volume 4, Number 1.



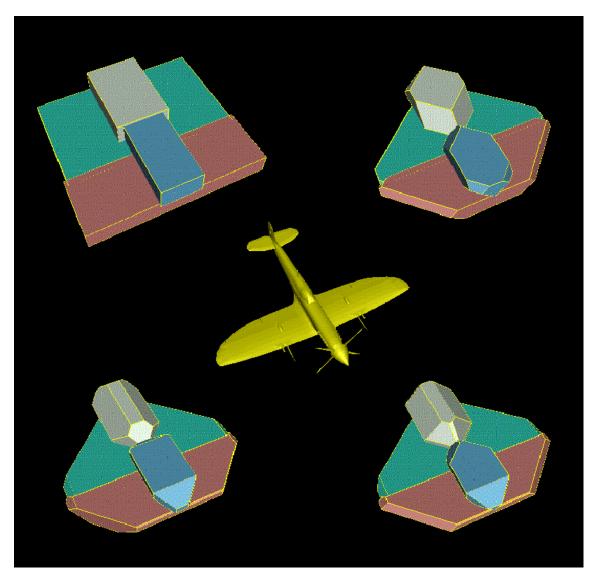
Level 0 bounding volume trees for 6-DOPS, 14-DOPS, 18-DOPs and 26-DOPS

www.ams.sunysb.edu/~jklosow/quickcd/QCD\_kdops.html



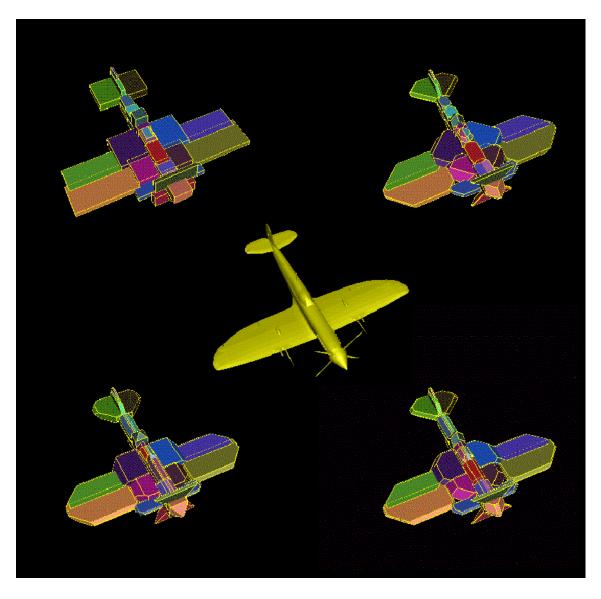
Level 1 bounding volume trees for 6-DOPS, 14-DOPS, 18-DOPs and 26-DOPS

www.ams.sunysb.edu/ $^{\sim}$ jklosow/quickcd/QCD\_kdops.html



Level 2 bounding volume trees for 6-DOPS, 14-DOPS, 18-DOPs and 26-DOPS

www.ams.sunysb.edu/~jklosow/quickcd/QCD\_kdops.html



Level 5 bounding volume trees for 6-DOPS, 14-DOPS, 18-DOPs and 26-DOPS

www.ams.sunysb.edu/~jklosow/quickcd/QCD\_kdops.html



Level 8 bounding volume trees for 6-DOPS, 14-DOPS, 18-DOPs and 26-DOPS

www.ams.sunysb.edu/ $^{\sim}$ jklosow/quickcd/QCD\_kdops.html

### Particle systems

**Objects** diffuse and deformable objects: fire, smoke, clouds, water, etc.

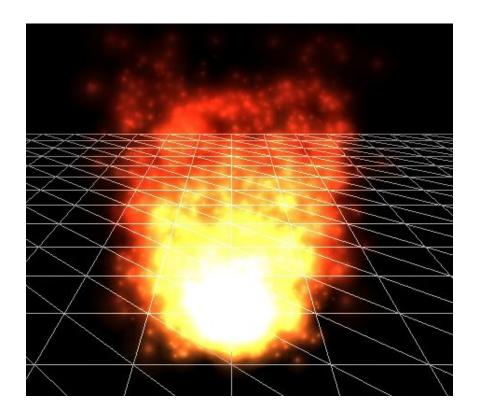
**Representation** Object represented by a collection of particles

Dynamic Particles are not static.

Particles change form and move.

Particles may be destroyed and created.

**Stochastic** Usually evolution of particles incorporates a stochastic element.



### Particle systems

### **Emitter** Generates particles in with

- Location
- Velocity
- Lifetime
- Appearance

#### **Evolution**

- New particles created
- Aged particles destroyed
- Particles evolve with rules for updating their positions: eg

$$\mathbf{x}_j(t+1) = \mathbf{x}_j(t) + \mathbf{v}_j(t) + \beta \mathbf{\bar{x}} + \eta$$

moves particle in direction determined by its velocity plus a component towards centre of particle cloud  $(\bar{\mathbf{x}})$  plus random component

- Sophisticated interaction with other particles to simulate fluids etc.
- Collision detection for interaction with solids
- Constraints to control particle swarm; e.g. fixing ends of a chain

### Particle systems

### Rendering

- Particles usually rendered as quad billboard textures
   Single quadrilateral facets, always facing the viewer
- Single pixels
- Meta-balls: iso-surfaces from many particles for simulating free liquid surfaces
- Particles may also be rendered as complete objects with transparency, shape, colour, emission properties, etc.

### Static particles

- Used for objects with stochastic elements
- Static, strand-like particles to simulate hair or fur



### Examples

- Genesis effect from Star Trek II: The Wrath of Khan by William Reeves http://www.siggraph.org/education/materials/ HyperGraph/animation/movies/genesisp.mpg
- Particle dreams by Karl Sims: http://www.siggraph.org/education/materials/HyperGraph/animation/movies/particle75\_1\_89.mov
- William T. Reeves, "Particle Systems A Technique for Modeling a Class of Fuzzy Objects", Computer Graphics 17:3 pp. 359-376, 1983

### Fabrics: free form surfaces

Catenaries Approximate cloth by a collection of cables, each hanging in a catenary (Weil, 1986).

**Spring mesh** Mesh of particles, with forces derived from

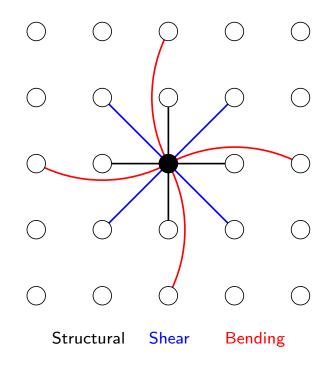
• Elasticity:

$$F_{ij} = k_{ij}[\|\mathbf{x}_i - \mathbf{x}_j\| - I_{ij}] \frac{\mathbf{x}_i - \mathbf{x}_j}{\|\mathbf{x}_i - \mathbf{x}_j\|}$$

 $k_{ij}$  elastic modulus  $l_{ij}$  rest length of spring  $\mathbf{x}_i, \mathbf{x}_j$  location of spring ends

- Bending (endows stiffness)
- Weight
- External bodies

Texture from texture maps or specialised bidirectional reflection distribution functions



#### **Advanced methods**

- Fabric has thickness.
- Individual yarn loops interconnected by loosely connected springs.
- Modelling of yarn cross-section to describe radiance from a cross section and interaction with other yarn fibres.
- http://research.microsoft. com/~yqxu/papers/tvcg.pdf

