
Local lighting and surface models
COM3404

Richard Everson

School of Engineering, Computer Science and Mathematics
University of Exeter

R.M.Everson@exeter.ac.uk

http://www.secamlocal.ex.ac.uk/studyres/COM304

Richard Everson Local lighting and surface models 1 / 31

Outline

1 Camera and viewing
2 Rendering polygonal models with

shading
3 Lights and shading
4 Interpolative shading

References

Fundamentals of 3D Computer Graphics. Watt. Chapters 4, 5 & 6.
Computer Graphics: Principles and Practice. Foley et al (1995).
Chapters 15 & 16.

Richard Everson Local lighting and surface models 3 / 31

Camera and viewing

Scene constructed in world coordinates independently of camera

Location of the camera determines view of the scene

Camera parameters
Specified in world coordinates

Location, C
Direction: N normal to viewing plane
along line of sight
Angle of viewing plane set by
orientation of U and V vectors.
Field of view: set by viewing frustrum
Depth of field – the area around the
focal length that is in focus.

V
U

N

C

Animation
Location and other viewing parameters may be animated like other
objects in the scene.

Richard Everson Local lighting and surface models 5 / 31

View space to screen space

View plane
zv = d

Far plane, zv = f

Camera zv

Scene clipped to near and far clipping planes

View plane and near clipping plane usually coincide.

View plane extends from −h ≤ xs , ys ≤ h

Transformation to screen (in view plane) accomplished by perspective
transformation Tpers

Richard Everson Local lighting and surface models 6 / 31

R.M.Everson@exeter.ac.uk
http://www.secamlocal.ex.ac.uk/studyres/COM304

Viewing transformation

Transform points from world coordinates to viewing space


xv

yv

zv

1

 = Tview


xw

yw

zw

1

 = RT


xw

yw

zw

1



R =


Ux Uy Ux 0
Vx Vy Vx 0
Nx Ny Nx 0
0 0 0 1

 T =


1 0 0 −Cx

0 1 0 −Cy

0 0 1 −Cz

0 0 0 1



Richard Everson Local lighting and surface models 7 / 31

View space operations

Back face culling
Remove any polygons that face away from the camera. If

n is polygon normal
v is vector from polygon centre to camera (line of sight vector)

then polygon is visible if

v · n = |n||v| cos θ > 0

Clipping to viewing frustrum

Clip polygons that are too near zv < d or too far zv > f
Clip polygons that lie outside the planes

xv = ±hzv

d
yv = ±hzv

d

Can also be carried out more efficiently in screen space

Richard Everson Local lighting and surface models 8 / 31

Back face culling

Remove any polygons that face away from the camera.

Camera
z

θ

n

v

n is polygon normal

v is vector polygon centre to camera (line of sight vector)

Polygon is visible if

v · n = |n||v| cos θ > 0

Richard Everson Local lighting and surface models 9 / 31

Perspective transformation

Transform to 3D screen space (xs , ys , zs)

xs , ys coordinates on the screen −1 ≤ xs , ys ≤ 1

zs is the apparent depth of the point.


xs

ys

zs

1

 = Tpers


xv

yv

zv

1

 =


d/h 0 0 0
0 d/h 0 0
0 0 f /(f − d) −df /(f − d)
0 0 1 0




xv

yv

zv

1


Overall transform from world to screen coordinates is

xs

ys

zs

1

 = TpersTview


xw

yw

zw

1


Render point at (xs , ys)

Use apparent depth to determine what is visible
Richard Everson Local lighting and surface models 10 / 31

Coordinates and transformations

xs = TpersTviewxw

xs = Tpersxv

World coordinates xw = (xw , yw , zw)
Coordinates in which scene is constructed.

View space xv = (xv , yv , zv)
Coordinates of the scene relative to the camera’s point of view

Viewing transformation Tview

Transformation describes the camera’s view on the scene.
Maps world coordinates to view space.

3D screen space xs = (xs , ys , zs)
Coordinates of points in the viewing plane, together with apparent
depth.

Perspective transformation Tpers

Maps view space to 3D screen space

Richard Everson Local lighting and surface models 11 / 31

Rendering polygonal models with shading

Determine rendered colour/shade of each polygon from:

light falling directly on it from a light source;

surface properties of the polygon.

Visibility Many polygons may have
the same screen coordinates
(xs , ys) but different zs : how
to determine which is
rendered?

Lighting How to determine the
rendered colour and intensity
of a polygon of a particular
colour illuminated by a light of
a particular colour located in a
particular position?

xs

zs

Richard Everson Local lighting and surface models 13 / 31

Z-buffer algorithm

Z-buffer

Buffer with an entry for every pixel on the screen.
Contents of (xs , ys) element is the transformed surface that
is closest to the screen at (xs , ys)

1 initialise all elements of Zbuf to max-depth

2 foreach polygon P in the model
3 transform vertices of P to 3D screen coordinates (xs , ys , zs)
4 if zs < Zbuf (xs , ys) for a vertex
5 Zbuf (xs , ys) = zs

6 shade the polygon (in screen coordinates)
by interpolating vertex shades

7 end
8 end

Richard Everson Local lighting and surface models 14 / 31

Z-buffer

Z-buffer usually supported in hardware

Quality of rendering is dependent on resolution of buffer;
20-32 bits is usual. Depth (z) values scaled to use full
range of Z -buffer.

Polygons can be processed in any order.

Independent of model representation (CSG, volumetric,
polygonal, etc).

Scan-line versions exist: less memory, but considerably
more complex.

Cannot cope with transparent or partially transparent
polygons, because if the transparent polygon is at the
front a list of those behind it must be kept.

Richard Everson Local lighting and surface models 15 / 31

Types of light

Spot lights

Directed
Intensity decays away from source
Parameters: location, direction, colour, intensity,
decay, drop-off

Area or rectangular light

Rectangular beam of parallel rays
Parameters: location, colour, intensity, direction

Ambient light

Simulates the overall light in a space
Not directed or located
Parameters: colour, intensity

Directional light

Located at infinity
Illuminates scene uniformly from one direction
Used to simulate sunlight

Richard Everson Local lighting and surface models 17 / 31

Specular reflection

Perfect specular reflection

Reflection from a perfect
mirror.
Incident and reflected light
make equal and opposite
angles with surface normal.

Imperfect specular reflection

Some light is scattered away
from principal reflected
direction.

Richard Everson Local lighting and surface models 18 / 31

Reflection geometry

I incident intensity

Is specular reflected intensity

r ’mirror’ direction

v viewing direction

L direction to light

n surface normal

L

θ
θ

r

v

n

Ω

Richard Everson Local lighting and surface models 19 / 31

Specular reflection

Model specular reflection as

Is = I (r · v)n = I (cosΩ)n

n →∞ for perfect specular
reflection

Imperfect specular reflection from
two sources

Richard Everson Local lighting and surface models 20 / 31

Diffuse reflection

Light reflected with equal
intensity in all directions

Modelled as

Id = I cos θ = In · L

where n is the direction of the
surface normal.

Richard Everson Local lighting and surface models 21 / 31

Phong reflection model

Model the combined contributions to light intensity of a surface as

Ir = kaIa + ks Is + kd Id

= kaIa + I [ks(r · v)n + kdn · L]

where
ks + ka ≤ 1

set characteristics of the surface.

Reflected light from all sources must be summed.

Each R, G, B component is treated separately.

Model is a local model: light is not reflected from surface to surface.

Light source itself is taken as a point source at infinity, but the spatial
variation of the light can be modelled:

I = I0(cos φ)m = I0(−L · Ls)
m

where Ls is the principal direction of the light source and φ is the
angle between L and Ls

Richard Everson Local lighting and surface models 22 / 31

Phong reflection model

Richard Everson Local lighting and surface models 23 / 31

Phong reflection

Horizontally Ks = 0, 0.2, 0.4, 0.6, 0.8, 1.0; Vertically Kd = 0, 0.2, 0.4, 0.6, 0.8, 1.0;

Ka = 0.7, n = 10
Richard Everson Local lighting and surface models 24 / 31

Interpolative shading

1 Use Z-buffer algorithm to determine screen
locations of vertices

2 Shade polygons in screen space by

Flat shading Shade determined by polygon
normal and colour at ‘centre’

Gouraud shading Calculate shades at vertices
and interpolate to interior pixels

Phong shading Interpolate normal direction
to interior pixels and then calculate shade

Richard Everson Local lighting and surface models 26 / 31

Gouraud shading

Calculate vertex normals by
(possibly weighted) averaging of
adjacent polygons

(Bi)linearly interpolate intensity
between vertices

nA nB

I

x
IA

IB

Efficient scan-line implementation
of interpolation.

Richard Everson Local lighting and surface models 27 / 31

Phong shading

Calculate vertex normals by
(possibly weighted) averaging of
adjacent polygons

(Bi)linearly interpolate normals
between vertices

nA nB

I

x
IA

IB

Interpolation of normals restores
some ’curvature’

Richard Everson Local lighting and surface models 28 / 31

Scanline interpolation

Intensities or normals interpolated from vertices along vertices

Interpolate along scanline from edges

I1

I2
I3

IA IBI (x , y) y

n1

n2

n3

nA nB

n(x , y)

y

IA = IAprev + ∆2,1

IB = IBprev + ∆3,1

I (xi , y) = I (xi−1, y) + ∆x

nA = nAprev + ∆2,1

nB = nBprev + ∆3,1

n(xi , y) = n(xi−1, y) + ∆x

Richard Everson Local lighting and surface models 29 / 31

Z-buffer algorithm

for all x , y

Zbuf (x , y) := max-depth

for each polygon

Convert to edge-based representation in screen coordinates

for y := ymin to ymax

for each segment in EdgeList[y]

Interpolate Xleft ,Xright ,Zleft ,Zright ,nleft ,nright from segment ends

for x := Xleft to Xright

interpolate z and n

if z < Zbuf (x , y)

Zbuf (x , y) := z

Fbuf (x , y) := shading(n)

Richard Everson Local lighting and surface models 30 / 31

Shading

Wireframe Just draw the edges.

Very fast, but not beautiful.

Flat Use the polygon normal.

Fast, avoids interpolation.

Gouraud

Basic shading, good for diffuse reflections.
Poor rendering of highlights and specular reflections.

Phong Interpolate normals.

Highest quality without volumetric rendering
4-5 times slower than Gouraud.

Phong and Gouraud

Use Phong for surfaces with specular reflection (large ks).
Use Gouraud for diffuse surfaces (ks ≈ 0).

Richard Everson Local lighting and surface models 31 / 31

	Camera and viewing
	Rendering polygonal models with shading
	Lights and shading
	Interpolative shading

