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Parametric curves and surfaces

Direct curves and surfaces

y(x) = f (x)

z(x , y) = F (x , y)

Parametric curves

x(t), y(t), z(t)

Parametric surfaces

x(u, v), y(u, v), z(u, v)

Parameters
t: distance along the curve
u, v : location on the surface

x(u, v) = u

y(u, v) = cos(u)cos(v)

z(u, v) = cos(u)sin(v)

Parametric representation allows surfaces to be multi-valued
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Polynomial curves

Linear
x(t) = ax0 + ax1t

y(t) = ay0 + ay1t

z(t) = az0 + az1t

Quadratic
x(t) = ax0 + ax1t + ax2t

2

y(t) = ay0 + ay1t + ay2t
2

z(t) = az0 + az1t + az2t
2

Cubic
x(t) = ax0 + ax1t + ax2t

2 + ax3t
3

y(t) = ay0 + ay1t + ay2t
2 + az3t

3

z(t) = az0 + az1t + az2t
2 + az3t

3
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Bézier curves

Polynomial curves defined by control
vertices

Pass through the end control
vertices

Usually cubic

Curve lies within the convex hull
of control vertices

Curve Q(t) expressed as sum of
blending or basis functions, Nn

(x(t), y(t), z(t)) = Q(t) =
N∑

n=1

Nn(t)Bn
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Basis functions

B1

B2

B3

B4

t = 0

t = 1

Basis functions sum to 1 for all
0 ≤ t ≤ 1

Basis functions are
non-negative: Nn(t) ≥ 0

Control vertices Bn determine
location of points along the curve
according to blending functions

Q(t) =
N∑

n=1

Nn(t)Bn
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Bézier curves

Cubic Bézier curves

Q(t) = (1− t)3B1 + 3t(1− t)2B2 + 3t2(1− t)B3 + t3B4

Control vertices B1 . . .B4

Basis functions are the cubic (n = 3) Bernstein polynomials:

Nn
i (t) =

n!

i !(n − i)!
t i (1− t)(n−i)

Basis functions are global, giving non-local control of the curve

Complex curves constructed from multiple segments
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Joining Bézier curves

Join curves by co-locating end
control points

Smoothness maintained by keeping
end pairs of control points co-linear
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Bézier surfaces

Surface parameterised by two
coordinates: 0 ≤ u, v ≤ 1

Location of a point on the
surface is

Q(u, v) =
n∑

i=0

m∑
j=0

Nn
i (u)Nm

j (v)Bij

with Nn
i the Bernstein

polynomials. Bicubic surface

Surface lies within the convex hull of its control points

Surface transforms with its control points

Curves for constant u or v are themselves Bézier curves
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Bézier surfaces

Biquintic patch

Surfaces can be arbitrarily complex by using sufficiently many control
points
However, control is non-local
Commonly surfaces are constructed from bicubic patches joined in the
same manner as Bézier curves
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B-splines

Basis splines

Piecewise cubic curves

Basis functions located at intervals along t

Basis functions are local

Degree of spline polynomial is independent of number
of control points

General equation

Q(t) =
n∑

i=0

Ni ,k(t)Bi

with blending functions Ni ,k(t)

k defines the degree of the basis function

n is the number of basis functions
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B-splines

Local blending functions provide local control
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Uniform B-splines

Knot vector Partitions t into
intervals. Knots at: {t0, t1, . . . , tn}

Uniform B-splines Knots are at
equal intervals

Number of knots m + 1, number of
control points n + 1 and degree k of
blending functions related by:

m = n + k + 1

Local basis functions Basis
function Ni , k(t) is zero outside the
interval [ti , ti+k+1)

Uniformly spaced basis functions

of degree k = 2. Knot vector

{0, 1, 2, 3, 4, 5, 6, 7}
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Non-uniform B-splines

Non-uniformly spaced knots: {0.0, 1.0, 2.0, 3.75, 4.0, 4.25, 6.0, 7.0}
Curve pulled closer to B2 and B3 as neighbouring basis functions are
larger and concentrated on smaller intervals.

Richard Everson Parametric surfaces 18 / 29



Basis functions

Basis functions defined as

Ni ,1(t) =

{
1 if ti ≤ t < ti+1

0 otherwise

Ni ,k(t) =
t − ti

ti+k − ti
Ni ,k(t) +

ti+k+1 − t

ti+k+1 − ti+1
Ni+1,k−1(t)

Ni ,k(t) ≥ 0 for all i , k, t

Ni ,k(t) = 0 if t not in [ti , ti+k+1)

At any t no more than k basis functions affect the curve∑i
i=0 Ni ,k(t) = 1

Curve lies within convex hull of control points
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Multiple knots at ends

Knots at {0.0, 0.0, 0.0, 3.0, 4.0, 5.0, 6.0, 7.0}
All basis functions except N0,3(t) are zero at t = 0. Therefore curve
coincides with B0
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Multiple interior knots

Knots at {0.0, 1.0, 2.0, 3.0, 3.0, 5.0, 6.0, 7.0}
All basis functions except N2,3(t) are zero at t = 0. Therefore curve
coincides with B2

Continuity at a knot is Cn−p where p is the multiplicity of the knot.

Produce kinks and gaps with sufficient knots
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Non-uniform rational B-splines

Weights Weight the control points
with weight wi

Q(t) =

∑n
i=0 wiNi ,kBn∑n

i=0 wiNi ,k

Homogeneous coordinates Regard w as an additional coordinate.

Curves are defined in 4D and projected into 3D
Control points have coordinates (x , y , z ,w); projection in 3
dimensions is (x/w , y/w , z/w)

Permits representation of conic sections (circles, ellipses, parabolas,
hyperbolas)

Invariant under projective as well as affine transformations.
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Surfaces

Curves

Q(t) =

∑n
i=0 wiNi ,kBn∑n

i=0 wiNi ,k
=

n∑
i=0

Ri ,k(t)Bi

with

Ri ,k(t) =
wiNi ,kBn∑n
i=0 wiNi ,k

Surfaces

S(u, v) =
n∑

i=0

m∑
j=0

Ri ,j ,k,l(u, v)Bi ,j

with

Ri ,j ,k,l(u, v) =
wi ,jNi ,k(u)Nj ,l(v)∑n

r=0

∑m
s=0 wr ,sNr ,k(u)Ns,l(v)

Transformation Curves and surfaces are invariant under affine and
perspective transformations, so only control points need by transformed.
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NURBS surfaces
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NURBS surfaces

http://www.3drender.com/jbirn/ea/HeadModel.html
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Drawing splines

Refine control points defining convex hull

For cubic Bézier curves:

L2 = (B1 + B2)/2

H = (B2 + B3)/2

L3 = (L2 + H)/2

R3 = (B3 + B4)/2

R2 = (H + R3)/2

L4 = R1 = (L3 + R2)/2

Divides curve into two at t = 1/2. B1 = L1

B2

B3

B4 = R4

H

L2

L3

L4 = R1

R2

R3

Stop when:

Line segments are pixels

Convex hull is sufficiently ‘thin’ – generally more efficient
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Drawing splines

B-splines

Similar recursive sub-division formulae
Left and right segments are connected

NURBS

Basis functions are defined implicitly by recursive formulae
Sub-division achieved by adding knots (and therefore control
points)
Left and right segments are not connected

Surfaces

Sub-division formulae can be written for surfaces
Usually surface is divided until ‘segments’ are sufficiently planar
and then drawn as polygons

Details in Foley et al, chapter 11.
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