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Outline
@ Parametric representation

© Bézier curves
© Bézier surfaces
O B-splines
o Uniform B-splines
o Non-uniform B-splines
© Non-uniform rational B-splines
@ Drawing splines
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Parametric curves and surfaces

Direct curves and surfaces

y(x) = f(x) A AN AN
z(x,y) = F(x,y) AT B L
Parametric curves Ty ; ik
' WAL AT
X(t)7 y(t)7 Z(t) X 9 i
Parametric surfaces
x(u,v), y(u,v), z(u,v) x(u,v)=u

y(u,v) = cos(u)cos(v)
Parameters

t: distance along the curve
u,v : location on the surface

Parametric representation allows surfaces to be multi-valued |
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z(u,v) = cos(u)sin(v)



Polynomial curves

Linear
x(t) = axo + axit
y(t) = ayo + a1t
z(t) = a0 + azt
Quadratic
x(t) = axo + ax1t + ayot?

y(t) = ayo + ay1t + ay2t2
Z(t) = a,0 + a1t + 822t2

Cubic
X(t) = axo + axi1t + aX2t2 + aX3t3

y(t) = adyo + dy1t + ay2 t2 —+ 323t3
z(t) — ay0 + azit + azzt2 + azgt3
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Bézier curves

Polynomial curves defined by control ! .
vertices

@ Pass through the end control
vertices

@ Usually cubic

@ Curve lies within the convex hull
of control vertices N

@ Curve Q(t) expressed as sum of . X
blending or basis functions, N,

N
(x(2), ¥(t),2(t)) = Q(t) = > _ Na(t)Bn,
n=1
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Basis functions

Control vertices B,, determine
location of points along the curve
according to blending functions

N
Q(t) = Z Nn(t)B5,
n=1

1
0.9f
0.8 Nl N4

0.7
0.6r

- : ! N N

@ Basis functions sum to 1 for all Zj 2 3
O=st=l 0.3
@ Basis functions are 0.2}
non-negative: N,(t) >0 0.1

0 ! | | | | | .
0 01 02 03 04 05 06 07 08 09 1
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Bézier curves

Cubic Bézier curves

Q(t) = (1 —t)°By + 3t(1 — t)°By + 3t%(1 — t)B3 + t°By

@ Control vertices By ...By
@ Basis functions are the cubic (n = 3) Bernstein polynomials:

nl

N = =y

ti(l o t)(n—i)

@ Basis functions are global, giving non-local control of the curve

@ Complex curves constructed from multiple segments
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Joining Bézier curves

@ Join curves by co-locating end
control points

@ Smoothness maintained by keeping
end pairs of control points co-linear
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Bézier surfaces

@ Surface parameterised by two
coordinates: 0 < u,v <1

@ Location of a point on the
surface is

Q(u, v)_ZZN” u)NT(v)B;;

=0 j=0 Increasing

=1
=i
increasing u

Bicubic surface

LI=0), =i

with N the Bernstein
polynomials.

@ Surface lies within the convex hull of its control points
@ Surface transforms with its control points

@ Curves for constant u or v are themselves Bézier curves
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Bézier surfaces

Biquintic patch

@ Surfaces can be arbitrarily complex by using sufficiently many control
points

@ However, control is non-local

@ Commonly surfaces are constructed from bicubic patches joined in the
same manner as Bézier curves
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B-splines

Basis splines

Piecewise cubic curves
@ Basis functions located at intervals along t
@ Basis functions are local

@ Degree of spline polynomial is independent of number
of control points

General equation

Q(t) =) Nix(t)B;
=0

with blending functions N; x(t)

@ k defines the degree of the basis function

@ n is the number of basis functions
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B-splines

Local blending functions provide local control '
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Uniform B-splines

Knot vector Partitions t into
intervals. Knots at: {tg, t1,...,ty}

Uniform B-splines Knots are at
equal intervals

Number of knots m-+ 1, number of
control points n+ 1 and degree k of
blending functions related by:

m=n-+k-+1

Local basis functions Basis
function Nj;, k(t) is zero outside the
interval [t,', t,'_|_k_|_]_)

o8 | Nyl N) Ny N0 N

Y-
o4 |

02 L

1 2 3 4 5 -] 7

Uniformly spaced basis functions
of degree k = 2. Knot vector
{0,1,2,3,4,5,6,7}

B

i

\
f Y
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Non-uniform B-splines

N, 0 N, (0

@ Non-uniformly spaced knots: {0.0,1.0,2.0,3.75,4.0,4.25,6.0,7.0}

@ Curve pulled closer to B> and B3 as neighbouring basis functions are
larger and concentrated on smaller intervals.
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Basis functions

Basis functions defined as

1 ift;§t<t,'_|_1

N; 1(t) =
1(t) 0 otherwise
t — t; Liyk+1 — ¢
Ni k(t) = —Ni(t) + — Nit1,k-1(1)
itk — & Litk+1 — Lit1

N «(t) > 0 for all i, k,t

Ni k(t) =0 if t not in [t;, titkt1)

At any t no more than k basis functions affect the curve
> o Nik(t) =1

Curve lies within convex hull of control points
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Multiple knots at ends

10 | M@
A N, )

05 | N, (O N0

os | Ni,;(f)

o4 |

02 |
| | ) | | |
1 2 3 4 5 & 7

e Knots at {0.0,0.0,0.0,3.0,4.0,5.0,6.0,7.0}

@ All basis functions except Np3(t) are zero at t = 0. Therefore curve
coincides with By
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Multiple interior knots

N, (0

1.0

e Knots at {0.0,1.0,2.0,3.0,3.0,5.0,6.0,7.0}
@ All basis functions except Ny 3(t) are zero at t = 0. Therefore curve

coincides with B>
@ Continuity at a knot is C"~P where p is the multiplicity of the knot.

e Produce kinks and gaps with sufficient knots
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Non-uniform rational B-splines

Weights Weight the control points
with weight w;

'-7_ W,'N,' Bn
Q(r) = Ziz0
D im0 WilNik

Homogeneous coordinates Regard w as an additional coordinate.

@ Curves are defined in 4D and projected into 3D
@ Control points have coordinates (x, y, z, w); projection in 3
dimensions is (x/w,y/w,z/w)
Permits representation of conic sections (circles, ellipses, parabolas,
hyperbolas)
Invariant under projective as well as affine transformations.
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Surfaces

Curves
> 7 owilN; (Bj -
Q(t) = I_n ’ = R; .(t)B
(0 = S~ 2Rl
with
w;N; «Bp
R,' ) = o ’
K(t) D i—o Wil k
Surfaces
S(u,v) = ZZR’J"’(U v)Bj
=0 j=0
with

o(uv) = i N ) (V)
RI’J’k’I( 7 ) B Z,::O Zs:O Wr,s r’k(u)Ns’/(V)

Transformation Curves and surfaces are invariant under affine and
perspective transformations, so only control points need by transformed.
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NURBS surfaces
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NURBS surfaces

]

/ : [

» JITTTHHHLLLHTHT

P LT
l}ii—!—[‘llll“'i'

http://www.3drender.com/jbirn/ea/HeadModel .html
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Drawing splines

Refine control points defining convex hull

For cubic Bézier curves:

L, =(B;1 +B)/2
H = (B2 + B3)/2
L; = (L, + H)/2
Rs = (B3 + By)/2
R, = (H+R3)/2
L, = R; = (L3 + Ry)/2

Divides curve into two at t =1/2. Bi1 =L Bs =Ry
Stop when:
@ Line segments are pixels

@ Convex hull is sufficiently ‘thin’ — generally more efficient
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Drawing splines

B-splines

@ Similar recursive sub-division formulae
@ Left and right segments are connected

NURBS

@ Basis functions are defined implicitly by recursive formulae

@ Sub-division achieved by adding knots (and therefore control
points)

@ Left and right segments are not connected

Surfaces

@ Sub-division formulae can be written for surfaces
@ Usually surface is divided until ‘segments’ are sufficiently planar
and then drawn as polygons

Details in Foley et al, chapter 11.
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