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Direct curves and surfaces
y(x) = f(x)
z(x,y) = F(x,y)

Parametric curves

x(t), y(t), 2(t)

Parametric surfaces

x(u,v), y(u,v), z(u,v)

Parameters
t: distance along the curve
u, v : location on the surface

Parametric representation allows surfaces to be multi-valued l
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QOutline
@ Parametric representation
@ Bézier curves
© Bézier surfaces
Q@ B-splines
o Uniform B-splines
o Non-uniform B-splines
© Non-uniform rational B-splines
@ Drawing splines
References
@ Fundamentals of 3D Computer Graphics. Watt. Chapters 1 & 2
e Computer Graphics: Principles and Practice. Foley et al (1995).
@ Mathematical Elements of Computer Graphics. Rogers & Adams

(1976).
@ http://devworld.apple.com/dev/techsupport/develop/issue25/

schneider.html
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Polynomial curves

Linear \
x(t) = axo + axit

y(t) = ayo + ay1t
z(t) = a;0 + axt
Quadratic
x(t) = axo + aat + aet’
y(t) =ay0+ a1t + ay2t2
Z(t) = az0 + axt + ant’
Cubic
x(t) = axo + axit + axat® + agst®
y(t) = ayo + ay1t + ayot? + a st
2(t) = ay0 + a1t + axnt? + asts
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Bézier curves Basis functions

o Control vertices B,, determine
s A . .
= - E— | s % BZ.. location of points along the curve
olynomial curves define contro K . KRN . . .
ver'z/ices Yy J . | B -.. B3 according to blending functions

@ Pass through the end control

N
Q(t) =) Ny(1)B,
n=1

vertices
@ Usually cubic .
@ Curve lies within the convex hull oo
. osl \ N N,
of control vertices N
e Curve Q(t) expressed as sum of ost
blending or basis functions, N, e Basis functions sum to 1 for all ~ °7 N Ny
N 0 Sts 1 0:3—
(x(t),y(t),z(t)) = Q(t) = Z N,(t)B, K r @ Basis functions are oz
] N non-negative: Np(t) >0 o
‘\ "l c0 01 0.2 0‘.3 0‘.4 015 0.‘6 0‘.7 0.8 0.9 1
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Bézier curves Joining Bézier curves
Cubic Bézier curves
Q(t)=(1- t)3Bl +3t(1 — t)sz + 3t2(1 —t)Bs + 3B, @ Join curves by co-locating end
control points
@ Smoothness maintained by keeping
@ Control vertices By ... By end pairs of control points co-linear
@ Basis functions are the cubic (n = 3) Bernstein polynomials:

n! : :
NP (t) = mt'(l —t)(n=1)

Basis functions are global, giving non-local control of the curve

Complex curves constructed from multiple segments
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Bézier surfaces

@ Surface parameterised by two
coordinates: 0 < u,v <1

@ Location of a point on the
surface is

L=1
W=I)
increasing u

Bicubic surface

Q(u,v) =) > N (u)N(v)B

i=0 j=0 increasing

LI=0, =0

with N/ the Bernstein
polynomials.

@ Surface lies within the convex hull of its control points
@ Surface transforms with its control points

@ Curves for constant u or v are themselves Bézier curves

12/29
B-splines
Basis splines

Piecewise cubic curves
@ Basis functions located at intervals along t
@ Basis functions are local

@ Degree of spline polynomial is independent of number
of control points

General equation
Q(t) = > Nix(t)B;
i=0

with blending functions N; «(t)

@ k defines the degree of the basis function

@ n is the number of basis functions
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Bézier surfaces

Biquintic patch

@ Surfaces can be arbitrarily complex by using sufficiently many control
points

@ However, control is non-local

@ Commonly surfaces are constructed from bicubic patches joined in the
same manner as Bézier curves

13/
B-splines

Local blending functions provide local control )

———————*

Richard Everson Parametric surfaces 16 / 29



Uniform B-splines

oal Nogl) Ny M) M@ Ny
Knot vector Partitions t into
intervals. Knots at: {to, t1,...,tn}

Uniform B-splines Knots are at
equal intervals

Number of knots m+ 1, number of
control points n+ 1 and degree k of
blending functions related by:

Uniformly spaced basis functions
of degree k = 2. Knot vector
{0,1,2,3,4,5,6,7}
m=n+k+1 O

A

Local basis functions Basis
function N;, k(t) is zero outside the
interval [t;, tiik+1)

-

¢
) 7
Bo Y /
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Basis functions

Basis functions defined as

1 ifti§t<t,'+1

N;1(t) =
ia(t) 0 otherwise
t—t; tivpal —t
Nik(t) = ————Njk(t) + — T —— Ny -1(t)
tivk — L tivk+1 — it

o Njy(t) >0 forall i k,t

o Njy(t)=0if t notin [t, titkt1)

@ At any t no more than k basis functions affect the curve
o Yo Nik(t) =1

@ Curve lies within convex hull of control points

Richard Everson Parametric surfaces 19 /29

Non-uniform B-splines

N, () N, @)

@ Non-uniformly spaced knots: {0.0,1.0,2.0,3.75,4.0,4.25,6.0,7.0}

@ Curve pulled closer to B, and B3 as neighbouring basis functions are
larger and concentrated on smaller intervals.
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Multiple knots at ends

N,

08 N @ N @

L2

04 |

02 |

e Knots at {0.0,0.0,0.0,3.0,4.0,5.0,6.0,7.0}

o All basis functions except Np3(t) are zero at t = 0. Therefore curve
coincides with By
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Multiple interior knots

0

r N
o8l Ny, i
N

N, i)

e Knots at {0.0,1.0,2.0,3.0,3.0,5.0,6.0,7.0}
@ All basis functions except Ny 3(t) are zero at t = 0. Therefore curve
coincides with B>
@ Continuity at a knot is C"~P where p is the multiplicity of the knot.
e Produce kinks and gaps with sufficient knots
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Surfaces
Curves .
Yoo wili kB,
Qt) = =—F— = Ri«(t)B;
() = S = SR8,
with
w;N; B,
Riu(t) = —th2n
(t) Do Wili
Surfaces .
S(u,v) = D0 Rijki(u,v)Bi;
i—0 j=0
with

4 'N,‘ k(U)N' /(V)
R; ; u,v) = —=n #, . ek
ShI ) = S S N ()N (V)

Transformation Curves and surfaces are invariant under affine and
perspective transformations, so only control points need by transformed.
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Non-uniform rational B-splines

Weights Weight the control points
with weight w;
Yoo wilNi kB,

) = 2o Wil k

Homogeneous coordinates Regard w as an additional coordinate.
@ Curves are defined in 4D and projected into 3D
e Control points have coordinates (x, y, z, w); projection in 3
dimensions is (x/w,y/w,z/w)
Permits representation of conic sections (circles, ellipses, parabolas,

hyperbolas)
Invariant under projective as well as affine transformations.
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NURBS surfaces
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NURBS surfaces Drawing splines
, NN Refine control points defining convex hull
jlﬁll . \\“\5 .\\ \

Y/

Ty . ]
,/,,:///;g; HEIRNAN For cubic Bézier curves:
QT A

L, = (B1+By)/2
H = (Bs + B3)/2
L; = (L2 + H)/2

Rs = (B + Bs)/2

‘ R, = (H+ R3)/2
%}z\#s,g__?_s:gs_g!!’?( Ls =Ry = (L3 +Ry)/2
/S
/I%m"""”t Divides curve into two at t =1/2. Bi=L1 Bs=Re
_mf.w‘i [z Stop when:

/1
dIH
{f

@ Line segments are pixels

http: //www.3drender . con/jbirn/ea/HeadModel html @ Convex hull is sufficiently ‘thin’ — generally more efficient
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Drawing splines

B-splines
@ Similar recursive sub-division formulae
o Left and right segments are connected
NURBS

@ Basis functions are defined implicitly by recursive formulae

@ Sub-division achieved by adding knots (and therefore control
points)

@ Left and right segments are not connected

Surfaces

@ Sub-division formulae can be written for surfaces
@ Usually surface is divided until ‘segments’ are sufficiently planar
and then drawn as polygons

Details in Foley et al, chapter 11.
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