

Subdivision surfaces COM3404

Richard Everson

School of Engineering, Computer Science and Mathematics University of Exeter

R.M.Everson@exeter.ac.uk http://www.secamlocal.ex.ac.uk/studyres/COM304

Richard Everson

Subdivision surfaces

1 / 14

Subdivision curves: Chaikin

Generate new control vertices at 1/4 and 3/4 along each line segment

 $\mathsf{P}_{2i}^{n+1} = (3\mathsf{P}_i^n + \mathsf{P}_{i+1}^n)/4$ $\mathsf{P}_{2i+1}^{n+1} = (\mathsf{P}_i^n + 3\mathsf{P}_{i+1}^n)/4$

In the limit of infinite subdivision the curve is a uniform quadratic B-spline and therefore C_1 continuous.

 Render (in screen space) by subdivision until line segments are approx 1 pixel long

Outline

Subdivision curves

Subdivision surfaces

References

- Fundamentals of 3D Computer Graphics. Watt.
- SIGGRAPH 1999 and 2000 course notes: http://mrl.nyu.edu/~dzorin/sig00course/

chard Everson Subdivision surfaces 2 / 14

Subdivision curves: C_2 continuity

Insert midpoint between vertices and adjust old vertex

• In the limit of infinite subdivision the curve is a cubic B-spline and therefore C_2 continuous.

Richard Everson Subdivision surfaces 4 / 14 Richard Everson Subdivision

Doo-Sabin subdivision

 Generalisation to two dimensions of Chaikin curve subdivision.

- Weights found from $[1/4, 3/4] \times [1/4, 3/4]$
- Render by sub-division until polygons are the size of pixels

Richard Everson Subdivision surfaces 7 /

Catmull-Clark subdivision

Doo-Sabin extraordinary polygons

- Polygons that are not quadrilaterals are called extraordinary
- In order to preserve continuity of surface in extraordinary polygons Doo-Sabin subdivision requires special weights:

$$\alpha_0 = 1/4 + 5/(4K)$$

 $\alpha_i = (3 + 2\cos(2i\pi/K)/4K)$

K is the *valency*, i.e., the number of vertices

d Everson Subdivision surfaces 8 / 14

Catmull-Clark subdivision

- Based on [1, 4, 6, 4, 1]/8 univariate scheme.
- New vertices may be occur in a face, on an edge or at an original vertex

• Obtains C_2 continuity except at extraordinary points where C_1 continuity is achieved with special choices of weight.

Subdivision for animation

Convenient for animation as:

- skeleton can be attached to coarse control points
- always yields a smooth surface (no creases) as skeleton is animated

NURBS Used for:

1995 Toy Story 1998 A Bug's Life

Subdivision surfaces

Piloted in Geri's Game (1997) Used for:

> 1999 Toy Story II 2001 Monsters Inc.

2003 Finding Nemo

Richard Everson

Subdivision surfaces

11 / 1

Animation and displacement mapping

- Rig and animate low resolution model.
- 1,700 polygons

www.fantasylab.com

- Smooth high resolution from sub-division model
- Deforms smoothly when animated.

Richard Everson

ubdivision surfaces

12 / 1/

Animation and displacement mapping

 Displacement map describes amount to displace surface in normal direction when rendering

- Smooth sub-division surface plus displacement map
- Equivalent polygon model is 500,000 quadrilaterals

Bézier patches, NURBS and subdivision surfaces

Bézier patches

Difficult to stitch together

NURBS

- Continuity C_1 or C_2 can be guaranteed
- Surfaces require a quadrilateral mesh of control points
- Difficult to join surfaces: extraordinary points
- Very compact representation

Subdivision

- Easy to manipulate
- Handles extraordinary points well
- Not confined to quadrilateral meshes
- Requires lots of memory (but not prohibitive)

www.fantasvlab.com
Richard Everson Subdivision surfaces 13 / 14 Richard Everson Subdivision surfaces 14 / 1