
Volume visualisation
COM3404

Richard Everson

School of Engineering, Computer Science and Mathematics
University of Exeter

R.M.Everson@exeter.ac.uk

http://www.secamlocal.ex.ac.uk/studyres/COM304

Richard Everson Volume visualisation 1 / 35

R.M.Everson@exeter.ac.uk
http://www.secamlocal.ex.ac.uk/studyres/COM304


Outline
1 Voxel data
2 Contouring

Marching squares
3 Isosurfaces: Marching cubes
4 Volume rendering

Transfer function
Transformation
Compositing

5 Splatting

References

Foley, van Dam, Feiner & Hughes. Computer Graphics.
Watt. 3D Computer Graphics.
Strothotte & Schlechtweg. Non-photorealistic Computer Graphics:
Modeling, Rendering and Animation.
Lorensen & Cline (1987) Marching cubes: a high resolution 3D
surface construction algorithm. Computer Graphics, 21 (4), 163-169.

Richard Everson Volume visualisation 2 / 35



Solid modelling

Solid modelling
Objects to be modelled are solid
rather than surfaces.

Often only objects are defined;
eg. engineering parts

Gridded data
Data available for every point on a
3D grid

Usually a regular, rectilinear grid
Data often arises from physical measurements, eg CT scanning, MRI
scanning.

Richard Everson Volume visualisation 4 / 35



Applications: voxel data

Scanning produces a value for each
voxel dependent on the material
characteristics. Preprocessing
permits different structures to be
studied.

Voxel = Volume element

Value for each voxel represents
an average value for the volume
occupied by the voxel.

Richard Everson Volume visualisation 5 / 35



Applications: Cell data

Computational modelling produces a
point value at the vertices of a
regular grid.

Modelling methods are often
voxel-based

Differences between voxel
and cell data often ignored

Richard Everson Volume visualisation 6 / 35



Visualising 3D data

Surface rendering

Iso-surfaces: surfaces on
which data value is constant

Indirect: yields graphical
primitives (polygonal mesh)
which is then rendered

Volume rendering

Voxels endowed with colour
and opacity

Render the translucent data
cuboid by ray casting

Direct visualisation

Richard Everson Volume visualisation 7 / 35



Contouring

Two dimensions
Construct lines on which a
scalar is constant

Contours on OS maps:
iso-height
Constant temperature lines:
isotherms
Constant pressure: isobars

Contours are the boundaries
between different scalar values

Three dimensions

Construct iso-surfaces on
which a scalar is constant
Surfaces divide regions of
differing scalar values

Richard Everson Volume visualisation 9 / 35



Contouring

f (x , y) is the value measured at
location (x , y).

Goal is to find the contour
f (x , y) = c

1 Determine the location of
intersection of contour with cell
edges by linear interpolation
between vertices.

Linear interpolation is simple,
fast and usually sufficient.

2 Connect the intersections.

Connections with straight
lines: simple and fast; splines
etc may lead to crossing
contours.

Richard Everson Volume visualisation 10 / 35



Contour tracking

Follow a contour from start to finish
A contour that enters a cell on one edge must exit
on another edge

1 Scan cells and edges to detect an edge
intersection

2 while not finished
3 find the exit-edge in current cell
4 mark cell as processed
5 entry-edge := exit-edge

Terminate if

Contour closes on itself
Contour reaches a boundary edge

Yields contour as a
single entity

Helpful for labelling,
measurement

Richard Everson Volume visualisation 11 / 35



Marching squares

Contour tracking very difficult
to extend to 3D

Marching squares draws the
contour in each cell in scanwise
order

Efficiency derived from rapid
identification of the way in
which contour passes through
cell

Topological state of cell depends
on whether each of the 4
vertices is greater than or less
than the contour. 1101

4 3

21

Richard Everson Volume visualisation 12 / 35



Marching squares states

24 = 16 possible states

1100

0000 0001 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 1110 11111101

• denotes vertices greater than contour height.

Richard Everson Volume visualisation 13 / 35



Marching squares

Algorithm
1 for each cell:
2 Determine whether vertices are above or below c
3 Generate topological state index from bits
4 Locate intersection edges from state
5 Calculate intersection by linear interpolation
6 Draw contour segment

Notes

Contour produced in segments; can be time-consuming to
re-assemble.

Interpolate in the same direction (eg low to high) to avoid round-off
errors and ensure consistency of interpolated intersection.

Richard Everson Volume visualisation 14 / 35



Marching squares ambiguities

States 0101 and 1010 are ambiguous: there are two possible contours
at the saddle point.

In two dimensions choose either interpretation.

Either interpretation is consistent with dataset.

Rate of change of height can be used to infer the correct
interpretation.

Richard Everson Volume visualisation 15 / 35



Marching cubes

Generalisation of marching squares to 3D
to draw an isosurface f (z , y , z) = c

28 arrangements of vertices

Inside/outside choice is arbitrary

Other symmetries reduce the
number of unique configurations
to 15

Richard Everson Volume visualisation 17 / 35



Marching cubes

For each cell:

1 determine state of cell
from data values at
vertices

2 find intersection of edges
by inverse linear
interpolation

3 draw triangular patches

Ambiguities

Resolved by reference to
neighbouring cells to prevent
holes in isosurface

Richard Everson Volume visualisation 18 / 35



Efficiency

Use coherence of cells to avoid
expensive intersection
calculations by

Storing edge intersections for
reuse
Ordering the march to
minimize necessary storage

Buffers to retain intersections
required until next slice is
complete.

Richard Everson Volume visualisation 19 / 35



Limitations

Visualisation uses intermediate geometrical primitives

Poor resolution for small objects

Unlike 2D data, outer iso-surfaces obscure inner ones: no information
about the inside.

Richard Everson Volume visualisation 20 / 35



Volume rendering

Endow each voxel with an opacity and colour

View data cube by casting parallel rays from the image
plane

References

Examples: http://www.fovia.com/gallery.php

Levoy’s website: http://graphics.stanford.edu/projects/volume

Richard Everson Volume visualisation 22 / 35

http://www.fovia.com/gallery.php
http://graphics.stanford.edu/projects/volume


Volume rendering

Classify each voxel into a particular material and thereby assign colour
and opacity.
Assume that each voxel is composed of a single material

Transform classified volume data into the viewing direction

Cast rays from each pixel in the image plane find the overall pixel colour
and intensity

Richard Everson Volume visualisation 23 / 35



Voxel classification: transfer function

Transfer function maps the data value (e.g., X-ray absorption
coefficient) to RGBA.

Frequently determined by mapping data value to a material and then
material to RGBA.

Bonetissue
Soft 

Air

CT

Choice of material to RGBA mapping defined by the user.

Richard Everson Volume visualisation 24 / 35



Transfer function

Transfer functions often chosen interactively by specifying a colour for
a region/organ of interest, but difficult unintuitive and slow.

Low data 7→ high α High data 7→ high α

Semi-automatic methods to incorporate spatial information, such as
edges or the curvature of isosurfaces.
http://www.cs.utah.edu/∼gk/papers/vis03/

Richard Everson Volume visualisation 25 / 35

http://www.cs.utah.edu/~gk/papers/vis03/


Transfer function

CT adsorption, f

RGB(f ) α(f )

Composited tooth

Richard Everson Volume visualisation 26 / 35



Transformation into viewing direction

Either

Sample the data at equal intervals
along the untransformed data

Linear interpolation to find the
value at each sample point.

Or

Pre-transform the data so that ray is
parallel with transformed pixels.

Rotation about each axis
efficiently accomplished by 3
shears in hardware.

Richard Everson Volume visualisation 27 / 35



Three shear rotation

[
cos θ − sin θ
sin θ cos θ

]
=

[
1 − tan(θ/2)
0 1

] [
1 0

sin(θ) 1

] [
1 − tan(θ/2)
0 1

]

Each transformation is just a shift along rows or columns.

Filtering to reduce aliasing can be applied at each stage.

Richard Everson Volume visualisation 28 / 35



Compositing

Ray intensity is modified by
each voxel/sample it passes
through on the way to the eye:

Cout = Cin(1− α) + αC

Cin R/G/B for incoming ray
Cout R/G/B for outgoing ray

C R/G/B for this sample/voxel
α opacity for this sample/voxel

High α voxels are visible: they
obscure voxels behind them and
low-α voxels in front are
relatively transparent.

Richard Everson Volume visualisation 29 / 35



Alternative ray functions

Richard Everson Volume visualisation 30 / 35



Efficiency

Build pyramidal data
structure (eg. octree) with
1s at high levels indicating
non-zero α in lower levels.
Only visit voxels with
non-zero α.

Early ray termination: when
compositing from front to
back, stop if the ray is too
dark to be visible.

Hardware: utilisation of
GPU hardware permits rapid
volume visualisation.

Occupied and unoccupied cells

Eye

Sample locations

After: ‘Efficient Ray Tracing of Volume Data’,

Marc Levoy, ACM Transactions on Graphics,

1990.

Richard Everson Volume visualisation 31 / 35



Splatting

Project voxels forward from data cube to the image plane.

Accumulate total pixel intensities by working from front to back of
data cube.

Each voxel projects to more
than one pixel.

Kernel or spreading function
determines the contribution of
each voxel to the central pixel
and neighbours.

Richard Everson Volume visualisation 33 / 35



Splatting

Kernel function often a discretised Gaussian
function

Splatting operations very fast
Advantageous to rotate (shear-warp) before splatting.
Splatting can be performed in parallel and can take advantage of
GPUs; memory access is the key to a fast algorithm.
Care to avoid aliasing required when more than one voxel maps into a
pixel
L. Westover ‘Footprint evaluation for volume rendering’, Computer
Graphics, 24, 1990

Richard Everson Volume visualisation 34 / 35



Volume Graphics

Advantages

Insensitive to scene complexity
Objects are preconverted into voxel form.
Insensitive to object complexity
Complexity is viewpoint independent
Interior information is available

Disadvantages

Memory requirements: 5122 × 2 bytes per voxel = 256 Mbytes
Processing power
Discrete form: resolution is limited by voxel resolution
Geometric form is lost on conversion to voxel representation

Richard Everson Volume visualisation 35 / 35


	Voxel data
	Contouring
	Marching squares

	Isosurfaces: Marching cubes
	Volume rendering
	Transfer function
	Transformation
	Compositing

	Splatting

