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Abstract

Topology optimization is of significant importance to the design of truss- and grillage-like structures. Conventional

topology optimization procedures are usually based on the ground structure approach. Starting from highly connected

structures the uneconomical links are eliminated during the course of optimization. In this paper we show that, addi-

tionally, stochastic methods offer the possibility to build-up structures starting from simple initial configurations with

few elements. Stochastic optimization methods (simulated annealing, evolutionary algorithms, random cost) are applied

to the topology design problem on the basis of appropriate local structure variations. Results and performance com-

parisons are given.
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1. Introduction

Attempts to apply optimization algorithms to the

complex task of structural design have been made over

a considerable time. One of the many problems encoun-

tered in this field is the topological design of discrete

structures like trusses. The different approaches can

roughly be divided into the following categories [8,21]:

The most common approach is the ground structure

method where the optimization is started from highly

connected initial structures. During the optimization

process the unnecessary structural members will be elim-

inated (see e.g., [4]). It is evident that in practical appli-
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cations the ground structure approach necessarily leads

to large matrices.

The class of optimality criteria methods covers a

number of different strategies (see e.g., [13,22]). They

are based upon stress criteria, displacement criteria or

the Kuhn–Tucker necessary conditions of optimality.

Although optimality criteria procedures in general have

proven to be efficient in topology design there might be

problems concerning convergence and stability.

The homogenization method [4] is based on using

composite materials to model local material properties.

A homogenized strain energy is utilized to formulate a

material design problem whose solution can be inter-

preted as the topology of a discrete structure. The

method is limited with respect to the choice of the objec-

tive function. This problem can be alleviated using

heuristic variations of the homogenization method like

the solid isotropic microstructures with penalization

method (SIMP) [3]. Here the density distribution of
ed.
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the material is modified until a quasi-discrete structure is

achieved.

The evolutionary structural optimization (ESO) of

Xie and Steven [25,26] is a simple method based on

so-called rejection criteria which are used to remove

inefficient material in a structure. Despite the notion

‘‘evolutionary’’ the method has no biologically inspired

steps based on the Darwinian mutation and selection

principle and should not be mixed up with evolution

strategies or genetic algorithms, see Section 2.2. As the

homogenization method ESO is not capable to be used

with arbitrary objective functions.

In order to overcome the above-mentioned flaws sto-

chastic topology optimization has gained interest in the

last years [2,9,10,18,19].

Stochastic optimization is a very general concept. The

respective methods do not have any demand regarding

the formulation of the objective function. The stochastic

topology optimization methods are not restricted to

mechanical problems but can be used with arbitrary

objective functions, see e.g., the applications to the opti-

mization of artificial neural networks or the digital filter

design in [14].

In contrast to the classical approaches, the alterna-

tive methods described in this paper allow also for inser-

tion of bars (see [21, p. 43–44]). This is of importance,

because mechanical structures from engineering practice

may have many joints and starting from highly con-

nected structures can be computationally demanding.

A completely connected initial structure is only one of

many possible starting points in the search space. Al-

most arbitrary initial structures (for example structural

models, which have emerged from a conventional design

process) can be used if the structural variations allow for

substantial structural rearrangements, that means addi-

tion and deletion of bar elements. The relevance of this

feature increases with the number of joints if the assem-

bling of the stiffness matrix is supported by appropriate

data structures.
2. Stochastic optimization

2.1. Simulated annealing

In a famous paper Metropolis et al. [16] introduced

a method, which allows the computational simulation

of physical systems in thermal equilibrium. Kirkpatrick

et al. [12] have taken up the Metropolis approach and

adapted to the solution of complex optimization prob-

lems (simulated annealing method, SA). The idea behind

simulated annealing is based on the close correspon-

dence of energy in statistical mechanics and cost or sys-

tem quality in optimization problems. Since physical

systems can be forced into the energetic ground state

by a careful annealing process, an optimization problem
can be driven towards the global optimum by adjusting

a parameter, which can be considered as the counterpart

to the physical temperature. Determining the proper

annealing (cooling) schedule for a given problem can

be demanding.

2.2. Evolution strategies

In his pioneering evolution theory Darwin gave as

the reason for the development of species the principle

survival of the fittest. This principle states that only by

natural selection an optimal adaptation of a particular

species to the environment and living conditions could

occur.

It is obvious to use such a selection principle as the

basis for optimization methods (evolutionary algo-

rithms). For this purpose the variable vector of the opti-

mization problem can be interpreted as an individual of

an artificial population and the selection can take place

on the basis of the associated objective function value.

The objective function plays the role of the fitness in a

simulated environment and the adaptation to these con-

ditions leads to the solution of the underlying optimiza-

tion problem.

The formulation and algorithmic realization of such

evolutionary algorithms goes back to Rechenberg [20]

and Schwefel [23,24] who developed the so-called evolu-

tion strategies (ES), and Holland [11] who laid the foun-

dation for the genetic algorithms (GA). Since in a

previous study [2] GA methods turned out to be not very

efficient for the problems at hand they have not been

given further attention in this paper. In the following

a short description of the evolution strategies will

be given.

Two main variants of the evolution strategies are in

use. Both assume that in each iteration step a population

of l parental vectors exists. Then, with the aim of gener-

ating an offspring vector, a parental vector is chosen ran-

domly and modified by adding a random variation

(mutation). This procedure is repeated until k offsprings

have been created. In the (l + k)-ES an intermediate

population of the l + k individuals is the basis for the

selection of the l best vectors to be parents of the next

iteration. In the so-called (l,k)-ES, the l best vectors

will be taken out of the k offsprings only (k > l).
Further biological phenomena like recombination,

migration or the competition between populations can

be easily included in such an evolutionary optimization

concept.

There is an extensive literature on the theoretical

background and recommendations concerning the prac-

tical application of evolution strategies (see e.g.,

[1,7,24]). However, these theoretical investigations are

mainly devoted to continuous problems. Relatively few

results concerning the strategy parameters exist with

respect to discrete problems. On the other side it is
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obvious that recombination tends to enhance the proba-

bility of the occurrence of kinematical structures (see

Section 3.2). Therefore our simulations are based on

the simple (1 + k)- and (1,k)-ES.
Since in genetic algorithms recombination is the main

mechanism, the frequent occurrence of kinematical

structures might be an explanation for the relatively

poor performance of GAs found in [2].

2.3. Random cost method

The random cost method (RC) introduced by Berg

[5] is based on a random walk in search space which is

mapped onto a random walk in the cost or objective

function (hence the name). Since the random cost

method is relatively new and therefore not widely known

a more detailed description of its basic principle is pre-

sented here.

Consider diffusion in one dimension (random walk).

There we have a stochastic process with continuous

step-size. We denote the size of the ith step by si and

the corresponding probability density function with

wi(si) (Fig. 1). The pth moment is defined by1

hspi :¼
Z
S
spwðsÞds. ð1Þ

If we choose wi(si), such that hsii = 0 for all i, the cen-

tral limit theorem states that the total displacement

xN :¼
PN

i¼1si after N steps has a Gaussian probability

density function

W ðxN Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2pr2

N

p exp � x2N
2r2

N

� �
; ð2Þ

where r2
N :¼ hx2N i ¼

PN
i¼1r

2
i and r2

i ¼ hs2i i are the vari-

ances of xN and si, respectively. The width of W(xN) is

increasing like
ffiffiffiffi
N

p
(the total number of steps), and the

probability that x-values far off the starting point are

visited is increasing steadily.

In the following we use one-dimensional continuous

search spaces. The only reason for this is the sake of sim-

plicity. High-dimensional and/or discrete search spaces

can be treated in just the same way.

Assume the cost-function of the optimization prob-

lem is y = f(x). A stochastic process in the search space

is mapped onto a stochastic process in y, the cost- or

quality-value (Fig. 2). Step-size in y and the associated

probability density function are denoted by ti = yi � yi�1

and xi(ti). The probability density functions for the si
and for the ti are not independent and it is possible to

choose the wi(si) in such a way, as to guarantee htii = 0.

In this way we obtain the stochastic process underlying

the random cost strategy. Here the expectation values
1 In order to keep the notation simple, we omit the index i

whenever this seems expedient.
are defined in the usual way, that is htpi :¼
R
T tpxðtÞdt,

where the set S is mapped onto T.

From the previous section it follows, that X(yN)
(probability density function of the total displacement

in y) becomes a Gaussian in the large N-limit. The width

of X is increasing with N, and therefore the probability

that the global minimum and the global maximum of

the optimization problem are visited by the process in-

creases with the number of performed steps (Fig. 3).

Obviously the RC-method can be considered as a diffu-

sion process in the quality/cost of the problem.

At the first view trapping in a local optimum does not

seem to be a problem because of htii = 0. Unfortunately

it turns out, that this is not true (see below).

In order to state the condition that leads to htii = 0

we need to define subsets of S:

S� :¼ fs 2 SjtðsÞ < 0g ð3Þ

and S+ analogously (Fig. 4).2 It is straightforward to

show that fulfilling the master equation

Pðs 2 S�Þ ¼ htiþ
htiþ � hti�

ð4Þ

is a sufficient condition for hti = 0 (see [5]). P(s 2 S�) is

the probability for the next step to end up in S� and the

expectation values are defined over the subsets T� and

T+, respectively.
2 Again we have omitted index i.
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f(x) maps S� onto T� and S+ onto T+. For the exam-

ple, shown in Fig. 4 it can be seen that jhti�j < jhti+j.3
Then the master equation implies P(s 2 S�) > P(s 2 S+).

The process is attracted by the optimum!

At points in search space, where the cost-function is

nearly linear one has Pðs 2 S�Þ � Pðs 2 SþÞ � 1
2
. Finally,

if the process has reached an optimum within the range

of S, one of the sets S� or S+ is empty and either

P(s 2 S�) or P(s 2 S+) is equal to one—the process has

been trapped! In terms of the random walk-picture the

trapping is related to r2
i ! 0. If this happens at a local

optimum, the process has to be set free by violating

the master equation. The random walk therefore does

not float between the global optima but between the

local optima only.

Further details concerning the RC-method can be

found in [6], more about the implementation in [2].
3 hti� is negative!
3. Topology optimization

3.1. Structure vector

In the following, truss structures are defined on a

fixed planar grid with k nodes. The topology of the truss

is specified by a structure vector q 2 Bn, where n ¼ kðk�1Þ
2

is the maximum number of connections between the

nodes and B ¼ f0; 1g. The structure vector of a topol-

ogy optimization problem is therefore a bit string with

n binary variables where the entries qi = 1 or qi = 0

(i = 1, . . .,n) represent the information whether a bar ele-

ment in the structure is present or not.
3.2. Topology variations

The task is to find the optimal connections of the

nodes with respect to a given objective function and cer-

tain constraints. The binary domain Bn covers 2n possi-

ble structure vectors. Even for small values of n

complete enumeration of all possibilities is out of the

question. The use of stochastic optimization methods

requires the creation of slightly different (neighbouring)

structure vectors which will be selected by the particular

algorithm.

The Hamming-distance

dHðq; rÞ ¼
Xn

i¼1

j qi � ri j ð5Þ

can be considered as a measure of structural difference.

It denotes the number of different bits in a component-

wise comparison of two strings q 2 Bn and r 2 Bn. On

the basis of the Hamming-distance a neighbourhood

NmðqÞ ¼ fr 2 Bn j dHðq; rÞ ¼ mg; m 2 N ð6Þ

can be defined which describes the feasible structural

topology variations.

In the present investigation the following structure

mutation method has been used:

(1) One of the k nodes is selected at random.

(2) A second node (different from the first) is also

selected randomly.

(3) In case, that an element of the actual structure is

connecting these two nodes, this element is deleted

from the structure. Otherwise an element is

inserted.

(4) Continue at 2. until a certain random criterion is

fulfilled.

The random criterion used in the fourth step is

chosen in such a way, that on average a pre-specified

number of elements m is inserted/deleted during one

structure mutation step. We denote the resulting neigh-
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bourhood as Nhmi. In the language of evolutionary

algorithms the topology variations can be called (on

average) m-point-mutation of the binary structure vec-

tor without recombination.

Since one objective of the present paper is to compare

the relative performance of different optimization meth-

ods, the design of mutation procedures has not been

given much attention. Considerable improvement

should be achievable by using an optimized mutation

scheme when confronting stochastic optimization

methods with practical applications.

If a kinematical structure occurs during the course of

optimization it will be associated a high objective func-

tion value (in case of minimization) and will be sorted

out by the selection process (lethal structure). To keep

the probability of lethal structures small it has to be

ensured that m ¼ Oð1Þ.
3.3. Weight optimization problem

In the following we will take the minimization of the

truss weight as a test problem for the assembling of dis-

crete structures.

In topology optimization the objective function con-

cerning the structure weight can be written as

W ¼ c
Xn

i¼1

qiAili; ð7Þ
(a)

Fig. 5. (a) Initial structures,
where c is weight per unit volume, Ai the cross-section

and li the length of the structural member i. This is a

coupled formulation with continuous size variables Ai

and discrete (binary) structure variables qi. For the com-

ponents {jjqj = 0} of the structure vector the processing

of the structural members (element matrices) may be

suppressed in the finite element analysis.

Using a simplified approach

bW ¼ c
Xn

i¼1

qiAiðqÞli ð8Þ

for the objective function one gets a pure discrete opti-

mization problem with structure variables qi. In order

to avoid side effects, which may occur when including

the continuous size variables, our simulations are based

on this approach. The resulting approximation of the

weight evaluation implies that the structure is treated

like a statically determinate one. Thus the cross-sections

can be calculated by means of a prescribed maximum

stress value rmax. The objective function value is correct

at least for statically determinate optimal structures.
4. Results and comparisons

4.1. Initial structures

Our experiment to demonstrate the structural assem-

bly by stochastic topology optimization methods is
(b)

(b) optimal structure.
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based on a regular grid with k = 30 nodes (Fig. 5). Thus

the maximum number of structural members is n = 435

and the stock of structures is 2435 � 10131. On the left-

hand side of the structure are two fixed supports and

one node on the right side is loaded by a single force.

This set-up was especially devised because the global

minimum on this grid, an approximation of a Michell

structure (see [17]), is known.

In Fig. 5a three different initial structures are de-

picted representing starting points in the search space.

At the bottom a completely connected structure is

shown, thus a thin out process, similar to the conven-

tional ground structure approach, has to be performed

to obtain the solution. In contrast, the net-like

triangular structure in the middle needs substantial reor-

ganization by the optimization process. First results con-

cerning the performance of evolution strategies and the

random cost method, based on these two initial struc-

tures, have been discussed in [2,15].

The structural build-up launched from simple initial

configurations, like the 2-bar-structure on top of Fig.

5a, is a more difficult problem. Stochastic methods allow

the complete rearrangement of structural members. This

is a prerequisite for an automatic assembly of complex

structures. In our simulations the optimal solution,

Fig. 5b, could be achieved starting from all three

configurations.
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4.2. Performance considerations

Figs. 6 and 7 allow comparisons of the three different

types of stochastic algorithms (SA, ES and RC) and of

the influence of the structural variation neighbourhood.

Each strategy had to solve the problem 10 times using

different random number sequences. The figures show

how many optima have been detected and how many

function evaluations have been needed for the particular

run. The results are based on the net-like initial structure

(see Fig. 5a). The parameter setting of the simulated

annealing runs has been chosen as close as possible to

the values given by Kirkpatrick [12]. The random cost

data have been obtained using a maximum number of

structural variations per iteration step k = 50.

The optimization runs, the results of which are shown

in Fig. 6, have been carried out on a basis of a structural

neighbourhood N1. Fig. 7 is founded on Nh2i. Thus the

influence of the two different structural neighbourhoods

on the topology optimization process can be seen by

comparing the graphs of both diagrams. It turns out that

the use of the larger neighbourhood Nh2i improves the

reliability of finding the optimal solution. On the other

hand, with the smaller neighbourhood N1, the success-

ful runs on average needed less iterations. This means

that at the beginning of the optimization small changes

in the structure vector are more useful to get a faster
00 600000 700000 800000 900000 1000000

luations

(1+1)-ES

ig. 5a, middle) based on N1. Ten runs have been performed for
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descend of the objective function value than larger struc-

tural variations. One reason might be the enhanced

probability of creating kinematical structures in the

Nh2i case. It is clear, however, that in situations where

the optimization gets stuck in a local minimum using

the N1 neighbourhood, a wider structural variation

environment could lead to a continuation of the process;

therefore the better prospect in finding solutions.

With respect to a comparison of the optimization

methods used, the general tendency is similar in both

diagrams. All in all the simple (1 + 1)-evolution strategy

found the optimum most early but failed in about half of

the cases. Simulated annealing was the most reliable

method and found a solution in 19 out of 20 runs (9

of 10 in Fig. 6 and 10 of 10 in Fig. 7) but needed a great

deal more of computation time. The computational per-

formance of the random cost method is somewhere in

between and it turns out to be a very reliable procedure

(17 hits of 20 runs). Additionally, in Fig. 7, the data ob-

tained by a (1,64)-evolution strategy are plotted. The

strategy proved to be comparable with the (1 + 1)-ES

with regard to the number of function evaluations

needed, but was more successful.

The preceding statements lead to the question how

the computational performance depends on the type of

strategy and how it scales with the number of structural

updates per iteration (population size) k. Fig. 8 shows

the best objective function value found after 105
function evaluations. Each point represents the average

of five independent runs. The graphs are based on the

net-like initial structure andNh2i. Only data for the evo-

lution strategies and the random cost method can be

taken into account because there is no such parameter

like k in the conventional simulated annealing proce-

dure. The results show that k has a strong influence on

the random cost method and the (1,k)-ES. The quality

of the solution increases considerably with the use of a

larger number of structural updates per iteration. In

contrast, the (1 + k)-ES is nearly not affected by the pop-

ulation size. This, of course, is convenient from the prac-

tical point of view.

4.3. Structural assembly

The results from the previous section were utilized in

the simulations which have been performed with the aim

of a structural build-up (initial structure on top of Fig.

5a). The performance of the different strategies can be

extracted from Fig. 9, which is based onNh2i. The simple

N1 neighbourhood cannot be used with the 2-bar-initial

structure because it exclusively produces kinematical

configurations at the beginning of the simulation. Hence,

the optimization process cannot be initiated.

The first point to note is, that simulated annealing

shows a similar performance as in the previous simula-

tions based on the net-like initial structure (Figs. 6 and
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7). Simulated annealing is not a fast method, however

this strategy seems to be completely unimpressed by

the fact that the problem at hand is more difficult than

the previous ones. This can be explained by the analogy

with statistical mechanics. At high temperatures simu-

lated annealing creates configurations with a high degree

of disorder (entropy) and the information concerning

the starting configuration gets lost.

In the light of the results of Section 4.2 the random

cost simulations have been performed with k = 1024.

Like simulated annealing random cost exhibits a rate

of success of 100%. However, random cost needs much

more function evaluations until the optimal structure

is found.

The (1 + k)-evolution strategies (k = 16 and k = 1024

have been used) do not show even one single success

within the prescribed number of function evaluations.

On average the best objective function results obtained

were about 10% above the optimal value. The advantage

of the (1 + k)-ESs is their high initial progress rate, but

once trapped in a local optimum they are not able to

escape from it.

The (1,k)-evolution strategy, in contrast, is able to

leave a local optimum. Despite this and the fact that this

strategy looks very promising with regard to Fig. 7 this

type of strategy is not included in Fig. 9. The reason is

that the (1,k)-ES has to find a non-lethal structure with-

in k structure proposals. Otherwise a lethal structure has

to be accepted as the parent for the following genera-

tion. In a sparsely occupied initial configuration, like

the 2-bar-structure, the creation of a non-kinematical

structure is a rare event and therefore the (1,k)-ES has

very low chances for success. It might be possible to cir-

cumvent this problem by certain measures. However,

this measures stand in contradiction to the spirit of a di-

rect comparison of the methods and therefore the (1,k)-
ES has been excluded.
5. Conclusions

In the present paper it was shown that stochastic

methods are able to build-up topological optimal

constructions starting from very simple structures. The

use of appropriate structural variation procedures is

essential.

All the investigated methods (simulated annealing,

evolution strategies and random cost) are generally sui-

ted for topology optimization problems. However, there

are substantial differences in the computational perfor-

mance: simulated annealing turns out to be most reliable

in finding the optimum. The evolution strategies exhibit

an ambiguous nature. If successful they are fast, but

their usability depends on the choice of an appropriate

initial structure. The performance of the random cost

method shows an intermediate behaviour.
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[1] Bäck Th. Evolutionary algorithms in theory and

practice. New York: Oxford University Press; 1996.

[2] Baumann B, Kost B. Topology optimization of trusses—

random cost method versus evolutionary algorithms.

Computational optimization and applications 1999;14:

203–18.

[3] Bendsøe MP, Sigmund O. Material interpolation schemes

in topology optimization. Archives of applied mechanics

1999;69:635–54.

[4] Bendsøe MP, Sigmund O. Topology optimization: theory,

methods and applications. Berlin: Springer; 2003.

[5] Berg BA. Locating global minima in optimization prob-

lems by a random-cost approach. Nature 1993;361:708–10.

[6] Berg BA. New algorithm to investigate neural networks.

Comp Phys Commun 1996;98:35.

[7] Beyer HG. Theory of evolution strategies, natural com-

puting series. Berlin: Springer; 2001.

[8] Eschenauer HA, Olhoff N. Topology optimization of

continuum structures: A review. Appl Mech Rev

2001;54(4):331–89.

[9] Galante M. Genetic algorithms as an approach to optimize

real-world trusses. Comput Struct 1996;39:361–82.

[10] Hajela P, Lee E, Lin C-Y. Genetic algorithms in structural

topology optimization. In: Bendsøe MP, MotaSoares CA,

editors. Topology design of structures. Dordrecht: Klu-

wer Academic Publishers; 1993. p. 117–33.

[11] Holland JH. Adaptation in natural and artificial sys-

tems. Ann Arbor: University of Michigan Press; 1975.

[12] Kirkpatrik S, Gelatt CD, Vecchi MP. Optimization by

simulated annealing. Science 1983;220:671–80.

[13] Kirsch U. Structural optimization. Berlin: Springer; 1993.

[14] Kost B. Structural design via evolution strategies. In:

Marti K, Kall P, editors. Stochastic programming,

numerical techniques and engineering applications, lecture

notes in economics and mathematical systems, Vol.

423. Berlin: Springer; 1995. p. 71–92.

[15] Kost B. Evolution Strategies in Structural Topology

Optimization of Trusses. In: Pahl PJ, Werner H, editors.

Proceedings of the 6th International Conference on

Computing in Civil and Building Engineering. Rotter-

dam: Balkema AA; 1995. p. 675–81.

[16] Metropolis N, Rosenbluth A, Rosenbluth M, Teller A,

Teller E. Equation of state calculation by fast computing

machines. J Chem Phys 1953;21:1087–92.

[17] Michell AGM. The limits of economy of material in frame-

structures. Phil Mag S6 1904;8(47):589–97.

[18] Ohsaki M. Genetic algorithms for topology optimization

of trusses. Comput Struct 1995;57(2):219–25.

[19] Papadrakakis M, Lagaros ND. Reliability-based structural

optimization using neural networks and Monte Carlo

simulations. Comput Meth Appl Mech Eng 2002;191:

3491–507.

[20] Rechenberg I. Cybernetic Solution Path of an Experimen-

tal Problem, Royal Aircraft Establishment, Library Trans-

lation 1122, Farnborough, 1965.

[21] Rozvany GIN, Bendsøe MP, Kirsch U. Layout optimiza-

tion of structures. Appl Mech Rev 1995;48(2):41–119.

[22] Rozvany GIN, Zhou M. Performance characteristics of

OC methods with applications in topology design. In:



2184 B. Baumann, B. Kost / Computers and Structures 83 (2005) 2175–2184
Marti GP, Kall P, editors. Stochastic programming,

numerical techniques and engineering applications, lecture

notes in economics and mathematical systems, Vol.

423. Berlin: Springer. p. 289–328.

[23] Schwefel H-P. Numerical optimization of computer

models. Chichester: Wiley & Sons; 1981.
[24] Schwefel H-P. Evolution and optimum seeking. New

York: Wiley & Sons; 1995.

[25] Xie Y-M, Steven GP. A simple evolutionary procedure for

structural optimization. Comput Struct 1993;49(5):885–96.

[26] Xie Y-M, Steven GP. Evolutionary structural optimiza-

tion. Berlin: Springer; 1997.


	Structure assembling by stochastic topology optimization
	Introduction
	Stochastic optimization
	Simulated annealing
	Evolution strategies
	Random cost method

	Topology optimization
	Structure vector
	Topology variations
	Weight optimization problem

	Results and comparisons
	Initial structures
	Performance considerations
	Structural assembly

	Conclusions
	References


