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Abstract

The paper shows the results obtained by using a topology optimisation code to solve a three-dimensional problem concerning a real

automotive component. The implemented optimisation method is based on the maximisation of the total potential energy with a volume

constraint by optimality criteria. The volume of the optimal solution depends on the imposed static (displacement, stress, stiffness) and

dynamic (natural frequency) constraints and has not to be specified a priori. The optimisation process converges toward a quite well defined

structure made of the base material with a very little percentage of elements characterised by intermediate material properties.

q 2004 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.
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1. Introduction

Solutions obtained by standard size and shape optimisa-

tion methods keep the same topology of the initial design.

These solutions are often far from optimal because other

competing topologies cannot be explored. For this reason,

topology optimisation methods are becoming increasingly

important as potential tools in engineering design.

In topology optimisation of continuum structures, the

shape of the boundaries and the number of internal holes of

an admissible design domain are considered concurrently

with respect to a predefined objective function, usually the

compliance minimisation or a natural frequency maximisa-

tion, and one or more constraints, e.g. a volume constraint.

Various families of structural topology optimisation algorithms

for generalised shape optimisation problems have

been developed based on the homogenisation theory [1,2],

the power-law approach (SIMP) [3–5], on evolutionary

approaches like the Evolutionary Structural Optimisation

(ESO) method [6–11], the soft kill and hard kill methods

[12–14] and the biological growth method [15]. Other

methods for topology optimisation of continuum structures

have been proposed like the simulated annealing method

[16], genetic algorithms and the bubble method described

in Ref. [17].

The homogenisation method is based on the modelling of

a perforated material constructed from a basic unit cell

consisting at a microscopic level of material and void and on

the description of the structure by using a continuously

varying distribution of the material density computed by

invoking the formulas of the homogenisation theory. The

SIMP method is based on the utilisation of constant material

properties within each element and element relative

densities raised to some power times the material properties

of solid material as design variables. To ensure existence of

solutions, the power-law approach must be combined with

a perimeter constraint, a gradient constraint or a filtering

technique.

Evolutionary methods have their origin in fully stressed

design techniques and generate structural topologies by

eliminating or adding at each iteration elements having a

low value of some criterion function, such as stress, energy

density (compliance) or some other response parameter.

Evolutionary methods are usually intuitive methods without

proof of optimality for given objective function and

constraints [18].

A topology optimisation method based on optimality

criteria for total potential energy maximisation with a

volume constraint has been implemented. The volume of
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the optimal structure is controlled by constraints on static and

dynamic responses, i.e. displacement, stress, stiffness and

natural frequency constraints, through the volume Lagrange

multiplier [19,20]. The results obtained by solving a

three-dimensional problem concerning a real automotive

component with stress and natural frequency constraints

are shown.

2. Topology optimisation method

Let us consider a body occupying a domain Vm which is

part of a larger reference domain V [ R3. Let us suppose

that V is subjected to the applied body forces f : Let us

assume that V has a smooth boundary G comprising Gd

where displacements are prescribed and Gt where surface

traction forces t are applied. It is also assumed that:

Gt < Gd ¼ G and Gt > Gd ¼ B ð1Þ

Let us consider the general elasticity problem. The

structural optimisation problem in its most general form can

be written as:

maximise
h

min
v[V

PðvÞ

subject to
ð
V
h dV # �V

0 , hmin # h # hmax , 1

h [ L1ðVÞ

ð2Þ

where h is a continuous function defined on the design

domainV representing the effectiveness of the material in the

volume dV; �V is the required volume of the optimal structure

and v is a kinematically admissible displacement field.

In linear static problems, the equilibrium displacement

field u makes the total potential energy an absolute

minimum. By introducing the equilibrium equation

described by the principle of virtual work, the optimisation

problem (2) can be reformulated as:

minimise
h

1

2
lðuÞ ¼

1

2

ð
V
1TðuÞD1ðuÞh dV

subject to aðu; vÞ ¼ lðvÞ; ;v [ Vð
V
h dV # �V

0 , hmin # h # hmax , 1

h [ L1ðVÞ

ð3Þ

where the bilinear form for the internal work and the linear

form for the external work have been introduced as:

aðu; vÞ ¼
ð
V
1TðvÞD1ðuÞh dV ð4Þ

lðvÞ ¼
ð
V

f Tvh dVþ
ð
Gt

tTv dG ð5Þ

where 1 is the strain field in the design domain V and D the

constitutive matrix for a linear elastic material. The

components of the constitutive matrix can be evaluated by

making reference to the relationship between the stress and

strain components given by:

sij ¼ Dijkl1kl ð6Þ

where:

Dijkl ¼ ldijdkl þ mðdikdjl þ dildjkÞ ð7Þ

the dij function is the Kronecker delta and l and m are the

Lamè constants defined as:

l ¼
n0E0

ð1 2 2n0Þð1 þ n0Þ
ð8Þ

m ¼
E0

2ð1 þ n0Þ
ð9Þ

where E0 and n0 are the Young modulus and the Poisson’s

ratio of the base material, respectively.

The optimisation problem described by Eq. (3) rep-

resents a classic variable ‘thickness’ design problem where

the thickness have been substituted by an artificial variable

h: The volume of the final structure �V as well as the

compliance lðuÞ depend linearly on the variable h: The

existence of solutions for this problem has already been

proved and does not require a relaxation method or the

introduction of materials with a micro structure [3].

The Lagrangian function of the optimisation problem

described is given by:

Lðh;lÞ ¼
1

2

ð
V
1TðuÞD1ðuÞh dV2 l1

ð
V
h dV2 �V

� �

2 l2½aðu; vÞ2 lðvÞ� ð10Þ

where l is the vector of Lagrange multipliers and the side

constraints concerning the design variable h have been

temporarily neglected. The necessary conditions for optim-

ality can be obtained by using the Kuhn–Tucker conditions

as follows:

›L

›l1

¼
ð
V
hp dV2 �V ¼ 0

›L

›l2

¼ aðup
; vÞ2 lðvÞ ¼ 0; ;v [ V

›L

›h
¼

1

2

ð
V
1TðuÞD1ðuÞdV2 l1

ð
V

dV ¼ 0

ð11Þ

where hp identifies the optimal distribution of the function

h. The Lagrange multiplier l1 for the optimal solution can

be obtained as

l1 ¼

1

2

ð
V
1TðuÞD1ðuÞdV

ð
V

dV

¼ �e ð12Þ
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where �e is the average value of the strain energy density of

the optimal structural configuration evaluated by taking into

consideration the volume of the design domain. If a discrete

model is considered, Eq. (12) holds for every discrete

element. Then, the elements of the discrete model should be

characterised by the same strain energy density. Therefore,

the optimal topology should be characterised by a uniform

distribution of the strain energy density as already obtained

by Venkayya [21] and Rossow and Taylor [22].

The topology optimisation problem layout described by

Eq. (2) can also be used when natural frequencies have to be

considered. If u and v are considered as eigenvectors, the

weak form of the vibration problem can be written as:

aðu; vÞ ¼ Lbðu; vÞ; ;v; u [ V ð13Þ

where L is an eigenvalue of the natural frequency

eigenproblem, aðu; vÞ is the bilinear form for the internal

work and bðu; vÞ represents the work done by the distributed

applied loads due to the inertia effects. The bilinear form for

the internal work and the work done by the distributed

applied loads are:

aðu; vÞ ¼
ð
V
1

TðvÞD1ðuÞh dV ð14Þ

bðu; vÞ ¼
ð
V
r0v·uh dV ð15Þ

where r0 is the material density of the base material.

Eq. (13) can be substituted in Eq. (2) leading to the

optimisation problem:

maximise
h

PðuÞ

subject to aðu; vÞ ¼ Lbðu; vÞ; ;v [ Vð
V
h dV # �V

0 , hmin # h # hmax , 1

h [ L1ðVÞ

ð16Þ

and, after the introduction of the total potential energy value

at the equilibrium, to a topology optimisation problem

described by a system of equations similar to that used for

the static case described by Eq. (3).

Eq. (12) can be used to solve the optimisation problem by

using an optimality criteria approach [23]. It is necessary to

identify a recursive relationship to be used in a finite

element calculus as an updating procedure. The artificial

variable h has been considered as an indicator of the local

material effectiveness. It can be associated to the finite

volume dV (sheet thickness, beam/bar cross section) or to a

material property (Young modulus and material density).

The latter option have been adopted leading to the following

relationship:

h ¼
E

E0

¼
r

r0

ð17Þ

where E and r are continuous Young modulus and material

density distributions over the design domainV and E0 and r0

are the Young modulus and the material density of the base

material, respectively. The relationship between the artifi-

cial variable h and the base material properties introduced

by Eq. (17) transfers the role of design variable to the

continuous distribution of the material properties E and r

and do not introduces the penalties proper of the SIMP

method. The volume of the final structure �V and the

compliance lðuÞ keep depending linearly on the design

variables. The solution to the optimisation problem keeps

existing [3] and no filter stabilisation or perimeter control

method is required to reach the convergence.

Dividing Eq. (12) by �e and multiplying it for the artificial

variable as defined in Eq. (17), it is possible to define the

following resizing rules to be applied in topology optimi-

sation procedure concerning a discrete design domain:

Enew
i ¼ Eold

i

ei

�e
ð18Þ

rnew
i ¼ rold

i

ei

�e
ð19Þ

where Enew
i ; Eold

i ; rnew
i ; rold

i and ei are the new and the old

value of the Young modulus of element i; the new and the

old value of the material density of element i and strain

energy density of element i; respectively.

The application of the resizing rules described by Eqs.

(18) and (19) corresponds to find the point wise optimal

distribution of the material characteristics for a given fixed

stress and strain field. If the structure would have been

determinate, the resizing rules above described would have

led to the identification of the optimal configuration in

one step. Otherwise, the resizing rules affect the global

behaviour of the structure and an iterative process is

required until convergence is reached.

Side constraints have not been taken into consideration in

the definition of the Lagrangian function of the design

optimisation problem. Their satisfaction has to be verified at

each iteration and for each discrete element of the

design domain during the updating process of the material

properties. The requirement for a structure with the base

material Young modulus E0 and material density r0 requires

the proper selection of the upper limit for the artificial

variable h :

hmax ¼ 1 ð20Þ

The requirement for a positive definite stiffness matrix of

the design domain leads to the selection of a lower limit for

the artificial variable h given by:

hmin ¼ 1024 –1025 ð21Þ

The value of hmin is extremely low and allows to consider

the elements with the corresponding value of Young

modulus and material density as void.

The Lagrange multiplier of the volume constraint, a

strain energy density from the dimensional point of view,
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makes reference to the optimal structural configuration.

It has not to be searched a posteriori in order to comply with

the volume constraint. Instead, it can be calculated a priori

in order to comply with the mean stress, displacement and

stiffness constraints defined on the optimal solution. There-

fore, the volume of the optimal solution usually unknown

a priori is indirectly controlled by the imposition of a

reference strain energy density evaluated by taking into

account the average strain energy that should characterise

the optimal solution. The imposed average strain energy

density will be called in the following as reference strain

energy density, �eref :

For example, if the optimal solution should be charac-

terised by a maximum allowable stress for the base material

smax and a truss like structure is expected, the reference

strain energy could be evaluated as follows:

�erefðsmaxÞ ¼
1

2

s2
max

E0

ð22Þ

In this case, side constraints and the indeterminate

problem make it necessary to update at each iteration the

reference strain energy density given by Eq. (22) as follows:

�e
iþ1
ref ¼ �e

i
ref

�e

�ei
ð23Þ

where �ei
ref and �eiþ1

ref are the reference strain energy

densities for iterations i and ði þ 1Þ; �e is the required

strain energy density given by Eq. (22) and �ei is the average

strain energy density of the structure at iteration i: The

topology optimisation process can be started by using the

strain energy density value given by Eq. (22) as reference.

Multiple loading conditions can also be managed.

Searching for a Pareto optimal solution, a topology

optimisation problem based on the minimisation of a

weighted sum of the total potential energy of each load

case can be set up [24] as:

�PðvÞ ¼
Xm
k¼1

wkPðvkÞ

Xm
k¼1

wk ¼ 1

ð24Þ

where k ¼ 1;…;m are different loading conditions, wk is the

weight corresponding to the kth loading condition and v is a

kinematically admissible displacement field. In this case,

the resizing rules described in Eqs. (18) and (19) have to be

modified as follows:

Enew
i ¼

Xm
k¼1

wkEold
i

ek
i

�ek
¼

Xm
k¼1

wkEk;new
i

rnew
i ¼

Xm
k¼1

wkrold
i

ek
i

�ek
¼

Xm
k¼1

wkrk;new
i

ð25Þ

3. Automotive component design

The above described topology optimisation method has

been implemented within the ANSYS finite element code.

Several two-dimensional benchmark examples with static

constraints have been solved to verify the correctness and

the performance of the method [19,20].

The proposed method has been applied to solve several

design topology optimisation problems with multiple

loading conditions and stress constrains. The optimisation

of an engine support of a mid size commercial vehicle has

already been presented in Ref. [25]. In the present paper the

results of the topology optimisation of a McPherson rear

suspension subframe of a mid size commercial vehicle are

shown. The indirect control of the volume constraint by the

constraint on the maximum mean stress and by the

requirement of a first natural frequency maximisation

leads to a very simple layout of the topology optimisation

problem. Data for the linear static and dynamic analyses

have to be prepared as if the analyses should be carried out

alone. The maximum allowable mean stress for the static

loading conditions has to be added and the weight of each

single loading condition for the multiple loading condition

topology optimisation has to be specified.

3.1. Topology optimisation of a rear suspension subframe

The topology optimisation problem concerns the rede-

sign of a McPherson rear suspension subframe of a mid size

commercial vehicle. The analysed structural component is

linked to the wheel hub by means of two arms and to the

vehicle chassis with bolts (Fig. 1). The main task of the

component is to transfer the transversal loads coming from

Fig. 1. Working environment of the analysed McPherson rear suspension

subframe.
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the wheel hub to the vehicle chassis. The longitudinal loads

coming from the wheel hub are directly transferred to the

vehicle chassis by a third arm (Fig. 1). The original model of

the component is shown in Fig. 2 and is characterised by a

first natural frequency of f0 ¼ 120 Hz.

The discrete model for the design optimisation process

is shown in Fig. 3. Only one half of the structure have

been taken into account taking advantage of its symmetry

with respect to the longitudinal axis of the vehicle. The

design domain of the model has been expanded as much

as possible avoiding the interference with the surrounding

components (Fig. 3, light grey). Bearings and fastening

systems have been kept unchanged and represent the

non-design domain of the model (Fig. 3, dark grey). The

connecting bolts have been simulated by using a steel

beam passing through the bearing. The beam has been

linked to the nodes of the internal and external surfaces

of the bearing by a ‘star’ of rigid bars. The finite element

model is characterised by 14,107 tetrahedral elements,

12,668 elements for the design domain and 1439

elements for the non-design domain. Several two-

dimensional elements have been used to describe the

connecting bolts and the rigid bars.

Bearings connecting the component to the vehicle

chassis have been fully constrained. Symmetry constraints

have been applied. Loads have been applied to the central

beam of the bearings connecting the component to the two

arms coming from the wheel hub.

Three independent static loading conditions have been

analysed. They have been defined by considering the most

severe loads during steering and braking and the most

severe loads when the maximum stroke of the suspension is

reached. Dimensionless loads are given in Table 1 and their

application point is shown in Fig. 4–6. Loads are symmetric

during braking and when the maximum stroke of the

suspension is reached. They are anti symmetric in the

steering loading condition (Fig. 4).

An aluminium alloy Al375T5 has been considered with

the following properties: Young modulus E ¼ 70; 000 MPa,

Poisson ratio n ¼ 0:24; mass density r ¼ 2:27 kg/dm3, yield

strength sy ¼ 160 MPa. Design requirements for the rear

Fig. 2. Original geometry of the analysed McPherson rear suspension

subframe.

Table 1

Table of applied loads in the three different loading conditions expressed as

a percentage of the Y component of the steering force applied to the second

arm

Loading

condition

Load

application

X component

(%)

Y component

(%)

Z component

(%)

Steering 1 20.5 293.0 28.4

Steering 2 20.7 2100.0 26.7

Braking 1 19.3 293.5 8.1

Braking 2 23.4 93.5 87

Maximum

stroke

1 0.4 75.7 10.1

Maximum

stroke

2 0.3 41.3 4.8

Fig. 3. Rear suspension subframe design (light grey) and non design (dark

grey) domains.

Fig. 4. Applied forces during steering.

Figs. 5. Applied forces during braking.
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suspension subframe are a maximum allowable stress

sVM;max < 100 MPa (60% of the yield strength of the base

material) and a first natural frequency higher than

fmin ¼ 300 Hz.

The multiple loading condition topology optimisation

problem has been laid out as a stiffness maximisation

problem with respect to the static loading conditions and as

a first natural frequency maximisation problem with respect

to the dynamic loading condition. Weight coefficients w1 ¼

w2 ¼ w3 ¼ 0:17 have been used for the three static loading

conditions and a weight coefficient w4 ¼ 0:50 has been used

for the dynamic loading condition. A stress constraint on the

maximum mean stresses smax ¼ 100 MPa have been

imposed. The convergence criterion of the optimisation

process has been based on the relative change of the design

Fig. 6. Applied forces when the maximum suspension stroke is reached.

Fig. 7. Final topology for the rear suspension subframe design optimisation

problem: front view.

Fig. 10. Von Mises stress distribution on the optimal configuration of the

rear suspension subframe during braking.

Fig. 8. Final topology for the rear suspension subframe design optimisation

problem: lateral view.

Fig. 9. Von Mises stress distribution on the optimal configuration of the rear

suspension subframe during steering.

Fig. 11. Von Mises stress distribution on the optimal configuration of the

rear suspension subframe when the maximum suspension stroke is reached.
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domain volume. The optimisation process has been stopped

when a relative change of the design domain volume of less

than 1% has been achieved.

The optimisation process converged in 25 iterations.

The final topology and the Young modulus distribution in

the design domain are shown in Figs. 7 – 8. The

implemented method leads to the identification of a

quite well defined structural topology. Less than 60% of

the elements of the design domain have been kept (5103

elements). Only 156 of these elements (1% of the

design domain elements) show intermediate material

properties with a Young modulus value between 100

and 60,000 MPa. Therefore, the material properties of

the elements of the design domain (Young modulus and

mass density) are equal to those of the base material or

almost zero (void).

The optimal configuration identified is characterised by a

total mass of mf ¼ 4:76 kg and a first natural frequency

of about 518 Hz. The optimal structural configuration

complies with the requirements concerning the Von Mises

stress limits and the minimum first natural frequency of the

component. The Von Mises stress distribution for the

optimal configuration is shown in Figs. 9–11 for the three

static loading conditions, respectively. Stress distribution is

quite uniform in each of the three cases.

The structural topology shown in Figs. 7–11 has been

used in order to define the geometrical configuration of an

hypothetical optimal component as shown in Fig. 12. The

proposed geometrical model is characterised by the same

mass of the structural configuration identified by the

optimisation procedure. The first natural frequency of the

proposed component reduced to about ff ¼ 318 Hz. Fig. 13

shows the first natural mode of the component correspond-

ing to the first natural frequency.

The constraint on the mean stress is satisfied leading to

maximum Von Mises stresses lower than required.

Figs. 14–16 show the Von Mises stress distribution

evaluated by the application of the loads during steering,

braking and when the maximum stroke of the suspension

is reached. The only exception is a small area around the

bearing connecting the suspension subframe to the wheel

hub where the Von Mises stresses reach a peak value of

Fig. 12. The proposed geometrical configuration for the rear suspension subframe.

Fig. 13. First mode of the proposed design.

Fig. 14. Von Mises stress distribution on the proposed geometrical

configuration of the rear suspension subframe during steering.

Fig. 15. Von Mises stress distribution on the proposed geometrical

configuration of the rear suspension subframe during braking.
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about 200 MPa. This stress concentration effect is partly

due to the fastening system that have been kept as it was

in the original geometrical configuration of the component

and has not been adapted to the new geometry.

4. Conclusions

The proposed SIMP-like topology optimisation method

is based on compliance minimisation with a constraint on

the volume of the optimal solution. The search procedure

avoids the introduction of a penalisation coefficient in

order to preserve the linear relationship between the

design variable and the material stiffness and, conse-

quently, in order to preserve the existence of a solution to

the problem. The Lagrange multiplier of the volume

constraint, a strain energy density from the dimensional

point of view, has not to be searched a posteriori in order

to comply with the volume constraint. Instead, it can be

calculated a priori in order to comply with the structural

constraints defined on the optimal solution (mean stress,

displacement, stiffness constraints). The Lagrange multi-

plier is already available before each new material density

layout modification and effectively interprets the structural

status of the optimal solution. The usual global re-scaling

of the material density distribution at the end of each

iteration can be avoided.

The optimal structural configurations identified by using

the described search procedure are always continuous and

show a very small number of elements with intermediate

material characteristics (0–1 solution). The procedure does

not require additional constraints or other techniques to

converge and convergence is usually reached with a small

number of iterations (10–30 iterations depending on the

optimisation problem).

The proposed topology optimisation method has been

used to solve a multiple loading condition problem

concerning the McPherson rear suspension subframe of

a mid size vehicle. The geometry of the optimal topology

is quite well defined with less than 1% of the design

domain elements with an intermediate value of material

properties (Young modulus and material density). The

optimal structural configuration complies with the require-

ments concerning the maximum Von Mises stresses and

the minimum first natural frequency of the component.

The results obtained from the topology optimisation

problem have been used to define the hypothetical optimal

shape of the component. The mechanical characteristics of

the component with its final geometrical configuration are

slightly different from those obtained at the end of

the optimisation problem due to a large reduction of the

first natural frequency. The mechanical property variation is

strictly linked to the number of still bulk elements and their

layout into the design domain.
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